Properties

Label 196.6.e.b
Level $196$
Weight $6$
Character orbit 196.e
Analytic conductor $31.435$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,6,Mod(165,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.165"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 196.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.4352286833\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (19 \zeta_{6} - 19) q^{3} + 19 \zeta_{6} q^{5} - 118 \zeta_{6} q^{9} + ( - 559 \zeta_{6} + 559) q^{11} - 282 q^{13} - 361 q^{15} + ( - 1259 \zeta_{6} + 1259) q^{17} - 1957 \zeta_{6} q^{19} + 2977 \zeta_{6} q^{23} + \cdots - 65962 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 19 q^{3} + 19 q^{5} - 118 q^{9} + 559 q^{11} - 564 q^{13} - 722 q^{15} + 1259 q^{17} - 1957 q^{19} + 2977 q^{23} + 2764 q^{25} - 4750 q^{27} - 124 q^{29} + 2037 q^{31} + 10621 q^{33} - 6023 q^{37}+ \cdots - 131924 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
165.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −9.50000 + 16.4545i 0 9.50000 + 16.4545i 0 0 0 −59.0000 102.191i 0
177.1 0 −9.50000 16.4545i 0 9.50000 16.4545i 0 0 0 −59.0000 + 102.191i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 196.6.e.b 2
7.b odd 2 1 28.6.e.a 2
7.c even 3 1 196.6.a.g 1
7.c even 3 1 inner 196.6.e.b 2
7.d odd 6 1 28.6.e.a 2
7.d odd 6 1 196.6.a.b 1
21.c even 2 1 252.6.k.c 2
21.g even 6 1 252.6.k.c 2
28.d even 2 1 112.6.i.a 2
28.f even 6 1 112.6.i.a 2
28.f even 6 1 784.6.a.k 1
28.g odd 6 1 784.6.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.6.e.a 2 7.b odd 2 1
28.6.e.a 2 7.d odd 6 1
112.6.i.a 2 28.d even 2 1
112.6.i.a 2 28.f even 6 1
196.6.a.b 1 7.d odd 6 1
196.6.a.g 1 7.c even 3 1
196.6.e.b 2 1.a even 1 1 trivial
196.6.e.b 2 7.c even 3 1 inner
252.6.k.c 2 21.c even 2 1
252.6.k.c 2 21.g even 6 1
784.6.a.a 1 28.g odd 6 1
784.6.a.k 1 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 19T_{3} + 361 \) acting on \(S_{6}^{\mathrm{new}}(196, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 19T + 361 \) Copy content Toggle raw display
$5$ \( T^{2} - 19T + 361 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 559T + 312481 \) Copy content Toggle raw display
$13$ \( (T + 282)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 1259 T + 1585081 \) Copy content Toggle raw display
$19$ \( T^{2} + 1957 T + 3829849 \) Copy content Toggle raw display
$23$ \( T^{2} - 2977 T + 8862529 \) Copy content Toggle raw display
$29$ \( (T + 62)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 2037 T + 4149369 \) Copy content Toggle raw display
$37$ \( T^{2} + 6023 T + 36276529 \) Copy content Toggle raw display
$41$ \( (T - 2178)^{2} \) Copy content Toggle raw display
$43$ \( (T - 23180)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 26235 T + 688275225 \) Copy content Toggle raw display
$53$ \( T^{2} + 30267 T + 916091289 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 2021851225 \) Copy content Toggle raw display
$61$ \( T^{2} - 27639 T + 763914321 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 3441816889 \) Copy content Toggle raw display
$71$ \( (T + 9520)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 6785 T + 46036225 \) Copy content Toggle raw display
$79$ \( T^{2} - 16929 T + 286591041 \) Copy content Toggle raw display
$83$ \( (T - 59572)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 2690808129 \) Copy content Toggle raw display
$97$ \( (T + 134110)^{2} \) Copy content Toggle raw display
show more
show less