Newspace parameters
| Level: | \( N \) | \(=\) | \( 196 = 2^{2} \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 196.o (of order \(42\), degree \(12\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.34061318146\) |
| Analytic rank: | \(0\) |
| Dimension: | \(648\) |
| Relative dimension: | \(54\) over \(\Q(\zeta_{42})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{42}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 11.1 | −1.99834 | + | 0.0813931i | −0.890429 | − | 5.90761i | 3.98675 | − | 0.325303i | −0.693008 | + | 1.76576i | 2.26022 | + | 11.7330i | −1.01134 | + | 6.92656i | −7.94042 | + | 0.974561i | −25.5068 | + | 7.86781i | 1.24115 | − | 3.58499i |
| 11.2 | −1.99274 | − | 0.170222i | −0.201068 | − | 1.33400i | 3.94205 | + | 0.678419i | 3.01252 | − | 7.67577i | 0.173600 | + | 2.69254i | −6.53373 | − | 2.51206i | −7.74001 | − | 2.02294i | 6.86104 | − | 2.11635i | −7.30976 | + | 14.7830i |
| 11.3 | −1.98074 | + | 0.276918i | 0.395705 | + | 2.62533i | 3.84663 | − | 1.09700i | 0.136996 | − | 0.349061i | −1.51079 | − | 5.09051i | 5.15618 | − | 4.73433i | −7.31539 | + | 3.23807i | 1.86438 | − | 0.575086i | −0.174692 | + | 0.729334i |
| 11.4 | −1.96966 | + | 0.347058i | 0.640356 | + | 4.24848i | 3.75910 | − | 1.36717i | −2.20043 | + | 5.60659i | −2.73575 | − | 8.14581i | −5.66464 | − | 4.11241i | −6.92965 | + | 3.99749i | −9.03938 | + | 2.78828i | 2.38827 | − | 11.8067i |
| 11.5 | −1.92990 | − | 0.524869i | −0.378415 | − | 2.51062i | 3.44902 | + | 2.02589i | −1.86555 | + | 4.75335i | −0.587445 | + | 5.04386i | 4.39216 | − | 5.45059i | −5.59294 | − | 5.72005i | 2.44014 | − | 0.752684i | 6.09521 | − | 8.19431i |
| 11.6 | −1.92562 | − | 0.540347i | 0.290399 | + | 1.92667i | 3.41605 | + | 2.08101i | 0.0455030 | − | 0.115940i | 0.481873 | − | 3.86696i | 1.95514 | + | 6.72141i | −5.45356 | − | 5.85309i | 4.97241 | − | 1.53379i | −0.150269 | + | 0.198669i |
| 11.7 | −1.78844 | + | 0.895263i | −0.378329 | − | 2.51005i | 2.39701 | − | 3.20224i | 1.68959 | − | 4.30500i | 2.92377 | + | 4.15036i | 6.58919 | + | 2.36275i | −1.42005 | + | 7.87296i | 2.44295 | − | 0.753551i | 0.832384 | + | 9.21184i |
| 11.8 | −1.76409 | + | 0.942337i | −0.177932 | − | 1.18050i | 2.22400 | − | 3.32473i | −0.392454 | + | 0.999956i | 1.42632 | + | 1.91484i | −5.97561 | + | 3.64583i | −0.790316 | + | 7.96087i | 7.23823 | − | 2.23270i | −0.249973 | − | 2.13383i |
| 11.9 | −1.76080 | + | 0.948456i | 0.805611 | + | 5.34488i | 2.20086 | − | 3.34009i | 2.78087 | − | 7.08553i | −6.48790 | − | 8.64719i | 0.694514 | + | 6.96546i | −0.707355 | + | 7.96867i | −19.3185 | + | 5.95898i | 1.82376 | + | 15.1138i |
| 11.10 | −1.73035 | − | 1.00295i | −0.252232 | − | 1.67345i | 1.98819 | + | 3.47089i | −2.78151 | + | 7.08717i | −1.24194 | + | 3.14862i | −6.65862 | + | 2.15935i | 0.0408774 | − | 7.99990i | 5.86334 | − | 1.80860i | 11.9210 | − | 9.47354i |
| 11.11 | −1.61823 | + | 1.17531i | −0.467323 | − | 3.10048i | 1.23732 | − | 3.80382i | −2.64152 | + | 6.73049i | 4.40025 | + | 4.46804i | −1.27884 | − | 6.88219i | 2.46839 | + | 7.60967i | −0.794458 | + | 0.245058i | −3.63580 | − | 13.9961i |
