Properties

Label 196.2.p.a.103.9
Level $196$
Weight $2$
Character 196.103
Analytic conductor $1.565$
Analytic rank $0$
Dimension $312$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(3,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.p (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(312\)
Relative dimension: \(26\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 103.9
Character \(\chi\) \(=\) 196.103
Dual form 196.2.p.a.59.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.925869 + 1.06900i) q^{2} +(-0.318723 - 0.217301i) q^{3} +(-0.285533 - 1.97951i) q^{4} +(-2.23221 - 0.167281i) q^{5} +(0.527391 - 0.139523i) q^{6} +(2.62649 - 0.318706i) q^{7} +(2.38047 + 1.52753i) q^{8} +(-1.04166 - 2.65410i) q^{9} +O(q^{10})\) \(q+(-0.925869 + 1.06900i) q^{2} +(-0.318723 - 0.217301i) q^{3} +(-0.285533 - 1.97951i) q^{4} +(-2.23221 - 0.167281i) q^{5} +(0.527391 - 0.139523i) q^{6} +(2.62649 - 0.318706i) q^{7} +(2.38047 + 1.52753i) q^{8} +(-1.04166 - 2.65410i) q^{9} +(2.24556 - 2.23136i) q^{10} +(4.62345 + 1.81457i) q^{11} +(-0.339145 + 0.692962i) q^{12} +(4.05935 - 3.23722i) q^{13} +(-2.09108 + 3.10280i) q^{14} +(0.675106 + 0.538379i) q^{15} +(-3.83694 + 1.13043i) q^{16} +(-1.83646 - 1.97924i) q^{17} +(3.80168 + 1.34382i) q^{18} +(1.20408 - 2.08553i) q^{19} +(0.306236 + 4.46646i) q^{20} +(-0.906375 - 0.469160i) q^{21} +(-6.22048 + 3.26242i) q^{22} +(2.13014 - 2.29575i) q^{23} +(-0.426775 - 1.00414i) q^{24} +(0.0106413 + 0.00160391i) q^{25} +(-0.297826 + 7.33670i) q^{26} +(-0.502253 + 2.20051i) q^{27} +(-1.38083 - 5.10816i) q^{28} +(1.93620 + 8.48305i) q^{29} +(-1.20059 + 0.223222i) q^{30} +(0.0585377 + 0.101390i) q^{31} +(2.34407 - 5.14833i) q^{32} +(-1.07929 - 1.58303i) q^{33} +(3.81613 - 0.130670i) q^{34} +(-5.91619 + 0.272057i) q^{35} +(-4.95640 + 2.81981i) q^{36} +(-0.160245 - 0.0494289i) q^{37} +(1.11462 + 3.21809i) q^{38} +(-1.99726 + 0.149674i) q^{39} +(-5.05819 - 3.80799i) q^{40} +(-4.98272 - 10.3467i) q^{41} +(1.34072 - 0.534537i) q^{42} +(1.97048 - 4.09173i) q^{43} +(2.27181 - 9.67029i) q^{44} +(1.88122 + 6.09878i) q^{45} +(0.481927 + 4.40269i) q^{46} +(-10.2787 + 1.54926i) q^{47} +(1.46856 + 0.473478i) q^{48} +(6.79685 - 1.67415i) q^{49} +(-0.0115670 + 0.00989052i) q^{50} +(0.155231 + 1.02989i) q^{51} +(-7.56721 - 7.11120i) q^{52} +(2.75719 - 0.850480i) q^{53} +(-1.88734 - 2.57430i) q^{54} +(-10.0170 - 4.82392i) q^{55} +(6.73911 + 