Properties

Label 196.6.a.k
Level $196$
Weight $6$
Character orbit 196.a
Self dual yes
Analytic conductor $31.435$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,6,Mod(1,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.4352286833\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{1177})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 591x^{2} + 592x + 85262 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + \beta_1) q^{3} + ( - \beta_{3} - 8 \beta_1) q^{5} + ( - \beta_{2} + 370) q^{9} + ( - \beta_{2} - 111) q^{11} + (15 \beta_{3} - 42 \beta_1) q^{13} + (8 \beta_{2} - 956) q^{15} + (80 \beta_{3} + 7 \beta_1) q^{17}+ \cdots + ( - 259 \beta_{2} + 16603) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 1480 q^{9} - 444 q^{11} - 3824 q^{15} + 3408 q^{23} + 11904 q^{25} + 20724 q^{29} + 13732 q^{37} + 25608 q^{39} - 28996 q^{43} + 181852 q^{51} + 528 q^{53} + 89540 q^{57} + 110220 q^{65} + 195384 q^{67}+ \cdots + 66412 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 591x^{2} + 592x + 85262 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{3} + 3\nu^{2} + 599\nu - 300 ) / 167 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -4\nu^{3} + 6\nu^{2} + 3536\nu - 1769 ) / 167 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 82\nu^{2} - 383\nu - 24566 ) / 167 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 2\beta _1 + 7 ) / 14 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 28\beta_{3} + \beta_{2} + 12\beta _1 + 4151 ) / 14 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 6\beta_{3} + 43\beta_{2} - 250\beta _1 + 889 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−15.2395
16.2395
19.0679
−18.0679
0 −29.2088 0 98.5052 0 0 0 610.152 0
1.2 0 −19.3093 0 −49.9872 0 0 0 129.848 0
1.3 0 19.3093 0 49.9872 0 0 0 129.848 0
1.4 0 29.2088 0 −98.5052 0 0 0 610.152 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 196.6.a.k 4
4.b odd 2 1 784.6.a.bi 4
7.b odd 2 1 inner 196.6.a.k 4
7.c even 3 2 196.6.e.l 8
7.d odd 6 2 196.6.e.l 8
28.d even 2 1 784.6.a.bi 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
196.6.a.k 4 1.a even 1 1 trivial
196.6.a.k 4 7.b odd 2 1 inner
196.6.e.l 8 7.c even 3 2
196.6.e.l 8 7.d odd 6 2
784.6.a.bi 4 4.b odd 2 1
784.6.a.bi 4 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 1226T_{3}^{2} + 318096 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(196))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 1226 T^{2} + 318096 \) Copy content Toggle raw display
$5$ \( T^{4} - 12202 T^{2} + 24245776 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 222 T - 45352)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 11601874944 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 13393243063684 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 79621037584 \) Copy content Toggle raw display
$23$ \( (T^{2} - 1704 T - 2965168)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 10362 T + 24016784)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 14733805879296 \) Copy content Toggle raw display
$37$ \( (T^{2} - 6866 T - 30258128)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 20\!\cdots\!24 \) Copy content Toggle raw display
$43$ \( (T^{2} + 14498 T - 176356136)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 13\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( (T^{2} - 264 T - 11286484)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 11\!\cdots\!44 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 21\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( (T^{2} - 97692 T + 1918780416)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 10836 T - 321527808)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 95\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( (T^{2} + 58652 T - 1683365024)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 25\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 49\!\cdots\!24 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 79\!\cdots\!84 \) Copy content Toggle raw display
show more
show less