# Properties

 Label 1960.1.v.a Level $1960$ Weight $1$ Character orbit 1960.v Analytic conductor $0.978$ Analytic rank $0$ Dimension $4$ Projective image $S_{4}$ CM/RM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1960 = 2^{3} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 1960.v (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.978167424761$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(i)$$ Coefficient field: $$\Q(\zeta_{8})$$ Defining polynomial: $$x^{4} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Projective image: $$S_{4}$$ Projective field: Galois closure of 4.2.14000.1

## $q$-expansion

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q -\zeta_{8} q^{3} -\zeta_{8} q^{5} +O(q^{10})$$ $$q -\zeta_{8} q^{3} -\zeta_{8} q^{5} + q^{11} + \zeta_{8} q^{13} + \zeta_{8}^{2} q^{15} -\zeta_{8}^{3} q^{17} + ( -\zeta_{8} - \zeta_{8}^{3} ) q^{19} + \zeta_{8}^{2} q^{25} + \zeta_{8}^{3} q^{27} -\zeta_{8}^{2} q^{29} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{31} -\zeta_{8} q^{33} -\zeta_{8}^{2} q^{39} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{41} + ( -1 - \zeta_{8}^{2} ) q^{43} + \zeta_{8}^{3} q^{47} - q^{51} + ( -1 - \zeta_{8}^{2} ) q^{53} -\zeta_{8} q^{55} + ( -1 + \zeta_{8}^{2} ) q^{57} + ( -\zeta_{8} - \zeta_{8}^{3} ) q^{59} -\zeta_{8}^{2} q^{65} + ( -1 + \zeta_{8}^{2} ) q^{67} -\zeta_{8}^{3} q^{75} + \zeta_{8}^{2} q^{79} + q^{81} - q^{85} + \zeta_{8}^{3} q^{87} + ( 1 + \zeta_{8}^{2} ) q^{93} + ( -1 + \zeta_{8}^{2} ) q^{95} + \zeta_{8}^{3} q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + O(q^{10})$$ $$4q + 4q^{11} - 4q^{43} - 4q^{51} - 4q^{53} - 4q^{57} - 4q^{67} + 4q^{81} - 4q^{85} + 4q^{93} - 4q^{95} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1960\mathbb{Z}\right)^\times$$.

 $$n$$ $$981$$ $$1081$$ $$1177$$ $$1471$$ $$\chi(n)$$ $$1$$ $$1$$ $$-\zeta_{8}^{2}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
393.1
 0.707107 + 0.707107i −0.707107 − 0.707107i 0.707107 − 0.707107i −0.707107 + 0.707107i
0 −0.707107 0.707107i 0 −0.707107 0.707107i 0 0 0 0 0
393.2 0 0.707107 + 0.707107i 0 0.707107 + 0.707107i 0 0 0 0 0
1177.1 0 −0.707107 + 0.707107i 0 −0.707107 + 0.707107i 0 0 0 0 0
1177.2 0 0.707107 0.707107i 0 0.707107 0.707107i 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
7.b odd 2 1 inner
35.f even 4 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1960.1.v.a 4
4.b odd 2 1 3920.1.bh.a 4
5.c odd 4 1 inner 1960.1.v.a 4
7.b odd 2 1 inner 1960.1.v.a 4
7.c even 3 2 1960.1.br.a 8
7.d odd 6 2 1960.1.br.a 8
20.e even 4 1 3920.1.bh.a 4
28.d even 2 1 3920.1.bh.a 4
28.f even 6 2 3920.1.cl.b 8
28.g odd 6 2 3920.1.cl.b 8
35.f even 4 1 inner 1960.1.v.a 4
35.k even 12 2 1960.1.br.a 8
35.l odd 12 2 1960.1.br.a 8
140.j odd 4 1 3920.1.bh.a 4
140.w even 12 2 3920.1.cl.b 8
140.x odd 12 2 3920.1.cl.b 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1960.1.v.a 4 1.a even 1 1 trivial
1960.1.v.a 4 5.c odd 4 1 inner
1960.1.v.a 4 7.b odd 2 1 inner
1960.1.v.a 4 35.f even 4 1 inner
1960.1.br.a 8 7.c even 3 2
1960.1.br.a 8 7.d odd 6 2
1960.1.br.a 8 35.k even 12 2
1960.1.br.a 8 35.l odd 12 2
3920.1.bh.a 4 4.b odd 2 1
3920.1.bh.a 4 20.e even 4 1
3920.1.bh.a 4 28.d even 2 1
3920.1.bh.a 4 140.j odd 4 1
3920.1.cl.b 8 28.f even 6 2
3920.1.cl.b 8 28.g odd 6 2
3920.1.cl.b 8 140.w even 12 2
3920.1.cl.b 8 140.x odd 12 2

## Hecke kernels

This newform subspace is the entire newspace $$S_{1}^{\mathrm{new}}(1960, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$1 + T^{4}$$
$5$ $$1 + T^{4}$$
$7$ $$T^{4}$$
$11$ $$( -1 + T )^{4}$$
$13$ $$1 + T^{4}$$
$17$ $$1 + T^{4}$$
$19$ $$( 2 + T^{2} )^{2}$$
$23$ $$T^{4}$$
$29$ $$( 1 + T^{2} )^{2}$$
$31$ $$( -2 + T^{2} )^{2}$$
$37$ $$T^{4}$$
$41$ $$( -2 + T^{2} )^{2}$$
$43$ $$( 2 + 2 T + T^{2} )^{2}$$
$47$ $$1 + T^{4}$$
$53$ $$( 2 + 2 T + T^{2} )^{2}$$
$59$ $$( 2 + T^{2} )^{2}$$
$61$ $$T^{4}$$
$67$ $$( 2 + 2 T + T^{2} )^{2}$$
$71$ $$T^{4}$$
$73$ $$T^{4}$$
$79$ $$( 1 + T^{2} )^{2}$$
$83$ $$T^{4}$$
$89$ $$T^{4}$$
$97$ $$1 + T^{4}$$