Properties

Label 196.6.e.a.165.1
Level $196$
Weight $6$
Character 196.165
Analytic conductor $31.435$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,6,Mod(165,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.165");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 196.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.4352286833\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 165.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 196.165
Dual form 196.6.e.a.177.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-13.0000 + 22.5167i) q^{3} +(-8.00000 - 13.8564i) q^{5} +(-216.500 - 374.989i) q^{9} +O(q^{10})\) \(q+(-13.0000 + 22.5167i) q^{3} +(-8.00000 - 13.8564i) q^{5} +(-216.500 - 374.989i) q^{9} +(-4.00000 + 6.92820i) q^{11} +684.000 q^{13} +416.000 q^{15} +(1109.00 - 1920.84i) q^{17} +(1349.00 + 2336.54i) q^{19} +(-1672.00 - 2895.99i) q^{23} +(1434.50 - 2484.63i) q^{25} +4940.00 q^{27} -3254.00 q^{29} +(-2394.00 + 4146.53i) q^{31} +(-104.000 - 180.133i) q^{33} +(5735.00 + 9933.31i) q^{37} +(-8892.00 + 15401.4i) q^{39} +13350.0 q^{41} -928.000 q^{43} +(-3464.00 + 5999.82i) q^{45} +(-606.000 - 1049.62i) q^{47} +(28834.0 + 49942.0i) q^{51} +(-6555.00 + 11353.6i) q^{53} +128.000 q^{55} -70148.0 q^{57} +(-17351.0 + 30052.8i) q^{59} +(516.000 + 893.738i) q^{61} +(-5472.00 - 9477.78i) q^{65} +(-5054.00 + 8753.78i) q^{67} +86944.0 q^{69} +62720.0 q^{71} +(9463.00 - 16390.4i) q^{73} +(37297.0 + 64600.3i) q^{75} +(-5700.00 - 9872.69i) q^{79} +(-11610.5 + 20110.0i) q^{81} +88958.0 q^{83} -35488.0 q^{85} +(42302.0 - 73269.2i) q^{87} +(-9861.00 - 17079.8i) q^{89} +(-62244.0 - 107810. i) q^{93} +(21584.0 - 37384.6i) q^{95} +17062.0 q^{97} +3464.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 26 q^{3} - 16 q^{5} - 433 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 26 q^{3} - 16 q^{5} - 433 q^{9} - 8 q^{11} + 1368 q^{13} + 832 q^{15} + 2218 q^{17} + 2698 q^{19} - 3344 q^{23} + 2869 q^{25} + 9880 q^{27} - 6508 q^{29} - 4788 q^{31} - 208 q^{33} + 11470 q^{37} - 17784 q^{39} + 26700 q^{41} - 1856 q^{43} - 6928 q^{45} - 1212 q^{47} + 57668 q^{51} - 13110 q^{53} + 256 q^{55} - 140296 q^{57} - 34702 q^{59} + 1032 q^{61} - 10944 q^{65} - 10108 q^{67} + 173888 q^{69} + 125440 q^{71} + 18926 q^{73} + 74594 q^{75} - 11400 q^{79} - 23221 q^{81} + 177916 q^{83} - 70976 q^{85} + 84604 q^{87} - 19722 q^{89} - 124488 q^{93} + 43168 q^{95} + 34124 q^{97} + 6928 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −13.0000 + 22.5167i −0.833950 + 1.44444i 0.0609318 + 0.998142i \(0.480593\pi\)
−0.894882 + 0.446303i \(0.852741\pi\)
\(4\) 0 0
\(5\) −8.00000 13.8564i −0.143108 0.247871i 0.785557 0.618789i \(-0.212376\pi\)
−0.928666 + 0.370918i \(0.879043\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −216.500 374.989i −0.890947 1.54316i
\(10\) 0 0
\(11\) −4.00000 + 6.92820i −0.00996732 + 0.0172639i −0.870966 0.491343i \(-0.836506\pi\)
0.860999 + 0.508607i \(0.169839\pi\)
\(12\) 0 0
\(13\) 684.000 1.12253 0.561265 0.827636i \(-0.310315\pi\)
0.561265 + 0.827636i \(0.310315\pi\)
\(14\) 0 0
\(15\) 416.000 0.477381
\(16\) 0 0
\(17\) 1109.00 1920.84i 0.930699 1.61202i 0.148570 0.988902i \(-0.452533\pi\)
0.782129 0.623116i \(-0.214134\pi\)
\(18\) 0 0
\(19\) 1349.00 + 2336.54i 0.857290 + 1.48487i 0.874504 + 0.485019i \(0.161187\pi\)
−0.0172134 + 0.999852i \(0.505479\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1672.00 2895.99i −0.659047 1.14150i −0.980863 0.194701i \(-0.937626\pi\)
0.321815 0.946803i \(-0.395707\pi\)
\(24\) 0 0
\(25\) 1434.50 2484.63i 0.459040 0.795081i
\(26\) 0 0
\(27\) 4940.00 1.30412
\(28\) 0 0
\(29\) −3254.00 −0.718493 −0.359247 0.933243i \(-0.616966\pi\)
−0.359247 + 0.933243i \(0.616966\pi\)
\(30\) 0 0
\(31\) −2394.00 + 4146.53i −0.447425 + 0.774962i −0.998218 0.0596797i \(-0.980992\pi\)
0.550793 + 0.834642i \(0.314325\pi\)
\(32\) 0 0
\(33\) −104.000 180.133i −0.0166245 0.0287945i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5735.00 + 9933.31i 0.688698 + 1.19286i 0.972259 + 0.233906i \(0.0751509\pi\)
