Properties

Label 196.3.b.a
Level $196$
Weight $3$
Character orbit 196.b
Analytic conductor $5.341$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,3,Mod(97,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.97"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 196.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.34061318146\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} + \beta q^{5} + 6 q^{9} + 15 q^{11} - 8 \beta q^{13} + 3 q^{15} - 17 \beta q^{17} + 9 \beta q^{19} - 9 q^{23} + 22 q^{25} - 15 \beta q^{27} - 6 q^{29} + 7 \beta q^{31} - 15 \beta q^{33} + \cdots + 90 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 12 q^{9} + 30 q^{11} + 6 q^{15} - 18 q^{23} + 44 q^{25} - 12 q^{29} + 62 q^{37} - 48 q^{39} + 20 q^{43} - 102 q^{51} - 114 q^{53} + 54 q^{57} + 48 q^{65} - 98 q^{67} - 252 q^{71} - 146 q^{79} + 18 q^{81}+ \cdots + 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
97.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.73205i 0 1.73205i 0 0 0 6.00000 0
97.2 0 1.73205i 0 1.73205i 0 0 0 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 196.3.b.a 2
3.b odd 2 1 1764.3.d.a 2
4.b odd 2 1 784.3.c.a 2
7.b odd 2 1 inner 196.3.b.a 2
7.c even 3 1 28.3.h.a 2
7.c even 3 1 196.3.h.a 2
7.d odd 6 1 28.3.h.a 2
7.d odd 6 1 196.3.h.a 2
21.c even 2 1 1764.3.d.a 2
21.g even 6 1 252.3.z.a 2
21.g even 6 1 1764.3.z.f 2
21.h odd 6 1 252.3.z.a 2
21.h odd 6 1 1764.3.z.f 2
28.d even 2 1 784.3.c.a 2
28.f even 6 1 112.3.s.a 2
28.f even 6 1 784.3.s.b 2
28.g odd 6 1 112.3.s.a 2
28.g odd 6 1 784.3.s.b 2
35.i odd 6 1 700.3.s.a 2
35.j even 6 1 700.3.s.a 2
35.k even 12 2 700.3.o.a 4
35.l odd 12 2 700.3.o.a 4
56.j odd 6 1 448.3.s.a 2
56.k odd 6 1 448.3.s.b 2
56.m even 6 1 448.3.s.b 2
56.p even 6 1 448.3.s.a 2
84.j odd 6 1 1008.3.cg.c 2
84.n even 6 1 1008.3.cg.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.3.h.a 2 7.c even 3 1
28.3.h.a 2 7.d odd 6 1
112.3.s.a 2 28.f even 6 1
112.3.s.a 2 28.g odd 6 1
196.3.b.a 2 1.a even 1 1 trivial
196.3.b.a 2 7.b odd 2 1 inner
196.3.h.a 2 7.c even 3 1
196.3.h.a 2 7.d odd 6 1
252.3.z.a 2 21.g even 6 1
252.3.z.a 2 21.h odd 6 1
448.3.s.a 2 56.j odd 6 1
448.3.s.a 2 56.p even 6 1
448.3.s.b 2 56.k odd 6 1
448.3.s.b 2 56.m even 6 1
700.3.o.a 4 35.k even 12 2
700.3.o.a 4 35.l odd 12 2
700.3.s.a 2 35.i odd 6 1
700.3.s.a 2 35.j even 6 1
784.3.c.a 2 4.b odd 2 1
784.3.c.a 2 28.d even 2 1
784.3.s.b 2 28.f even 6 1
784.3.s.b 2 28.g odd 6 1
1008.3.cg.c 2 84.j odd 6 1
1008.3.cg.c 2 84.n even 6 1
1764.3.d.a 2 3.b odd 2 1
1764.3.d.a 2 21.c even 2 1
1764.3.z.f 2 21.g even 6 1
1764.3.z.f 2 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 3 \) acting on \(S_{3}^{\mathrm{new}}(196, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3 \) Copy content Toggle raw display
$5$ \( T^{2} + 3 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T - 15)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 192 \) Copy content Toggle raw display
$17$ \( T^{2} + 867 \) Copy content Toggle raw display
$19$ \( T^{2} + 243 \) Copy content Toggle raw display
$23$ \( (T + 9)^{2} \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 147 \) Copy content Toggle raw display
$37$ \( (T - 31)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 3072 \) Copy content Toggle raw display
$43$ \( (T - 10)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 1875 \) Copy content Toggle raw display
$53$ \( (T + 57)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 6627 \) Copy content Toggle raw display
$61$ \( T^{2} + 6627 \) Copy content Toggle raw display
$67$ \( (T + 49)^{2} \) Copy content Toggle raw display
$71$ \( (T + 126)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 675 \) Copy content Toggle raw display
$79$ \( (T + 73)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 192 \) Copy content Toggle raw display
$89$ \( T^{2} + 3267 \) Copy content Toggle raw display
$97$ \( T^{2} + 768 \) Copy content Toggle raw display
show more
show less