Properties

Label 1960.1.bi.a
Level $1960$
Weight $1$
Character orbit 1960.bi
Analytic conductor $0.978$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -40
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1960 = 2^{3} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1960.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.978167424761\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Projective image \(D_{3}\)
Projective field Galois closure of 3.1.1960.1
Artin image $C_6\times S_3$
Artin field Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q -\zeta_{6} q^{2} + \zeta_{6}^{2} q^{4} + \zeta_{6} q^{5} + q^{8} -\zeta_{6} q^{9} +O(q^{10})\) \( q -\zeta_{6} q^{2} + \zeta_{6}^{2} q^{4} + \zeta_{6} q^{5} + q^{8} -\zeta_{6} q^{9} -\zeta_{6}^{2} q^{10} -\zeta_{6}^{2} q^{11} + q^{13} -\zeta_{6} q^{16} + \zeta_{6}^{2} q^{18} -\zeta_{6} q^{19} - q^{20} - q^{22} + \zeta_{6} q^{23} + \zeta_{6}^{2} q^{25} -\zeta_{6} q^{26} + \zeta_{6}^{2} q^{32} + q^{36} + \zeta_{6} q^{37} + \zeta_{6}^{2} q^{38} + \zeta_{6} q^{40} + q^{41} + \zeta_{6} q^{44} -\zeta_{6}^{2} q^{45} -\zeta_{6}^{2} q^{46} -\zeta_{6} q^{47} + q^{50} + \zeta_{6}^{2} q^{52} -\zeta_{6}^{2} q^{53} + q^{55} -2 \zeta_{6}^{2} q^{59} + q^{64} + \zeta_{6} q^{65} -\zeta_{6} q^{72} -\zeta_{6}^{2} q^{74} + q^{76} -\zeta_{6}^{2} q^{80} + \zeta_{6}^{2} q^{81} -\zeta_{6} q^{82} -\zeta_{6}^{2} q^{88} + 2 \zeta_{6} q^{89} - q^{90} - q^{92} + \zeta_{6}^{2} q^{94} -\zeta_{6}^{2} q^{95} - q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - q^{4} + q^{5} + 2q^{8} - q^{9} + O(q^{10}) \) \( 2q - q^{2} - q^{4} + q^{5} + 2q^{8} - q^{9} + q^{10} + q^{11} + 2q^{13} - q^{16} - q^{18} - q^{19} - 2q^{20} - 2q^{22} + q^{23} - q^{25} - q^{26} - q^{32} + 2q^{36} + q^{37} - q^{38} + q^{40} + 2q^{41} + q^{44} + q^{45} + q^{46} - q^{47} + 2q^{50} - q^{52} + q^{53} + 2q^{55} + 2q^{59} + 2q^{64} + q^{65} - q^{72} + q^{74} + 2q^{76} + q^{80} - q^{81} - q^{82} + q^{88} + 2q^{89} - 2q^{90} - 2q^{92} - q^{94} + q^{95} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1960\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1081\) \(1177\) \(1471\)
\(\chi(n)\) \(-1\) \(-\zeta_{6}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
459.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 0.866025i 0 −0.500000 + 0.866025i 0.500000 + 0.866025i 0 0 1.00000 −0.500000 0.866025i 0.500000 0.866025i
1059.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0.500000 0.866025i 0 0 1.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.e odd 2 1 CM by \(\Q(\sqrt{-10}) \)
7.c even 3 1 inner
280.bi odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1960.1.bi.a 2
5.b even 2 1 1960.1.bi.b 2
7.b odd 2 1 280.1.bi.a 2
7.c even 3 1 1960.1.i.c 1
7.c even 3 1 inner 1960.1.bi.a 2
7.d odd 6 1 280.1.bi.a 2
7.d odd 6 1 1960.1.i.d 1
8.d odd 2 1 1960.1.bi.b 2
21.c even 2 1 2520.1.ef.b 2
21.g even 6 1 2520.1.ef.b 2
28.d even 2 1 1120.1.by.a 2