−0.283561 + 0.958954i \(0.591516\pi\)
\(38\) 0 0
\(39\) −8892.00 + 15401.4i −0.936134 + 1.62143i
\(40\) 0 0
\(41\) 13350.0 1.24029 0.620143 0.784489i \(-0.287075\pi\)
0.620143 + 0.784489i \(0.287075\pi\)
\(42\) 0 0
\(43\) −928.000 −0.0765380 −0.0382690 0.999267i \(-0.512184\pi\)
−0.0382690 + 0.999267i \(0.512184\pi\)
\(44\) 0 0
\(45\) −3464.00 + 5999.82i −0.255004 + 0.441679i
\(46\) 0 0
\(47\) −606.000 1049.62i −0.0400155 0.0693088i 0.845324 0.534254i \(-0.179407\pi\)
−0.885340 + 0.464945i \(0.846074\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 28834.0 + 49942.0i 1.55231 + 2.68869i
\(52\) 0 0
\(53\) −6555.00 + 11353.6i −0.320541 + 0.555193i −0.980600 0.196021i \(-0.937198\pi\)
0.660059 + 0.751214i \(0.270531\pi\)
\(54\) 0 0
\(55\) 128.000 0.00570563
\(56\) 0 0
\(57\) −70148.0 −2.85975
\(58\) 0 0
\(59\) −17351.0 + 30052.8i −0.648925 + 1.12397i 0.334455 + 0.942412i \(0.391448\pi\)
−0.983380 + 0.181559i \(0.941886\pi\)
\(60\) 0 0
\(61\) 516.000 + 893.738i 0.0177552 + 0.0307529i 0.874766 0.484545i \(-0.161015\pi\)
−0.857011 + 0.515298i \(0.827681\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5472.00 9477.78i −0.160643 0.278242i
\(66\) 0 0
\(67\) −5054.00 + 8753.78i −0.137546 + 0.238237i −0.926567 0.376129i \(-0.877255\pi\)
0.789021 + 0.614366i \(0.210588\pi\)
\(68\) 0 0
\(69\) 86944.0 2.19845
\(70\) 0 0
\(71\) 62720.0 1.47659 0.738295 0.674477i \(-0.235631\pi\)
0.738295 + 0.674477i \(0.235631\pi\)
\(72\) 0 0
\(73\) 9463.00 16390.4i 0.207836 0.359983i −0.743196 0.669073i \(-0.766691\pi\)
0.951033 + 0.309090i \(0.100024\pi\)
\(74\) 0 0
\(75\) 37297.0 + 64600.3i 0.765633 + 1.32612i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5700.00 9872.69i −0.102756 0.177979i 0.810063 0.586343i \(-0.199433\pi\)
−0.912819 + 0.408364i \(0.866099\pi\)
\(80\) 0 0
\(81\) −11610.5 + 20110.0i −0.196625 + 0.340564i
\(82\) 0 0
\(83\) 88958.0 1.41739 0.708696 0.705514i \(-0.249284\pi\)
0.708696 + 0.705514i \(0.249284\pi\)
\(84\) 0 0
\(85\) −35488.0 −0.532763
\(86\) 0 0
\(87\) 42302.0 73269.2i 0.599188 1.03782i
\(88\) 0 0
\(89\) −9861.00 17079.8i −0.131961 0.228563i 0.792471 0.609909i \(-0.208794\pi\)
−0.924432 + 0.381346i \(0.875461\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −62244.0 107810.i −0.746260 1.29256i
\(94\) 0 0
\(95\) 21584.0 37384.6i 0.245371 0.424995i
\(96\) 0 0
\(97\) 17062.0 0.184120 0.0920599 0.995753i \(-0.470655\pi\)
0.0920599 + 0.995753i \(0.470655\pi\)
\(98\) 0 0
\(99\) 3464.00 0.0355214
\(100\) 0 0
\(101\) −22952.0 + 39754.0i −0.223881 + 0.387773i −0.955983 0.293422i \(-0.905206\pi\)
0.732102 + 0.681195i \(0.238539\pi\)
\(102\) 0 0
\(103\) 68006.0 + 117790.i 0.631618 + 1.09399i 0.987221 + 0.159357i \(0.0509420\pi\)
−0.355604 + 0.934637i \(0.615725\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 34578.0 + 59890.9i 0.291971 + 0.505709i 0.974276 0.225359i \(-0.0723554\pi\)
−0.682304 + 0.731068i \(0.739022\pi\)
\(108\) 0 0
\(109\) 73207.0 126798.i 0.590183 1.02223i −0.404025 0.914748i \(-0.632389\pi\)
0.994207 0.107478i \(-0.0342776\pi\)
\(110\) 0 0
\(111\) −298220. −2.29736
\(112\) 0 0
\(113\) −80186.0 −0.590748 −0.295374 0.955382i \(-0.595444\pi\)
−0.295374 + 0.955382i \(0.595444\pi\)
\(114\) 0 0
\(115\) −26752.0 + 46335.8i −0.188630 + 0.326717i
\(116\) 0 0
\(117\) −148086. 256492.i −1.00011 1.73225i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 80493.5 + 139419.i 0.499801 + 0.865681i
\(122\) 0 0
\(123\) −173550. + 300597.i −1.03434 + 1.79152i
\(124\) 0 0
\(125\) −95904.0 −0.548987
\(126\) 0 0
\(127\) 274800. 1.51185 0.755923 0.654661i \(-0.227189\pi\)
0.755923 + 0.654661i \(0.227189\pi\)
\(128\) 0 0
\(129\) 12064.0 20895.5i 0.0638289 0.110555i
\(130\) 0 0
\(131\) −90371.0 156527.i −0.460099 0.796914i 0.538867 0.842391i \(-0.318853\pi\)
−0.998965 + 0.0454769i \(0.985519\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −39520.0 68450.6i −0.186630 0.323253i
\(136\) 0 0
\(137\) 104839. 181586.i 0.477223 0.826575i −0.522436 0.852678i \(-0.674977\pi\)
0.999659 + 0.0261038i \(0.00831003\pi\)
