Properties

Label 1960.2.a.m
Level $1960$
Weight $2$
Character orbit 1960.a
Self dual yes
Analytic conductor $15.651$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1960 = 2^{3} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1960.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(15.6506787962\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{3} + q^{5} + q^{9} + O(q^{10}) \) \( q + 2q^{3} + q^{5} + q^{9} - q^{11} + 3q^{13} + 2q^{15} + 2q^{17} + 5q^{19} + 7q^{23} + q^{25} - 4q^{27} - 6q^{29} - 4q^{31} - 2q^{33} - 5q^{37} + 6q^{39} + 5q^{41} + 6q^{43} + q^{45} + 9q^{47} + 4q^{51} + 11q^{53} - q^{55} + 10q^{57} - 8q^{59} + 12q^{61} + 3q^{65} - 4q^{67} + 14q^{69} - 4q^{71} - 12q^{73} + 2q^{75} + 14q^{79} - 11q^{81} + 4q^{83} + 2q^{85} - 12q^{87} - 6q^{89} - 8q^{93} + 5q^{95} - 6q^{97} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 2.00000 0 1.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1960.2.a.m 1
4.b odd 2 1 3920.2.a.i 1
5.b even 2 1 9800.2.a.g 1
7.b odd 2 1 1960.2.a.a 1
7.c even 3 2 1960.2.q.c 2
7.d odd 6 2 280.2.q.c 2
21.g even 6 2 2520.2.bi.e 2
28.d even 2 1 3920.2.a.bf 1
28.f even 6 2 560.2.q.c 2
35.c odd 2 1 9800.2.a.bi 1
35.i odd 6 2 1400.2.q.a 2
35.k even 12 4 1400.2.bh.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.q.c 2 7.d odd 6 2
560.2.q.c 2 28.f even 6 2
1400.2.q.a 2 35.i odd 6 2
1400.2.bh.e 4 35.k even 12 4
1960.2.a.a 1 7.b odd 2 1
1960.2.a.m 1 1.a even 1 1 trivial
1960.2.q.c 2 7.c even 3 2
2520.2.bi.e 2 21.g even 6 2
3920.2.a.i 1 4.b odd 2 1
3920.2.a.bf 1 28.d even 2 1
9800.2.a.g 1 5.b even 2 1
9800.2.a.bi 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1960))\):

\( T_{3} - 2 \)
\( T_{11} + 1 \)
\( T_{13} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -2 + T \)
$5$ \( -1 + T \)
$7$ \( T \)
$11$ \( 1 + T \)
$13$ \( -3 + T \)
$17$ \( -2 + T \)
$19$ \( -5 + T \)
$23$ \( -7 + T \)
$29$ \( 6 + T \)
$31$ \( 4 + T \)
$37$ \( 5 + T \)
$41$ \( -5 + T \)
$43$ \( -6 + T \)
$47$ \( -9 + T \)
$53$ \( -11 + T \)
$59$ \( 8 + T \)
$61$ \( -12 + T \)
$67$ \( 4 + T \)
$71$ \( 4 + T \)
$73$ \( 12 + T \)
$79$ \( -14 + T \)
$83$ \( -4 + T \)
$89$ \( 6 + T \)
$97$ \( 6 + T \)
show more
show less