Defining parameters
Level: | \( N \) | \(=\) | \( 196 = 2^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 196.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(196))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 96 | 10 | 86 |
Cusp forms | 72 | 10 | 62 |
Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(+\) | \(6\) |
Plus space | \(+\) | \(6\) | |
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(196))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | |||||||
196.4.a.a | $1$ | $11.564$ | \(\Q\) | None | \(0\) | \(-4\) | \(-20\) | \(0\) | $-$ | $-$ | \(q-4q^{3}-20q^{5}-11q^{9}+44q^{11}+\cdots\) | |
196.4.a.b | $1$ | $11.564$ | \(\Q\) | None | \(0\) | \(-4\) | \(-6\) | \(0\) | $-$ | $-$ | \(q-4q^{3}-6q^{5}-11q^{9}-12q^{11}+82q^{13}+\cdots\) | |
196.4.a.c | $1$ | $11.564$ | \(\Q\) | None | \(0\) | \(4\) | \(20\) | \(0\) | $-$ | $-$ | \(q+4q^{3}+20q^{5}-11q^{9}+44q^{11}+\cdots\) | |
196.4.a.d | $1$ | $11.564$ | \(\Q\) | None | \(0\) | \(10\) | \(8\) | \(0\) | $-$ | $-$ | \(q+10q^{3}+8q^{5}+73q^{9}-40q^{11}+\cdots\) | |
196.4.a.e | $2$ | $11.564$ | \(\Q(\sqrt{37}) \) | None | \(0\) | \(0\) | \(-14\) | \(0\) | $-$ | $+$ | \(q-\beta q^{3}+(-7+2\beta )q^{5}+10q^{9}+(2^{4}+\cdots)q^{11}+\cdots\) | |
196.4.a.f | $2$ | $11.564$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | \(q+\beta q^{3}-2\beta q^{5}-5^{2}q^{9}-26q^{11}+\cdots\) | |
196.4.a.g | $2$ | $11.564$ | \(\Q(\sqrt{37}) \) | None | \(0\) | \(0\) | \(14\) | \(0\) | $-$ | $-$ | \(q-\beta q^{3}+(7+2\beta )q^{5}+10q^{9}+(2^{4}-7\beta )q^{11}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(196))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(196)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)