\(138\) 0 0
\(139\) 17242.0 0.0756921 0.0378461 0.999284i \(-0.487950\pi\)
0.0378461 + 0.999284i \(0.487950\pi\)
\(140\) 0 0
\(141\) 31512.0 0.133484
\(142\) 0 0
\(143\) −2736.00 + 4738.89i −0.0111886 + 0.0193792i
\(144\) 0 0
\(145\) 26032.0 + 45088.7i 0.102822 + 0.178094i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −29679.0 51405.5i −0.109518 0.189690i 0.806057 0.591837i \(-0.201597\pi\)
−0.915575 + 0.402147i \(0.868264\pi\)
\(150\) 0 0
\(151\) 168172. 291282.i 0.600221 1.03961i −0.392566 0.919724i \(-0.628413\pi\)
0.992787 0.119890i \(-0.0382541\pi\)
\(152\) 0 0
\(153\) −960394. −3.31681
\(154\) 0 0
\(155\) 76608.0 0.256121
\(156\) 0 0
\(157\) −232294. + 402345.i −0.752123 + 1.30272i 0.194669 + 0.980869i \(0.437637\pi\)
−0.946792 + 0.321846i \(0.895697\pi\)
\(158\) 0 0
\(159\) −170430. 295193.i −0.534630 0.926006i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −157396. 272618.i −0.464007 0.803684i 0.535149 0.844758i \(-0.320255\pi\)
−0.999156 + 0.0410737i \(0.986922\pi\)
\(164\) 0 0
\(165\) −1664.00 + 2882.13i −0.00475821 + 0.00824146i
\(166\) 0 0
\(167\) 285724. 0.792785 0.396393 0.918081i \(-0.370262\pi\)
0.396393 + 0.918081i \(0.370262\pi\)
\(168\) 0 0
\(169\) 96563.0 0.260072
\(170\) 0 0
\(171\) 584117. 1.01172e6i 1.52760 2.64588i
\(172\) 0 0
\(173\) 354574. + 614140.i 0.900724 + 1.56010i 0.826557 + 0.562854i \(0.190296\pi\)
0.0741671 + 0.997246i \(0.476370\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −451126. 781373.i −1.08234 1.87467i
\(178\) 0 0
\(179\) 308574. 534466.i 0.719825 1.24677i −0.241244 0.970464i \(-0.577555\pi\)
0.961069 0.276309i \(-0.0891112\pi\)
\(180\) 0 0
\(181\) 237828. 0.539593 0.269797 0.962917i \(-0.413044\pi\)
0.269797 + 0.962917i \(0.413044\pi\)
\(182\) 0 0
\(183\) −26832.0 −0.0592278
\(184\) 0 0
\(185\) 91760.0 158933.i 0.197117 0.341417i
\(186\) 0 0
\(187\) 8872.00 + 15366.8i 0.0185531 + 0.0321350i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 66756.0 + 115625.i 0.132406 + 0.229334i 0.924603 0.380931i \(-0.124396\pi\)
−0.792198 + 0.610265i \(0.791063\pi\)
\(192\) 0 0
\(193\) −135223. + 234213.i −0.261311 + 0.452604i −0.966590 0.256326i \(-0.917488\pi\)
0.705280 + 0.708929i \(0.250821\pi\)
\(194\) 0 0
\(195\) 284544. 0.535874
\(196\) 0 0
\(197\) 875102. 1.60655 0.803273 0.595611i \(-0.203090\pi\)
0.803273 + 0.595611i \(0.203090\pi\)
\(198\) 0 0
\(199\) 173810. 301048.i 0.311130 0.538893i −0.667477 0.744630i \(-0.732626\pi\)
0.978607 + 0.205737i \(0.0659592\pi\)
\(200\) 0 0
\(201\) −131404. 227598.i −0.229413 0.397355i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −106800. 184983.i −0.177495 0.307431i
\(206\) 0 0
\(207\) −723976. + 1.25396e6i −1.17435 + 2.03404i
\(208\) 0 0
\(209\) −21584.0 −0.0341795
\(210\) 0 0
\(211\) −425380. −0.657765 −0.328883 0.944371i \(-0.606672\pi\)
−0.328883 + 0.944371i \(0.606672\pi\)
\(212\) 0 0
\(213\) −815360. + 1.41224e6i −1.23140 + 2.13285i
\(214\) 0 0
\(215\) 7424.00 + 12858.7i 0.0109532 + 0.0189715i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 246038. + 426150.i 0.346651 + 0.600416i
\(220\) 0 0
\(221\) 758556. 1.31386e6i 1.04474 1.80954i
\(222\) 0 0
\(223\) 481592. 0.648511 0.324255 0.945970i \(-0.394886\pi\)
0.324255 + 0.945970i \(0.394886\pi\)
\(224\) 0 0
\(225\) −1.24228e6 −1.63592
\(226\) 0 0
\(227\) 3021.00 5232.53i 0.00389122 0.00673980i −0.864073 0.503366i \(-0.832095\pi\)
0.867964 + 0.496626i \(0.165428\pi\)
\(228\) 0 0
\(229\) −902.000 1562.31i −0.00113663 0.00196870i 0.865457 0.500984i \(-0.167028\pi\)
−0.866593 + 0.499015i \(0.833695\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 805763. + 1.39562e6i 0.972339 + 1.68414i 0.688452 + 0.725282i \(0.258291\pi\)
0.283887 + 0.958858i \(0.408376\pi\)
\(234\) 0 0
\(235\) −9696.00 + 16794.0i −0.0114531 + 0.0198373i
\(236\) 0 0
\(237\) 296400. 0.342774
\(238\) 0 0
\(239\) −987096. −1.11780 −0.558901 0.829235i \(-0.688777\pi\)
−0.558901 + 0.829235i \(0.688777\pi\)
\(240\) 0 0
\(241\) −446755. + 773802.i −0.495481 + 0.858198i −0.999986 0.00521050i \(-0.998341\pi\)