3.25338i) q^{56} +(-0.836956 + 0.403057i) q^{57} +(-10.8611 - 5.78439i) q^{58} +(0.758813 + 10.1257i) q^{59} +(0.872963 - 1.49011i) q^{60} +(-2.62620 + 8.51392i) q^{61} +(-0.162585 - 0.0312971i) q^{62} +(-3.58178 - 6.63898i) q^{63} +(3.33328 + 7.27250i) q^{64} +(-9.60287 + 6.54712i) q^{65} +(2.69154 + 0.311912i) q^{66} +(-5.07455 + 2.92979i) q^{67} +(-3.39355 + 4.20044i) q^{68} +(-1.17779 + 0.268824i) q^{69} +(5.18679 - 6.57631i) q^{70} +(9.49078 + 2.16621i) q^{71} +(1.57459 - 7.90919i) q^{72} +(1.11225 - 7.37932i) q^{73} +(0.201205 - 0.125537i) q^{74} +(-0.00304308 - 0.00282356i) q^{75} +(-4.47214 - 1.78801i) q^{76} +(12.7217 + 3.29242i) q^{77} +(1.68920 - 2.27365i) q^{78} +(11.9926 + 6.92396i) q^{79} +(8.75397 - 1.88152i) q^{80} +(-5.63197 + 5.22570i) q^{81} +(15.6740 + 4.25317i) q^{82} +(1.95783 - 2.45504i) q^{83} +(-0.669908 + 1.92814i) q^{84} +(3.76829 + 4.72528i) q^{85} +(2.54967 + 5.89485i) q^{86} +(1.22627 - 3.12448i) q^{87} +(8.23416 + 11.3820i) q^{88} +(-1.74456 + 0.684691i) q^{89} +(-8.26137 - 3.63564i) q^{90} +(9.63011 - 9.79626i) q^{91} +(-5.15269 - 3.56113i) q^{92} +(0.00337496 - 0.0450357i) q^{93} +(7.86055 - 12.4223i) q^{94} +(-3.03664 + 4.45393i) q^{95} +(-1.86585 + 1.13152i) q^{96} -1.56668i q^{97} +(-4.50332 + 8.81590i) q^{98} -14.1613i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9} - 20 q^{10} + 9 q^{12} - 28 q^{13} - 51 q^{14} - 17 q^{16} - 22 q^{17} - 12 q^{18} - 14 q^{20} - 34 q^{21} - 18 q^{22} - 44 q^{24} - 48 q^{25} - 2 q^{26} - 36 q^{28} - 11 q^{30} - 13 q^{32} - 34 q^{33} - 98 q^{34} - 4 q^{36} - 58 q^{37} - 18 q^{38} + 30 q^{40} - 28 q^{41} - 26 q^{42} + 16 q^{44} - 28 q^{45} - 14 q^{46} - 24 q^{49} + 96 q^{50} - 14 q^{52} - 22 q^{53} - 17 q^{54} + 40 q^{56} + 34 q^{57} - 12 q^{58} + 98 q^{60} - 38 q^{61} - 4 q^{64} - 32 q^{65} - 176 q^{66} - 21 q^{68} + 28 q^{69} + 50 q^{70} - 120 q^{72} - 58 q^{73} - 14 q^{74} - 91 q^{76} - 18 q^{77} - 112 q^{78} + 66 q^{80} - 170 q^{81} + 114 q^{82} + 140 q^{84} - 24 q^{85} + 97 q^{86} + 127 q^{88} - 82 q^{89} + 266 q^{90} + 34 q^{92} + 226 q^{94} + 122 q^{96} + 183 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.925869 + 1.06900i −0.654688 + 0.755899i
\(3\) −0.318723 0.217301i −0.184015 0.125459i 0.467809 0.883829i \(-0.345043\pi\)
−0.651824 + 0.758370i \(0.725996\pi\)
\(4\) −0.285533 1.97951i −0.142767 0.989756i
\(5\) −2.23221 0.167281i −0.998276 0.0748105i −0.434443 0.900699i \(-0.643055\pi\)
