Properties

Label 1960.2.g.a
Level $1960$
Weight $2$
Character orbit 1960.g
Analytic conductor $15.651$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1960 = 2^{3} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1960.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.6506787962\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{3} + ( -2 - i ) q^{5} + 2 q^{9} +O(q^{10})\) \( q + i q^{3} + ( -2 - i ) q^{5} + 2 q^{9} - q^{11} -i q^{13} + ( 1 - 2 i ) q^{15} + 3 i q^{17} -4 q^{19} -2 i q^{23} + ( 3 + 4 i ) q^{25} + 5 i q^{27} + q^{29} + 6 q^{31} -i q^{33} + 2 i q^{37} + q^{39} + 10 q^{41} + ( -4 - 2 i ) q^{45} -9 i q^{47} -3 q^{51} + 14 i q^{53} + ( 2 + i ) q^{55} -4 i q^{57} + 6 q^{59} + 4 q^{61} + ( -1 + 2 i ) q^{65} + 10 i q^{67} + 2 q^{69} -16 q^{71} + 10 i q^{73} + ( -4 + 3 i ) q^{75} + 11 q^{79} + q^{81} + 4 i q^{83} + ( 3 - 6 i ) q^{85} + i q^{87} + 12 q^{89} + 6 i q^{93} + ( 8 + 4 i ) q^{95} + 19 i q^{97} -2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{5} + 4q^{9} + O(q^{10}) \) \( 2q - 4q^{5} + 4q^{9} - 2q^{11} + 2q^{15} - 8q^{19} + 6q^{25} + 2q^{29} + 12q^{31} + 2q^{39} + 20q^{41} - 8q^{45} - 6q^{51} + 4q^{55} + 12q^{59} + 8q^{61} - 2q^{65} + 4q^{69} - 32q^{71} - 8q^{75} + 22q^{79} + 2q^{81} + 6q^{85} + 24q^{89} + 16q^{95} - 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1960\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1081\) \(1177\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1569.1
1.00000i
1.00000i
0 1.00000i 0 −2.00000 + 1.00000i 0 0 0 2.00000 0
1569.2 0 1.00000i 0 −2.00000 1.00000i 0 0 0 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1960.2.g.a 2
5.b even 2 1 inner 1960.2.g.a 2
5.c odd 4 1 9800.2.a.p 1
5.c odd 4 1 9800.2.a.bb 1
7.b odd 2 1 280.2.g.a 2
21.c even 2 1 2520.2.t.a 2
28.d even 2 1 560.2.g.d 2
35.c odd 2 1 280.2.g.a 2
35.f even 4 1 1400.2.a.d 1
35.f even 4 1 1400.2.a.j 1
56.e even 2 1 2240.2.g.a 2
56.h odd 2 1 2240.2.g.b 2
84.h odd 2 1 5040.2.t.a 2
105.g even 2 1 2520.2.t.a 2
140.c even 2 1 560.2.g.d 2
140.j odd 4 1 2800.2.a.k 1
140.j odd 4 1 2800.2.a.u 1
280.c odd 2 1 2240.2.g.b 2
280.n even 2 1 2240.2.g.a 2
420.o odd 2 1 5040.2.t.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.g.a 2 7.b odd 2 1
280.2.g.a 2 35.c odd 2 1
560.2.g.d 2 28.d even 2 1
560.2.g.d 2 140.c even 2 1
1400.2.a.d 1 35.f even 4 1
1400.2.a.j 1 35.f even 4 1
1960.2.g.a 2 1.a even 1 1 trivial
1960.2.g.a 2 5.b even 2 1 inner
2240.2.g.a 2 56.e even 2 1
2240.2.g.a 2 280.n even 2 1
2240.2.g.b 2 56.h odd 2 1
2240.2.g.b 2 280.c odd 2 1
2520.2.t.a 2 21.c even 2 1
2520.2.t.a 2 105.g even 2 1
2800.2.a.k 1 140.j odd 4 1
2800.2.a.u 1 140.j odd 4 1
5040.2.t.a 2 84.h odd 2 1
5040.2.t.a 2 420.o odd 2 1
9800.2.a.p 1 5.c odd 4 1
9800.2.a.bb 1 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1960, [\chi])\):

\( T_{3}^{2} + 1 \)
\( T_{19} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 1 + T^{2} \)
$5$ \( 5 + 4 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( ( 1 + T )^{2} \)
$13$ \( 1 + T^{2} \)
$17$ \( 9 + T^{2} \)
$19$ \( ( 4 + T )^{2} \)
$23$ \( 4 + T^{2} \)
$29$ \( ( -1 + T )^{2} \)
$31$ \( ( -6 + T )^{2} \)
$37$ \( 4 + T^{2} \)
$41$ \( ( -10 + T )^{2} \)
$43$ \( T^{2} \)
$47$ \( 81 + T^{2} \)
$53$ \( 196 + T^{2} \)
$59$ \( ( -6 + T )^{2} \)
$61$ \( ( -4 + T )^{2} \)
$67$ \( 100 + T^{2} \)
$71$ \( ( 16 + T )^{2} \)
$73$ \( 100 + T^{2} \)
$79$ \( ( -11 + T )^{2} \)
$83$ \( 16 + T^{2} \)
$89$ \( ( -12 + T )^{2} \)
$97$ \( 361 + T^{2} \)
show more
show less