0.504506 + 0.863408i \(0.331675\pi\)
\(242\) 0 0
\(243\) 298337. + 516735.i 0.324109 + 0.561374i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 922716. + 1.59819e6i 0.962334 + 1.66681i
\(248\) 0 0
\(249\) −1.15645e6 + 2.00304e6i −1.18203 + 2.04734i
\(250\) 0 0
\(251\) 365946. 0.366634 0.183317 0.983054i \(-0.441317\pi\)
0.183317 + 0.983054i \(0.441317\pi\)
\(252\) 0 0
\(253\) 26752.0 0.0262757
\(254\) 0 0
\(255\) 461344. 799071.i 0.444298 0.769547i
\(256\) 0 0
\(257\) −702297. 1.21641e6i −0.663266 1.14881i −0.979752 0.200214i \(-0.935836\pi\)
0.316486 0.948597i \(-0.397497\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 704491. + 1.22021e6i 0.640139 + 1.10875i
\(262\) 0 0
\(263\) −549840. + 952351.i −0.490170 + 0.849000i −0.999936 0.0113135i \(-0.996399\pi\)
0.509766 + 0.860313i \(0.329732\pi\)
\(264\) 0 0
\(265\) 209760. 0.183488
\(266\) 0 0
\(267\) 512772. 0.440196
\(268\) 0 0
\(269\) −407474. + 705766.i −0.343336 + 0.594675i −0.985050 0.172269i \(-0.944890\pi\)
0.641714 + 0.766944i \(0.278224\pi\)
\(270\) 0 0
\(271\) 849528. + 1.47143e6i 0.702675 + 1.21707i 0.967524 + 0.252779i \(0.0813445\pi\)
−0.264849 + 0.964290i \(0.585322\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11476.0 + 19877.0i 0.00915079 + 0.0158496i
\(276\) 0 0
\(277\) 682541. 1.18220e6i 0.534477 0.925742i −0.464711 0.885462i \(-0.653842\pi\)
0.999188 0.0402796i \(-0.0128249\pi\)
\(278\) 0 0
\(279\) 2.07320e6 1.59453
\(280\) 0 0
\(281\) −715846. −0.540821 −0.270411 0.962745i \(-0.587159\pi\)
−0.270411 + 0.962745i \(0.587159\pi\)
\(282\) 0 0
\(283\) −108863. + 188556.i −0.0808005 + 0.139951i −0.903594 0.428390i \(-0.859081\pi\)
0.822793 + 0.568340i \(0.192414\pi\)
\(284\) 0 0
\(285\) 561184. + 971999.i 0.409254 + 0.708849i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.74983e6 3.03080e6i −1.23240 2.13458i
\(290\) 0 0
\(291\) −221806. + 384179.i −0.153547 + 0.265951i
\(292\) 0 0
\(293\) 1.50708e6 1.02557 0.512787 0.858516i \(-0.328613\pi\)
0.512787 + 0.858516i \(0.328613\pi\)
\(294\) 0 0
\(295\) 555232. 0.371466
\(296\) 0 0
\(297\) −19760.0 + 34225.3i −0.0129986 + 0.0225142i
\(298\) 0 0
\(299\) −1.14365e6 1.98086e6i −0.739800 1.28137i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −596752. 1.03360e6i −0.373411 0.646767i
\(304\) 0 0
\(305\) 8256.00 14299.8i 0.00508183 0.00880199i
\(306\) 0 0
\(307\) 12502.0 0.00757066 0.00378533 0.999993i \(-0.498795\pi\)
0.00378533 + 0.999993i \(0.498795\pi\)
\(308\) 0 0
\(309\) −3.53631e6 −2.10695
\(310\) 0 0
\(311\) 323716. 560693.i 0.189786 0.328718i −0.755393 0.655272i \(-0.772554\pi\)
0.945179 + 0.326554i \(0.105887\pi\)
\(312\) 0 0
\(313\) 467989. + 810581.i 0.270007 + 0.467666i 0.968863 0.247596i \(-0.0796407\pi\)
−0.698856 + 0.715262i \(0.746307\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −352971. 611364.i −0.197284 0.341705i 0.750363 0.661026i \(-0.229879\pi\)
−0.947647 + 0.319321i \(0.896545\pi\)
\(318\) 0 0
\(319\) 13016.0 22544.4i 0.00716145 0.0124040i
\(320\) 0 0
\(321\) −1.79806e6 −0.973959
\(322\) 0 0
\(323\) 5.98416e6 3.19152
\(324\) 0 0
\(325\) 981198. 1.69948e6i 0.515286 0.892501i
\(326\) 0 0
\(327\) 1.90338e6 + 3.29675e6i 0.984366 + 1.70497i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 571520. + 989902.i 0.286722 + 0.496618i 0.973025 0.230698i \(-0.0741010\pi\)
−0.686303 + 0.727316i \(0.740768\pi\)
\(332\) 0 0
\(333\) 2.48326e6 4.30112e6i 1.22719 2.12555i
\(334\) 0 0
\(335\) 161728. 0.0787360
\(336\) 0 0
\(337\) −2.36402e6 −1.13390 −0.566952 0.823751i \(-0.691877\pi\)
−0.566952 + 0.823751i \(0.691877\pi\)
\(338\) 0 0
\(339\) 1.04242e6 1.80552e6i 0.492655 0.853303i
\(340\) 0 0
\(341\) −19152.0 33172.2i −0.00891925 0.0154486i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −695552. 1.20473e6i −0.314617 0.544932i
\(346\) 0 0
\(347\) −363120. + 628942.i −0.161892 + 0.280406i −0.935547 0.353201i \(-0.885093\pi\)
0.773655 + 0.633607i \(0.218426\pi\)
\(348\) 0 0
\(349\) 136180. 0.0598480 0.0299240 0.999552i \(-0.490473\pi\)
0.0299240 + 0.999552i \(0.490473\pi\)
\(350\) 0 0