−0.563833 + 0.825889i \(0.690674\pi\)
\(6\) 0.527391 0.139523i 0.215306 0.0569599i
\(7\) 2.62649 0.318706i 0.992718 0.120459i
\(8\) 2.38047 + 1.52753i 0.841624 + 0.540065i
\(9\) −1.04166 2.65410i −0.347220 0.884701i
\(10\) 2.24556 2.23136i 0.710109 0.705619i
\(11\) 4.62345 + 1.81457i 1.39402 + 0.547113i 0.939170 0.343454i \(-0.111597\pi\)
0.454852 + 0.890567i \(0.349692\pi\)
\(12\) −0.339145 + 0.692962i −0.0979027 + 0.200041i
\(13\) 4.05935 3.23722i 1.12586 0.897845i 0.130255 0.991481i \(-0.458420\pi\)
0.995606 + 0.0936360i \(0.0298490\pi\)
\(14\) −2.09108 + 3.10280i −0.558866 + 0.829258i
\(15\) 0.675106 + 0.538379i 0.174312 + 0.139009i
\(16\) −3.83694 + 1.13043i −0.959235 + 0.282608i
\(17\) −1.83646 1.97924i −0.445408 0.480035i 0.469941 0.882698i \(-0.344275\pi\)
−0.915348 + 0.402663i \(0.868085\pi\)
\(18\) 3.80168 + 1.34382i 0.896065 + 0.316740i
\(19\) 1.20408 2.08553i 0.276235 0.478453i −0.694211 0.719772i \(-0.744246\pi\)
0.970446 + 0.241318i \(0.0775798\pi\)
\(20\) 0.306236 + 4.46646i 0.0684765 + 0.998731i
\(21\) −0.906375 0.469160i −0.197787 0.102379i
\(22\) −6.22048 + 3.26242i −1.32621 + 0.695551i
\(23\) 2.13014 2.29575i 0.444165 0.478696i −0.470794 0.882243i \(-0.656032\pi\)
0.914959 + 0.403547i \(0.132223\pi\)
\(24\) −0.426775 1.00414i −0.0871150 0.204969i
\(25\) 0.0106413 + 0.00160391i 0.00212825 + 0.000320782i
\(26\) −0.297826 + 7.33670i −0.0584084 + 1.43885i
\(27\) −0.502253 + 2.20051i −0.0966587 + 0.423489i
\(28\) −1.38083 5.10816i −0.260953 0.965352i
\(29\) 1.93620 + 8.48305i 0.359544 + 1.57526i 0.754333 + 0.656492i \(0.227960\pi\)
−0.394790 + 0.918771i \(0.629183\pi\)
\(30\) −1.20059 + 0.223222i −0.219197 + 0.0407545i
\(31\) 0.0585377 + 0.101390i 0.0105137 + 0.0182102i 0.871234 0.490867i \(-0.163320\pi\)
−0.860721 + 0.509077i \(0.829987\pi\)
\(32\) 2.34407 5.14833i 0.414377 0.910105i
\(33\) −1.07929 1.58303i −0.187880 0.275569i
\(34\) 3.81613 0.130670i 0.654461 0.0224098i
\(35\) −5.91619 + 0.272057i −1.00002 + 0.0459861i
\(36\) −4.95640 + 2.81981i −0.826067 + 0.469969i
\(37\) −0.160245 0.0494289i −0.0263441 0.00812606i 0.281555 0.959545i \(-0.409150\pi\)
−0.307899 + 0.951419i \(0.599626\pi\)
\(38\) 1.11462 + 3.21809i 0.180814 + 0.522044i
\(39\) −1.99726 + 0.149674i −0.319818 + 0.0239670i
\(40\) −5.05819 3.80799i −0.799770 0.602096i
\(41\) −4.98272 10.3467i −0.778171 1.61589i −0.787797 0.615935i \(-0.788778\pi\)
0.00962633 0.999954i \(-0.496936\pi\)
