Properties

Label 196.4
Level 196
Weight 4
Dimension 1926
Nonzero newspaces 8
Newform subspaces 27
Sturm bound 9408
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 27 \)
Sturm bound: \(9408\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(196))\).

Total New Old
Modular forms 3678 2022 1656
Cusp forms 3378 1926 1452
Eisenstein series 300 96 204

Trace form

\( 1926 q - 15 q^{2} + 12 q^{3} - 15 q^{4} - 54 q^{5} - 21 q^{6} - 24 q^{7} - 129 q^{8} - 114 q^{9} + O(q^{10}) \) \( 1926 q - 15 q^{2} + 12 q^{3} - 15 q^{4} - 54 q^{5} - 21 q^{6} - 24 q^{7} - 129 q^{8} - 114 q^{9} + 3 q^{10} + 168 q^{11} + 315 q^{12} + 258 q^{13} + 138 q^{14} + 384 q^{15} + 153 q^{16} - 162 q^{17} - 63 q^{18} - 636 q^{19} - 21 q^{20} - 684 q^{21} - 291 q^{22} - 168 q^{23} - 717 q^{24} + 1062 q^{25} - 813 q^{26} + 1224 q^{27} - 666 q^{28} + 1722 q^{29} - 1821 q^{30} - 672 q^{31} - 1695 q^{32} - 1842 q^{33} - 21 q^{34} - 498 q^{35} + 1983 q^{36} - 3474 q^{37} + 3219 q^{38} - 1050 q^{39} + 3075 q^{40} + 1782 q^{41} + 1983 q^{42} + 1644 q^{43} + 4143 q^{44} + 5766 q^{45} + 2295 q^{46} + 2508 q^{47} + 3642 q^{49} - 2958 q^{50} + 2016 q^{51} - 5205 q^{52} - 1122 q^{53} - 9165 q^{54} - 3114 q^{55} - 3558 q^{56} - 4518 q^{57} - 5049 q^{58} - 4344 q^{59} - 4437 q^{60} - 4794 q^{61} - 21 q^{62} - 3588 q^{63} + 3495 q^{64} - 690 q^{65} + 8523 q^{66} + 1344 q^{67} + 12147 q^{68} - 978 q^{69} + 7323 q^{70} - 1008 q^{71} + 11961 q^{72} + 1374 q^{73} + 3807 q^{74} + 3636 q^{75} - 21 q^{76} + 3150 q^{77} - 3399 q^{78} + 2184 q^{79} - 918 q^{80} + 16002 q^{81} - 390 q^{82} + 5832 q^{83} + 8946 q^{84} + 1542 q^{85} - 9576 q^{86} + 3120 q^{87} - 8778 q^{88} + 8394 q^{89} - 16380 q^{90} - 2610 q^{91} - 3156 q^{92} - 7254 q^{93} - 2526 q^{94} - 13440 q^{95} - 10368 q^{96} - 10068 q^{97} - 18780 q^{98} - 11664 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(196))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
196.4.a \(\chi_{196}(1, \cdot)\) 196.4.a.a 1 1
196.4.a.b 1
196.4.a.c 1
196.4.a.d 1
196.4.a.e 2
196.4.a.f 2
196.4.a.g 2
196.4.d \(\chi_{196}(195, \cdot)\) 196.4.d.a 4 1
196.4.d.b 20
196.4.d.c 32
196.4.e \(\chi_{196}(165, \cdot)\) 196.4.e.a 2 2
196.4.e.b 2
196.4.e.c 2
196.4.e.d 2
196.4.e.e 2
196.4.e.f 2
196.4.e.g 4
196.4.e.h 4
196.4.f \(\chi_{196}(19, \cdot)\) 196.4.f.a 4 2
196.4.f.b 8
196.4.f.c 16
196.4.f.d 20
196.4.f.e 64
196.4.i \(\chi_{196}(29, \cdot)\) 196.4.i.a 84 6
196.4.j \(\chi_{196}(27, \cdot)\) 196.4.j.a 492 6
196.4.m \(\chi_{196}(9, \cdot)\) 196.4.m.a 168 12
196.4.p \(\chi_{196}(3, \cdot)\) 196.4.p.a 984 12

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(196))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(196)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(196))\)\(^{\oplus 1}\)