\(351\) 3.37896e6 1.46391
\(352\) 0 0
\(353\) 584535. 1.01244e6i 0.249674 0.432448i −0.713761 0.700389i \(-0.753010\pi\)
0.963435 + 0.267941i \(0.0863431\pi\)
\(354\) 0 0
\(355\) −501760. 869074.i −0.211312 0.366004i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2140.00 + 3706.59i 0.000876350 + 0.00151788i 0.866463 0.499241i \(-0.166388\pi\)
−0.865587 + 0.500759i \(0.833054\pi\)
\(360\) 0 0
\(361\) −2.40155e6 + 4.15961e6i −0.969894 + 1.67990i
\(362\) 0 0
\(363\) −4.18566e6 −1.66724
\(364\) 0 0
\(365\) −302816. −0.118973
\(366\) 0 0
\(367\) −1.22398e6 + 2.12000e6i −0.474361 + 0.821618i −0.999569 0.0293563i \(-0.990654\pi\)
0.525208 + 0.850974i \(0.323988\pi\)
\(368\) 0 0
\(369\) −2.89028e6 5.00610e6i −1.10503 1.91396i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 452257. + 783332.i 0.168311 + 0.291524i 0.937826 0.347105i \(-0.112835\pi\)
−0.769515 + 0.638629i \(0.779502\pi\)
\(374\) 0 0
\(375\) 1.24675e6 2.15944e6i 0.457828 0.792981i
\(376\) 0 0
\(377\) −2.22574e6 −0.806530
\(378\) 0 0
\(379\) −4.23034e6 −1.51279 −0.756393 0.654117i \(-0.773040\pi\)
−0.756393 + 0.654117i \(0.773040\pi\)
\(380\) 0 0
\(381\) −3.57240e6 + 6.18758e6i −1.26080 + 2.18378i
\(382\) 0 0
\(383\) −2.27700e6 3.94388e6i −0.793169 1.37381i −0.923995 0.382404i \(-0.875096\pi\)
0.130826 0.991405i \(-0.458237\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 200912. + 347990.i 0.0681912 + 0.118111i
\(388\) 0 0
\(389\) 1.99270e6 3.45146e6i 0.667680 1.15646i −0.310871 0.950452i \(-0.600621\pi\)
0.978551 0.206004i \(-0.0660460\pi\)
\(390\) 0 0
\(391\) −7.41699e6 −2.45350
\(392\) 0 0
\(393\) 4.69929e6 1.53480
\(394\) 0 0
\(395\) −91200.0 + 157963.i −0.0294105 + 0.0509404i
\(396\) 0 0
\(397\) −276210. 478410.i −0.0879555 0.152343i 0.818691 0.574234i \(-0.194700\pi\)
−0.906647 + 0.421890i \(0.861367\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −19095.0 33073.5i −0.00593006 0.0102712i 0.863045 0.505127i \(-0.168554\pi\)
−0.868975 + 0.494856i \(0.835221\pi\)
\(402\) 0 0
\(403\) −1.63750e6 + 2.83623e6i −0.502247 + 0.869918i
\(404\) 0 0
\(405\) 371536. 0.112555
\(406\) 0 0
\(407\) −91760.0 −0.0274579
\(408\) 0 0
\(409\) 1.96238e6 3.39894e6i 0.580062 1.00470i −0.415410 0.909634i \(-0.636362\pi\)
0.995471 0.0950619i \(-0.0303049\pi\)
\(410\) 0 0
\(411\) 2.72581e6 + 4.72125e6i 0.795961 + 1.37864i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −711664. 1.23264e6i −0.202841 0.351330i
\(416\) 0 0
\(417\) −224146. + 388232.i −0.0631235 + 0.109333i
\(418\) 0 0
\(419\) 598386. 0.166512 0.0832562 0.996528i \(-0.473468\pi\)
0.0832562 + 0.996528i \(0.473468\pi\)
\(420\) 0 0
\(421\) 4.61597e6 1.26928 0.634641 0.772807i \(-0.281148\pi\)
0.634641 + 0.772807i \(0.281148\pi\)
\(422\) 0 0
\(423\) −262398. + 454487.i −0.0713033 + 0.123501i
\(424\) 0 0
\(425\) −3.18172e6 5.51090e6i −0.854456 1.47996i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −71136.0 123211.i −0.0186615 0.0323226i
\(430\) 0 0
\(431\) 30780.0 53312.5i 0.00798133 0.0138241i −0.862007 0.506896i \(-0.830793\pi\)
0.869988 + 0.493072i \(0.164126\pi\)
\(432\) 0 0
\(433\) −3.79727e6 −0.973310 −0.486655 0.873594i \(-0.661783\pi\)
−0.486655 + 0.873594i \(0.661783\pi\)
\(434\) 0 0
\(435\) −1.35366e6 −0.342995
\(436\) 0 0
\(437\) 4.51106e6 7.81338e6i 1.12999 1.95720i
\(438\) 0 0
\(439\) 1.14426e6 + 1.98192e6i 0.283376 + 0.490822i 0.972214 0.234093i \(-0.0752122\pi\)
−0.688838 + 0.724915i \(0.741879\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.37988e6 + 4.12207e6i 0.576163 + 0.997944i 0.995914 + 0.0903044i \(0.0287840\pi\)
−0.419751 + 0.907639i \(0.637883\pi\)
\(444\) 0 0
\(445\) −157776. + 273276.i −0.0377695 + 0.0654186i
\(446\) 0 0
\(447\) 1.54331e6 0.365329
\(448\) 0 0
\(449\) −4.36715e6 −1.02231 −0.511155 0.859489i \(-0.670782\pi\)
−0.511155 + 0.859489i \(0.670782\pi\)
\(450\) 0 0
\(451\) −53400.0 + 92491.5i −0.0123623 + 0.0214122i
\(452\) 0 0
\(453\) 4.37247e6 + 7.57334e6i 1.00111 + 1.73397i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.72497e6 4.71979e6i −0.610339 1.05714i −0.991183 0.132499i \(-0.957700\pi\)