| 11.12 | −1.59593 | − | 1.20540i | 0.684930 | + | 4.54422i | 1.09400 | + | 3.84749i | 2.99145 | − | 7.62209i | 4.38452 | − | 8.07788i | 3.24915 | − | 6.20025i | 2.89184 | − | 7.45904i | −11.5806 | + | 3.57215i | −13.9619 | + | 8.55843i |
| 11.13 | −1.57366 | − | 1.23434i | −0.519055 | − | 3.44371i | 0.952796 | + | 3.88487i | 1.36400 | − | 3.47542i | −3.43390 | + | 6.05991i | 6.93624 | − | 0.942679i | 3.29588 | − | 7.28952i | −2.98954 | + | 0.922152i | −6.43634 | + | 3.78548i |
| 11.14 | −1.36423 | − | 1.46249i | 0.747940 | + | 4.96226i | −0.277728 | + | 3.99035i | −3.24635 | + | 8.27157i | 6.23686 | − | 7.86353i | 6.73049 | + | 1.92368i | 6.21471 | − | 5.03759i | −15.4644 | + | 4.77014i | 16.5258 | − | 6.53662i |
| 11.15 | −1.35234 | − | 1.47349i | 0.262954 | + | 1.74459i | −0.342373 | + | 3.98532i | −0.459540 | + | 1.17089i | 2.21504 | − | 2.74673i | −4.77835 | − | 5.11541i | 6.33535 | − | 4.88501i | 5.62572 | − | 1.73530i | 2.34675 | − | 0.906306i |
| 11.16 | −1.29295 | + | 1.52587i | 0.467323 | + | 3.10048i | −0.656566 | − | 3.94575i | −2.64152 | + | 6.73049i | −5.33516 | − | 3.29569i | 1.27884 | + | 6.88219i | 6.86961 | + | 4.09981i | −0.794458 | + | 0.245058i | −6.85451 | − | 12.7328i |
| 11.17 | −1.10062 | − | 1.66992i | −0.743880 | − | 4.93532i | −1.57726 | + | 3.67590i | 0.861874 | − | 2.19602i | −7.42286 | + | 6.67414i | −6.10896 | − | 3.41770i | 7.87443 | − | 1.41188i | −15.2039 | + | 4.68977i | −4.61577 | + | 0.977727i |
| 11.18 | −1.07739 | + | 1.68500i | −0.805611 | − | 5.34488i | −1.67846 | − | 3.63081i | 2.78087 | − | 7.08553i | 9.87409 | + | 4.40106i | −0.694514 | − | 6.96546i | 7.92628 | + | 1.08358i | −19.3185 | + | 5.95898i | 8.94306 | + | 12.3196i |
| 11.19 | −1.07153 | + | 1.68873i | 0.177932 | + | 1.18050i | −1.70364 | − | 3.61906i | −0.392454 | + | 0.999956i | −2.18421 | − | 0.964466i | 5.97561 | − | 3.64583i | 7.93713 | + | 1.00096i | 7.23823 | − | 2.23270i | −1.26813 | − | 1.73423i |
| 11.20 | −1.02641 | + | 1.71653i | 0.378329 | + | 2.51005i | −1.89297 | − | 3.52373i | 1.68959 | − | 4.30500i | −4.69690 | − | 1.92692i | −6.58919 | − | 2.36275i | 7.99156 | + | 0.367447i | 2.44295 | − | 0.753551i | 5.65546 | + | 7.31892i |
| See next 80 embeddings (of 648 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 4.b | odd | 2 | 1 | inner |
| 49.g | even | 21 | 1 | inner |
| 196.o | odd | 42 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 196.3.o.a | ✓ | 648 |
| 4.b | odd | 2 | 1 | inner | 196.3.o.a | ✓ | 648 |
| 49.g | even | 21 | 1 | inner | 196.3.o.a | ✓ | 648 |
| 196.o | odd | 42 | 1 | inner | 196.3.o.a | ✓ | 648 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 196.3.o.a | ✓ | 648 | 1.a | even | 1 | 1 | trivial |
| 196.3.o.a | ✓ | 648 | 4.b | odd | 2 | 1 | inner |
| 196.3.o.a | ✓ | 648 | 49.g | even | 21 | 1 | inner |
| 196.3.o.a | ✓ | 648 | 196.o | odd | 42 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(196, [\chi])\).