Properties

Label 196.6.a.f
Level $196$
Weight $6$
Character orbit 196.a
Self dual yes
Analytic conductor $31.435$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,6,Mod(1,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.4352286833\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 16 q^{3} - 16 q^{5} + 13 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 16 q^{3} - 16 q^{5} + 13 q^{9} - 76 q^{11} - 880 q^{13} - 256 q^{15} + 1056 q^{17} - 1936 q^{19} + 936 q^{23} - 2869 q^{25} - 3680 q^{27} - 3982 q^{29} - 1568 q^{31} - 1216 q^{33} + 4938 q^{37} - 14080 q^{39} + 15840 q^{41} - 16412 q^{43} - 208 q^{45} + 20768 q^{47} + 16896 q^{51} - 37402 q^{53} + 1216 q^{55} - 30976 q^{57} - 21136 q^{59} + 2992 q^{61} + 14080 q^{65} - 45836 q^{67} + 14976 q^{69} - 49840 q^{71} + 56320 q^{73} - 45904 q^{75} + 40744 q^{79} - 62039 q^{81} - 112464 q^{83} - 16896 q^{85} - 63712 q^{87} - 64256 q^{89} - 25088 q^{93} + 30976 q^{95} + 2272 q^{97} - 988 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 16.0000 0 −16.0000 0 0 0 13.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 196.6.a.f yes 1
4.b odd 2 1 784.6.a.b 1
7.b odd 2 1 196.6.a.c 1
7.c even 3 2 196.6.e.c 2
7.d odd 6 2 196.6.e.h 2
28.d even 2 1 784.6.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
196.6.a.c 1 7.b odd 2 1
196.6.a.f yes 1 1.a even 1 1 trivial
196.6.e.c 2 7.c even 3 2
196.6.e.h 2 7.d odd 6 2
784.6.a.b 1 4.b odd 2 1
784.6.a.j 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 16 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(196))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 16 \) Copy content Toggle raw display
$5$ \( T + 16 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 76 \) Copy content Toggle raw display
$13$ \( T + 880 \) Copy content Toggle raw display
$17$ \( T - 1056 \) Copy content Toggle raw display
$19$ \( T + 1936 \) Copy content Toggle raw display
$23$ \( T - 936 \) Copy content Toggle raw display
$29$ \( T + 3982 \) Copy content Toggle raw display
$31$ \( T + 1568 \) Copy content Toggle raw display
$37$ \( T - 4938 \) Copy content Toggle raw display
$41$ \( T - 15840 \) Copy content Toggle raw display
$43$ \( T + 16412 \) Copy content Toggle raw display
$47$ \( T - 20768 \) Copy content Toggle raw display
$53$ \( T + 37402 \) Copy content Toggle raw display
$59$ \( T + 21136 \) Copy content Toggle raw display
$61$ \( T - 2992 \) Copy content Toggle raw display
$67$ \( T + 45836 \) Copy content Toggle raw display
$71$ \( T + 49840 \) Copy content Toggle raw display
$73$ \( T - 56320 \) Copy content Toggle raw display
$79$ \( T - 40744 \) Copy content Toggle raw display
$83$ \( T + 112464 \) Copy content Toggle raw display
$89$ \( T + 64256 \) Copy content Toggle raw display
$97$ \( T - 2272 \) Copy content Toggle raw display
show more
show less