0.380844 0.924639i \(-0.375634\pi\)
\(458\) 0 0
\(459\) 5.47846e6 9.48897e6i 1.21374 2.10226i
\(460\) 0 0
\(461\) 1.66966e6 0.365911 0.182956 0.983121i \(-0.441434\pi\)
0.182956 + 0.983121i \(0.441434\pi\)
\(462\) 0 0
\(463\) 70768.0 0.0153421 0.00767104 0.999971i \(-0.497558\pi\)
0.00767104 + 0.999971i \(0.497558\pi\)
\(464\) 0 0
\(465\) −995904. + 1.72496e6i −0.213592 + 0.369952i
\(466\) 0 0
\(467\) −2.83041e6 4.90242e6i −0.600562 1.04020i −0.992736 0.120313i \(-0.961610\pi\)
0.392174 0.919891i \(-0.371723\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −6.03964e6 1.04610e7i −1.25447 2.17280i
\(472\) 0 0
\(473\) 3712.00 6429.37i 0.000762878 0.00132134i
\(474\) 0 0
\(475\) 7.74056e6 1.57412
\(476\) 0 0
\(477\) 5.67663e6 1.14234
\(478\) 0 0
\(479\) 724742. 1.25529e6i 0.144326 0.249980i −0.784795 0.619755i \(-0.787232\pi\)
0.929121 + 0.369775i \(0.120565\pi\)
\(480\) 0 0
\(481\) 3.92274e6 + 6.79438e6i 0.773084 + 1.33902i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −136496. 236418.i −0.0263491 0.0456380i
\(486\) 0 0
\(487\) −2.03752e6 + 3.52909e6i −0.389296 + 0.674280i −0.992355 0.123417i \(-0.960615\pi\)
0.603059 + 0.797696i \(0.293948\pi\)
\(488\) 0 0
\(489\) 8.18459e6 1.54784
\(490\) 0 0
\(491\) 986100. 0.184594 0.0922969 0.995732i \(-0.470579\pi\)
0.0922969 + 0.995732i \(0.470579\pi\)
\(492\) 0 0
\(493\) −3.60869e6 + 6.25043e6i −0.668701 + 1.15822i
\(494\) 0 0
\(495\) −27712.0 47998.6i −0.00508341 0.00880472i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.99171e6 5.18179e6i −0.537859 0.931598i −0.999019 0.0442817i \(-0.985900\pi\)
0.461160 0.887317i \(-0.347433\pi\)
\(500\) 0 0
\(501\) −3.71441e6 + 6.43355e6i −0.661144 + 1.14513i
\(502\) 0 0
\(503\) −3.49373e6 −0.615700 −0.307850 0.951435i \(-0.599609\pi\)
−0.307850 + 0.951435i \(0.599609\pi\)
\(504\) 0 0
\(505\) 734464. 0.128157
\(506\) 0 0
\(507\) −1.25532e6 + 2.17428e6i −0.216887 + 0.375660i
\(508\) 0 0
\(509\) −1.07855e6 1.86811e6i −0.184522 0.319601i 0.758894 0.651215i \(-0.225740\pi\)
−0.943415 + 0.331614i \(0.892407\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 6.66406e6 + 1.15425e7i 1.11801 + 1.93645i
\(514\) 0 0
\(515\) 1.08810e6 1.88464e6i 0.180779 0.313119i
\(516\) 0 0
\(517\) 9696.00 0.00159539
\(518\) 0 0
\(519\) −1.84378e7 −3.00464
\(520\) 0 0
\(521\) 3.32908e6 5.76614e6i 0.537317 0.930660i −0.461730 0.887020i \(-0.652771\pi\)
0.999047 0.0436400i \(-0.0138955\pi\)
\(522\) 0 0
\(523\) −2.97611e6 5.15478e6i −0.475768 0.824055i 0.523846 0.851813i \(-0.324497\pi\)
−0.999615 + 0.0277579i \(0.991163\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.30989e6 + 9.19700e6i 0.832835 + 1.44251i
\(528\) 0 0
\(529\) −2.37300e6 + 4.11015e6i −0.368687 + 0.638585i
\(530\) 0 0
\(531\) 1.50260e7 2.31263
\(532\) 0 0
\(533\) 9.13140e6 1.39226
\(534\) 0 0
\(535\) 553248. 958254.i 0.0835671 0.144742i
\(536\) 0 0
\(537\) 8.02292e6 + 1.38961e7i 1.20060 + 2.07949i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 3.19840e6 + 5.53980e6i 0.469830 + 0.813769i 0.999405 0.0344943i \(-0.0109821\pi\)
−0.529575 + 0.848263i \(0.677649\pi\)
\(542\) 0 0
\(543\) −3.09176e6 + 5.35509e6i −0.449994 + 0.779413i
\(544\) 0 0
\(545\) −2.34262e6 −0.337840
\(546\) 0 0
\(547\) −5.51851e6 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(548\) 0 0
\(549\) 223428. 386989.i 0.0316378 0.0547983i
\(550\) 0 0
\(551\) −4.38965e6 7.60309e6i −0.615957 1.06687i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.38576e6 + 4.13226e6i 0.328772 + 0.569449i
\(556\) 0 0
\(557\) −1.01080e6 + 1.75075e6i −0.138046 + 0.239103i −0.926757 0.375661i \(-0.877416\pi\)
0.788711 + 0.614765i \(0.210749\pi\)
\(558\) 0 0
\(559\) −634752. −0.0859161
\(560\) 0 0
\(561\) −461344. −0.0618896
\(562\) 0 0
\(563\) −4.07339e6 + 7.05532e6i −0.541608 + 0.938092i 0.457204 + 0.889362i \(0.348851\pi\)
−0.998812 + 0.0487304i \(0.984482\pi\)
\(564\) 0 0
\(565\) 641488. + 1.11109e6i 0.0845410 + 0.146429i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.99121e6 + 1.03771e7i 0.775772 + 1.34368i 0.934360 + 0.356332i \(0.115973\pi\)