28.f even 6 1 1120.1.by.a 2
35.c odd 2 1 280.1.bi.b yes 2
35.f even 4 2 1400.1.ba.a 4
35.i odd 6 1 280.1.bi.b yes 2
35.i odd 6 1 1960.1.i.a 1
35.j even 6 1 1960.1.i.b 1
35.j even 6 1 1960.1.bi.b 2
35.k even 12 2 1400.1.ba.a 4
40.e odd 2 1 CM 1960.1.bi.a 2
56.e even 2 1 280.1.bi.b yes 2
56.h odd 2 1 1120.1.by.b 2
56.j odd 6 1 1120.1.by.b 2
56.k odd 6 1 1960.1.i.b 1
56.k odd 6 1 1960.1.bi.b 2
56.m even 6 1 280.1.bi.b yes 2
56.m even 6 1 1960.1.i.a 1
105.g even 2 1 2520.1.ef.a 2
105.p even 6 1 2520.1.ef.a 2
140.c even 2 1 1120.1.by.b 2
140.s even 6 1 1120.1.by.b 2
168.e odd 2 1 2520.1.ef.a 2
168.be odd 6 1 2520.1.ef.a 2
280.c odd 2 1 1120.1.by.a 2
280.n even 2 1 280.1.bi.a 2
280.y odd 4 2 1400.1.ba.a 4
280.ba even 6 1 280.1.bi.a 2
280.ba even 6 1 1960.1.i.d 1
280.bi odd 6 1 1960.1.i.c 1
280.bi odd 6 1 inner 1960.1.bi.a 2
280.bk odd 6 1 1120.1.by.a 2
280.bp odd 12 2 1400.1.ba.a 4
840.b odd 2 1 2520.1.ef.b 2
840.ct odd 6 1 2520.1.ef.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.1.bi.a 2 7.b odd 2 1
280.1.bi.a 2 7.d odd 6 1
280.1.bi.a 2 280.n even 2 1
280.1.bi.a 2 280.ba even 6 1
280.1.bi.b yes 2 35.c odd 2 1
280.1.bi.b yes 2 35.i odd 6 1
280.1.bi.b yes 2 56.e even 2 1
280.1.bi.b yes 2 56.m even 6 1
1120.1.by.a 2 28.d even 2 1
1120.1.by.a 2 28.f even 6 1
1120.1.by.a 2 280.c odd 2 1
1120.1.by.a 2 280.bk odd 6 1
1120.1.by.b 2 56.h odd 2 1
1120.1.by.b 2 56.j odd 6 1
1120.1.by.b 2 140.c even 2 1
1120.1.by.b 2 140.s even 6 1
1400.1.ba.a 4 35.f even 4 2
1400.1.ba.a 4 35.k even 12 2
1400.1.ba.a 4 280.y odd 4 2
1400.1.ba.a 4 280.bp odd 12 2
1960.1.i.a 1 35.i odd 6 1
1960.1.i.a 1 56.m even 6 1
1960.1.i.b 1 35.j even 6 1
1960.1.i.b 1 56.k odd 6 1
1960.1.i.c 1 7.c even 3 1
1960.1.i.c 1 280.bi odd 6 1
1960.1.i.d 1 7.d odd 6 1
1960.1.i.d 1 280.ba even 6 1
1960.1.bi.a 2 1.a even 1 1 trivial
1960.1.bi.a 2 7.c even 3 1 inner
1960.1.bi.a 2 40.e odd 2 1 CM
1960.1.bi.a 2 280.bi odd 6 1 inner
1960.1.bi.b 2 5.b even 2 1
1960.1.bi.b 2 8.d odd 2 1
1960.1.bi.b 2 35.j even 6 1
1960.1.bi.b 2 56.k odd 6 1
2520.1.ef.a 2 105.g even 2 1
2520.1.ef.a 2 105.p even 6 1
2520.1.ef.a 2 168.e odd 2 1
2520.1.ef.a 2 168.be odd 6 1
2520.1.ef.b 2 21.c even 2 1
2520.1.ef.b 2 21.g even 6 1
2520.1.ef.b 2 840.b odd 2 1
2520.1.ef.b 2 840.ct odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{13} - 1 \) acting on \(S_{1}^{\mathrm{new}}(1960, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( 1 - T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 1 - T + T^{2} \)
$13$ \( ( -1 + T )^{2} \)
$17$ \( T^{2} \)
$19$ \( 1 + T + T^{2} \)
$23$ \( 1 - T + T^{2} \)
$29$ \( T^{2} \)
$31$ \( T^{2} \)
$37$ \( 1 - T + T^{2} \)
$41$ \( ( -1 + T )^{2} \)
$43$ \( T^{2} \)
$47$ \( 1 + T + T^{2} \)
$53$ \( 1 - T + T^{2} \)
$59$ \( 4 - 2 T + T^{2} \)
$61$ \( T^{2} \)
$67$ \( T^{2} \)
$71$ \( T^{2} \)
$73$ \( T^{2} \)
$79$ \( T^{2} \)
$83$ \( T^{2} \)
$89$ \( 4 - 2 T + T^{2} \)
$97$ \( T^{2} \)
show more
show less