Properties

Label 196.6.a.e
Level $196$
Weight $6$
Character orbit 196.a
Self dual yes
Analytic conductor $31.435$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,6,Mod(1,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.4352286833\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 12 q^{3} - 54 q^{5} - 99 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 12 q^{3} - 54 q^{5} - 99 q^{9} + 540 q^{11} + 418 q^{13} - 648 q^{15} - 594 q^{17} - 836 q^{19} - 4104 q^{23} - 209 q^{25} - 4104 q^{27} - 594 q^{29} - 4256 q^{31} + 6480 q^{33} - 298 q^{37} + 5016 q^{39} - 17226 q^{41} - 12100 q^{43} + 5346 q^{45} + 1296 q^{47} - 7128 q^{51} + 19494 q^{53} - 29160 q^{55} - 10032 q^{57} + 7668 q^{59} + 34738 q^{61} - 22572 q^{65} + 21812 q^{67} - 49248 q^{69} - 46872 q^{71} - 67562 q^{73} - 2508 q^{75} - 76912 q^{79} - 25191 q^{81} - 67716 q^{83} + 32076 q^{85} - 7128 q^{87} - 29754 q^{89} - 51072 q^{93} + 45144 q^{95} + 122398 q^{97} - 53460 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 12.0000 0 −54.0000 0 0 0 −99.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 196.6.a.e 1
4.b odd 2 1 784.6.a.d 1
7.b odd 2 1 4.6.a.a 1
7.c even 3 2 196.6.e.d 2
7.d odd 6 2 196.6.e.g 2
21.c even 2 1 36.6.a.a 1
28.d even 2 1 16.6.a.b 1
35.c odd 2 1 100.6.a.b 1
35.f even 4 2 100.6.c.b 2
56.e even 2 1 64.6.a.b 1
56.h odd 2 1 64.6.a.f 1
63.l odd 6 2 324.6.e.a 2
63.o even 6 2 324.6.e.d 2
77.b even 2 1 484.6.a.a 1
84.h odd 2 1 144.6.a.c 1
91.b odd 2 1 676.6.a.a 1
91.i even 4 2 676.6.d.a 2
105.g even 2 1 900.6.a.h 1
105.k odd 4 2 900.6.d.a 2
112.j even 4 2 256.6.b.c 2
112.l odd 4 2 256.6.b.g 2
140.c even 2 1 400.6.a.d 1
140.j odd 4 2 400.6.c.f 2
168.e odd 2 1 576.6.a.bd 1
168.i even 2 1 576.6.a.bc 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.6.a.a 1 7.b odd 2 1
16.6.a.b 1 28.d even 2 1
36.6.a.a 1 21.c even 2 1
64.6.a.b 1 56.e even 2 1
64.6.a.f 1 56.h odd 2 1
100.6.a.b 1 35.c odd 2 1
100.6.c.b 2 35.f even 4 2
144.6.a.c 1 84.h odd 2 1
196.6.a.e 1 1.a even 1 1 trivial
196.6.e.d 2 7.c even 3 2
196.6.e.g 2 7.d odd 6 2
256.6.b.c 2 112.j even 4 2
256.6.b.g 2 112.l odd 4 2
324.6.e.a 2 63.l odd 6 2
324.6.e.d 2 63.o even 6 2
400.6.a.d 1 140.c even 2 1
400.6.c.f 2 140.j odd 4 2
484.6.a.a 1 77.b even 2 1
576.6.a.bc 1 168.i even 2 1
576.6.a.bd 1 168.e odd 2 1
676.6.a.a 1 91.b odd 2 1
676.6.d.a 2 91.i even 4 2
784.6.a.d 1 4.b odd 2 1
900.6.a.h 1 105.g even 2 1
900.6.d.a 2 105.k odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 12 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(196))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 12 \) Copy content Toggle raw display
$5$ \( T + 54 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 540 \) Copy content Toggle raw display
$13$ \( T - 418 \) Copy content Toggle raw display
$17$ \( T + 594 \) Copy content Toggle raw display
$19$ \( T + 836 \) Copy content Toggle raw display
$23$ \( T + 4104 \) Copy content Toggle raw display
$29$ \( T + 594 \) Copy content Toggle raw display
$31$ \( T + 4256 \) Copy content Toggle raw display
$37$ \( T + 298 \) Copy content Toggle raw display
$41$ \( T + 17226 \) Copy content Toggle raw display
$43$ \( T + 12100 \) Copy content Toggle raw display
$47$ \( T - 1296 \) Copy content Toggle raw display
$53$ \( T - 19494 \) Copy content Toggle raw display
$59$ \( T - 7668 \) Copy content Toggle raw display
$61$ \( T - 34738 \) Copy content Toggle raw display
$67$ \( T - 21812 \) Copy content Toggle raw display
$71$ \( T + 46872 \) Copy content Toggle raw display
$73$ \( T + 67562 \) Copy content Toggle raw display
$79$ \( T + 76912 \) Copy content Toggle raw display
$83$ \( T + 67716 \) Copy content Toggle raw display
$89$ \( T + 29754 \) Copy content Toggle raw display
$97$ \( T - 122398 \) Copy content Toggle raw display
show more
show less