−0.158588 + 0.987345i \(0.550694\pi\)
\(570\) 0 0
\(571\) −697908. + 1.20881e6i −0.0895793 + 0.155156i −0.907333 0.420412i \(-0.861886\pi\)
0.817754 + 0.575568i \(0.195219\pi\)
\(572\) 0 0
\(573\) −3.47131e6 −0.441679
\(574\) 0 0
\(575\) −9.59394e6 −1.21012
\(576\) 0 0
\(577\) −983921. + 1.70420e6i −0.123033 + 0.213099i −0.920962 0.389652i \(-0.872595\pi\)
0.797930 + 0.602751i \(0.205929\pi\)
\(578\) 0 0
\(579\) −3.51580e6 6.08954e6i −0.435840 0.754898i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −52440.0 90828.7i −0.00638986 0.0110676i
\(584\) 0 0
\(585\) −2.36938e6 + 4.10388e6i −0.286249 + 0.495798i
\(586\) 0 0
\(587\) −3.18897e6 −0.381993 −0.190997 0.981591i \(-0.561172\pi\)
−0.190997 + 0.981591i \(0.561172\pi\)
\(588\) 0 0
\(589\) −1.29180e7 −1.53429
\(590\) 0 0
\(591\) −1.13763e7 + 1.97044e7i −1.33978 + 2.32057i
\(592\) 0 0
\(593\) −837501. 1.45059e6i −0.0978022 0.169398i 0.812972 0.582302i \(-0.197848\pi\)
−0.910775 + 0.412904i \(0.864515\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.51906e6 + 7.82724e6i 0.518934 + 0.898820i
\(598\) 0 0
\(599\) 5.03173e6 8.71522e6i 0.572994 0.992456i −0.423262 0.906007i \(-0.639115\pi\)
0.996256 0.0864482i \(-0.0275517\pi\)
\(600\) 0 0
\(601\) 1.72798e6 0.195143 0.0975713 0.995229i \(-0.468893\pi\)
0.0975713 + 0.995229i \(0.468893\pi\)
\(602\) 0 0
\(603\) 4.37676e6 0.490185
\(604\) 0 0
\(605\) 1.28790e6 2.23070e6i 0.143051 0.247772i
\(606\) 0 0
\(607\) 8.47613e6 + 1.46811e7i 0.933740 + 1.61728i 0.776866 + 0.629666i \(0.216808\pi\)
0.156873 + 0.987619i \(0.449859\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −414504. 717942.i −0.0449185 0.0778012i
\(612\) 0 0
\(613\) −5.09708e6 + 8.82840e6i −0.547861 + 0.948923i 0.450560 + 0.892746i \(0.351224\pi\)
−0.998421 + 0.0561768i \(0.982109\pi\)
\(614\) 0 0
\(615\) 5.55360e6 0.592089
\(616\) 0 0
\(617\) 1.57452e7 1.66508 0.832540 0.553965i \(-0.186886\pi\)
0.832540 + 0.553965i \(0.186886\pi\)
\(618\) 0 0
\(619\) 166345. 288118.i 0.0174495 0.0302234i −0.857169 0.515036i \(-0.827779\pi\)
0.874618 + 0.484812i \(0.161112\pi\)
\(620\) 0 0
\(621\) −8.25968e6 1.43062e7i −0.859477 1.48866i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −3.71558e6 6.43557e6i −0.380475 0.659003i
\(626\) 0 0
\(627\) 280592. 486000.i 0.0285040 0.0493704i
\(628\) 0 0
\(629\) 2.54405e7 2.56388
\(630\) 0 0
\(631\) 3.59720e6 0.359659 0.179830 0.983698i \(-0.442445\pi\)
0.179830 + 0.983698i \(0.442445\pi\)
\(632\) 0 0
\(633\) 5.52994e6 9.57814e6i 0.548544 0.950105i
\(634\) 0 0
\(635\) −2.19840e6 3.80774e6i −0.216358 0.374743i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.35789e7 2.35193e7i −1.31556 2.27862i
\(640\) 0 0
\(641\) 7.31946e6 1.26777e7i 0.703614 1.21869i −0.263576 0.964639i \(-0.584902\pi\)
0.967190 0.254056i \(-0.0817647\pi\)
\(642\) 0 0
\(643\) −1.38386e7 −1.31997 −0.659987 0.751277i \(-0.729438\pi\)
−0.659987 + 0.751277i \(0.729438\pi\)
\(644\) 0 0
\(645\) −386048. −0.0365378
\(646\) 0 0
\(647\) 7.01791e6 1.21554e7i 0.659093 1.14158i −0.321758 0.946822i \(-0.604274\pi\)
0.980851 0.194761i \(-0.0623931\pi\)
\(648\) 0 0
\(649\) −138808. 240423.i −0.0129361 0.0224060i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.05314e6 1.39484e7i −0.739064 1.28010i −0.952917 0.303231i \(-0.901935\pi\)
0.213853 0.976866i \(-0.431399\pi\)
\(654\) 0 0
\(655\) −1.44594e6 + 2.50443e6i −0.131688 + 0.228090i
\(656\) 0 0
\(657\) −8.19496e6 −0.740685
\(658\) 0 0
\(659\) 4.80075e6 0.430622 0.215311 0.976546i \(-0.430924\pi\)
0.215311 + 0.976546i \(0.430924\pi\)
\(660\) 0 0
\(661\) 8.82824e6 1.52910e7i 0.785905 1.36123i −0.142551 0.989787i \(-0.545531\pi\)
0.928457 0.371441i \(-0.121136\pi\)
\(662\) 0 0
\(663\) 1.97225e7 + 3.41603e7i 1.74252 + 3.01813i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.44069e6 + 9.42355e6i 0.473521 + 0.820162i
\(668\) 0 0
\(669\) −6.26070e6 + 1.08438e7i −0.540826 + 0.936738i
\(670\) 0 0
\(671\) −8256.00 −0.000707886
\(672\) 0 0
\(673\) 6.59225e6 0.561043 0.280521 0.959848i \(-0.409493\pi\)
