Properties

Label 1960.2.a.o
Level $1960$
Weight $2$
Character orbit 1960.a
Self dual yes
Analytic conductor $15.651$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1960 = 2^{3} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1960.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(15.6506787962\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 3 q^{3} - q^{5} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} - q^{5} + 6 q^{9} - 5 q^{11} + 5 q^{13} - 3 q^{15} + 7 q^{17} + 2 q^{19} - 2 q^{23} + q^{25} + 9 q^{27} + 7 q^{29} - 4 q^{31} - 15 q^{33} - 6 q^{37} + 15 q^{39} + 12 q^{41} - 2 q^{43} - 6 q^{45} - q^{47} + 21 q^{51} + 5 q^{55} + 6 q^{57} + 4 q^{59} - 4 q^{61} - 5 q^{65} + 8 q^{67} - 6 q^{69} - 6 q^{73} + 3 q^{75} - 3 q^{79} + 9 q^{81} + 4 q^{83} - 7 q^{85} + 21 q^{87} - 12 q^{93} - 2 q^{95} - 13 q^{97} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 −1.00000 0 0 0 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1960.2.a.o 1
4.b odd 2 1 3920.2.a.c 1
5.b even 2 1 9800.2.a.a 1
7.b odd 2 1 280.2.a.a 1
7.c even 3 2 1960.2.q.a 2
7.d odd 6 2 1960.2.q.o 2
21.c even 2 1 2520.2.a.i 1
28.d even 2 1 560.2.a.f 1
35.c odd 2 1 1400.2.a.n 1
35.f even 4 2 1400.2.g.a 2
56.e even 2 1 2240.2.a.a 1
56.h odd 2 1 2240.2.a.z 1
84.h odd 2 1 5040.2.a.a 1
140.c even 2 1 2800.2.a.c 1
140.j odd 4 2 2800.2.g.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.a.a 1 7.b odd 2 1
560.2.a.f 1 28.d even 2 1
1400.2.a.n 1 35.c odd 2 1
1400.2.g.a 2 35.f even 4 2
1960.2.a.o 1 1.a even 1 1 trivial
1960.2.q.a 2 7.c even 3 2
1960.2.q.o 2 7.d odd 6 2
2240.2.a.a 1 56.e even 2 1
2240.2.a.z 1 56.h odd 2 1
2520.2.a.i 1 21.c even 2 1
2800.2.a.c 1 140.c even 2 1
2800.2.g.b 2 140.j odd 4 2
3920.2.a.c 1 4.b odd 2 1
5040.2.a.a 1 84.h odd 2 1
9800.2.a.a 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1960))\):

\( T_{3} - 3 \) Copy content Toggle raw display
\( T_{11} + 5 \) Copy content Toggle raw display
\( T_{13} - 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 5 \) Copy content Toggle raw display
$13$ \( T - 5 \) Copy content Toggle raw display
$17$ \( T - 7 \) Copy content Toggle raw display
$19$ \( T - 2 \) Copy content Toggle raw display
$23$ \( T + 2 \) Copy content Toggle raw display
$29$ \( T - 7 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T + 6 \) Copy content Toggle raw display
$41$ \( T - 12 \) Copy content Toggle raw display
$43$ \( T + 2 \) Copy content Toggle raw display
$47$ \( T + 1 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T + 4 \) Copy content Toggle raw display
$67$ \( T - 8 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 6 \) Copy content Toggle raw display
$79$ \( T + 3 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T + 13 \) Copy content Toggle raw display
show more
show less