0.280521 + 0.959848i \(0.409493\pi\)
\(674\) 0 0
\(675\) 7.08643e6 1.22741e7i 0.598643 1.03688i
\(676\) 0 0
\(677\) −4.88589e6 8.46261e6i −0.409706 0.709631i 0.585151 0.810924i \(-0.301035\pi\)
−0.994857 + 0.101293i \(0.967702\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 78546.0 + 136046.i 0.00649017 + 0.0112413i
\(682\) 0 0
\(683\) 9.43316e6 1.63387e7i 0.773758 1.34019i −0.161731 0.986835i \(-0.551708\pi\)
0.935490 0.353354i \(-0.114959\pi\)
\(684\) 0 0
\(685\) −3.35485e6 −0.273178
\(686\) 0 0
\(687\) 46904.0 0.00379156
\(688\) 0 0
\(689\) −4.48362e6 + 7.76586e6i −0.359816 + 0.623220i
\(690\) 0 0
\(691\) −4.33509e6 7.50860e6i −0.345385 0.598224i 0.640039 0.768343i \(-0.278918\pi\)
−0.985424 + 0.170119i \(0.945585\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −137936. 238912.i −0.0108322 0.0187619i
\(696\) 0 0
\(697\) 1.48052e7 2.56433e7i 1.15433 1.99936i
\(698\) 0 0
\(699\) −4.18997e7 −3.24353
\(700\) 0 0
\(701\) 7.93482e6 0.609877 0.304938 0.952372i \(-0.401364\pi\)
0.304938 + 0.952372i \(0.401364\pi\)
\(702\) 0 0
\(703\) −1.54730e7 + 2.68001e7i −1.18083 + 2.04526i
\(704\) 0 0
\(705\) −252096. 436643.i −0.0191026 0.0330867i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.31300e7 2.27419e7i −0.980956 1.69907i −0.658685 0.752419i \(-0.728887\pi\)
−0.322272 0.946647i \(-0.604446\pi\)
\(710\) 0 0
\(711\) −2.46810e6 + 4.27487e6i −0.183100 + 0.317139i
\(712\) 0 0
\(713\) 1.60111e7 1.17950
\(714\) 0 0
\(715\) 87552.0 0.00640473
\(716\) 0 0
\(717\) 1.28322e7 2.22261e7i 0.932191 1.61460i
\(718\) 0 0
\(719\) −1.10381e7 1.91186e7i −0.796295 1.37922i −0.922014 0.387157i \(-0.873457\pi\)
0.125719 0.992066i \(-0.459876\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.16156e7 2.01189e7i −0.826413 1.43139i
\(724\) 0 0
\(725\) −4.66786e6 + 8.08498e6i −0.329817 + 0.571260i
\(726\) 0 0
\(727\) 8.49245e6 0.595933 0.297966 0.954576i \(-0.403692\pi\)
0.297966 + 0.954576i \(0.403692\pi\)
\(728\) 0 0
\(729\) −2.11562e7 −1.47441
\(730\) 0 0
\(731\) −1.02915e6 + 1.78254e6i −0.0712338 + 0.123381i
\(732\) 0 0
\(733\) 9.53564e6 + 1.65162e7i 0.655526 + 1.13540i 0.981762 + 0.190116i \(0.0608865\pi\)
−0.326235 + 0.945289i \(0.605780\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −40432.0 70030.3i −0.00274193 0.00474916i
\(738\) 0 0
\(739\) 7.34161e6 1.27160e7i 0.494516 0.856527i −0.505464 0.862848i \(-0.668679\pi\)
0.999980 + 0.00632086i \(0.00201201\pi\)
\(740\) 0 0
\(741\) −4.79812e7 −3.21015
\(742\) 0 0
\(743\) 1.64265e7 1.09162 0.545812 0.837908i \(-0.316221\pi\)
0.545812 + 0.837908i \(0.316221\pi\)
\(744\) 0 0
\(745\) −474864. + 822489.i −0.0313457 + 0.0542924i
\(746\) 0 0
\(747\) −1.92594e7 3.33583e7i −1.26282 2.18727i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.22178e7 + 2.11619e7i 0.790486 + 1.36916i 0.925666 + 0.378342i \(0.123506\pi\)
−0.135180 + 0.990821i \(0.543161\pi\)
\(752\) 0 0
\(753\) −4.75730e6 + 8.23988e6i −0.305755 + 0.529582i
\(754\) 0 0
\(755\) −5.38150e6 −0.343587
\(756\) 0 0
\(757\) −295566. −0.0187463 −0.00937313 0.999956i \(-0.502984\pi\)
−0.00937313 + 0.999956i \(0.502984\pi\)
\(758\) 0 0
\(759\) −347776. + 602366.i −0.0219127 + 0.0379538i
\(760\) 0 0
\(761\) 236921. + 410359.i 0.0148300 + 0.0256864i 0.873345 0.487102i \(-0.161946\pi\)
−0.858515 + 0.512788i \(0.828613\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 7.68315e6 + 1.33076e7i 0.474664 + 0.822141i
\(766\) 0 0
\(767\) −1.18681e7 + 2.05561e7i −0.728437 + 1.26169i
\(768\) 0 0
\(769\) 2.33241e7 1.42229 0.711145 0.703045i \(-0.248177\pi\)
0.711145 + 0.703045i \(0.248177\pi\)
\(770\) 0 0
\(771\) 3.65194e7 2.21253
\(772\) 0 0
\(773\) −7.77914e6 + 1.34739e7i −0.468255 + 0.811042i −0.999342 0.0362754i \(-0.988451\pi\)
0.531086 + 0.847318i \(0.321784\pi\)
\(774\) 0 0
\(775\) 6.86839e6 + 1.18964e7i 0.410772 + 0.711477i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.80092e7 + 3.11928e7i 1.06328 + 1.84166i
\(780\) 0 0
\(781\) −250880. + 434537.i −0.0147176 + 0.0254917i
\(782\) 0 0
\(783\) −1.60748e7 −0.937001
\(784\) 0 0
\(785\)