\(42\) 1.34072 0.534537i 0.206877 0.0824808i
\(43\) 1.97048 4.09173i 0.300495 0.623984i −0.694978 0.719031i \(-0.744586\pi\)
0.995473 + 0.0950473i \(0.0303002\pi\)
\(44\) 2.27181 9.67029i 0.342489 1.45785i
\(45\) 1.88122 + 6.09878i 0.280436 + 0.909152i
\(46\) 0.481927 + 4.40269i 0.0710563 + 0.649141i
\(47\) −10.2787 + 1.54926i −1.49930 + 0.225983i −0.846843 0.531843i \(-0.821500\pi\)
−0.652457 + 0.757826i \(0.726262\pi\)
\(48\) 1.46856 + 0.473478i 0.211969 + 0.0683406i
\(49\) 6.79685 1.67415i 0.970979 0.239165i
\(50\) −0.0115670 + 0.00989052i −0.00163582 + 0.00139873i
\(51\) 0.155231 + 1.02989i 0.0217367 + 0.144214i
\(52\) −7.56721 7.11120i −1.04938 0.986146i
\(53\) 2.75719 0.850480i 0.378729 0.116822i −0.0995451 0.995033i \(-0.531739\pi\)
0.478274 + 0.878211i \(0.341263\pi\)
\(54\) −1.88734 2.57430i −0.256834 0.350318i
\(55\) −10.0170 4.82392i −1.35069 0.650458i
\(56\) 6.73911 + 3.25338i 0.900551 + 0.434751i
\(57\) −0.836956 + 0.403057i −0.110858 + 0.0533862i
\(58\) −10.8611 5.78439i −1.42613 0.759528i
\(59\) 0.758813 + 10.1257i 0.0987890 + 1.31825i 0.797707 + 0.603046i \(0.206046\pi\)
−0.698918 + 0.715202i \(0.746335\pi\)
\(60\) 0.872963 1.49011i 0.112699 0.192372i
\(61\) −2.62620 + 8.51392i −0.336250 + 1.09010i 0.616759 + 0.787152i \(0.288445\pi\)
−0.953009 + 0.302943i \(0.902031\pi\)
\(62\) −0.162585 0.0312971i −0.0206483 0.00397474i
\(63\) −3.58178 6.63898i −0.451262 0.836433i
\(64\) 3.33328 + 7.27250i 0.416660 + 0.909062i
\(65\) −9.60287 + 6.54712i −1.19109 + 0.812071i
\(66\) 2.69154 + 0.311912i 0.331305 + 0.0383937i
\(67\) −5.07455 + 2.92979i −0.619955 + 0.357931i −0.776852 0.629684i \(-0.783184\pi\)
0.156896 + 0.987615i \(0.449851\pi\)
\(68\) −3.39355 + 4.20044i −0.411529 + 0.509378i
\(69\) −1.17779 + 0.268824i −0.141790 + 0.0323625i
\(70\) 5.18679 6.57631i 0.619940 0.786020i
\(71\) 9.49078 + 2.16621i 1.12635 + 0.257082i 0.744814 0.667273i \(-0.232538\pi\)
0.381535 + 0.924354i \(0.375396\pi\)
\(72\) 1.57459 7.90919i 0.185568 0.932106i
\(73\) 1.11225 7.37932i 0.130179 0.863684i −0.824460 0.565920i \(-0.808521\pi\)
0.954639 0.297764i \(-0.0962409\pi\)
\(74\) 0.201205 0.125537i 0.0233896 0.0145934i
\(75\) −0.00304308 0.00282356i −0.000351384 0.000326037i
\(76\) −4.47214 1.78801i −0.512989 0.205098i
\(77\) 12.7217 + 3.29242i 1.44978 + 0.375206i
\(78\) 1.68920 2.27365i 0.191264 0.257441i
\(79\) 11.9926 + 6.92396i 1.34928 + 0.779006i 0.988147 0.153509i \(-0.0490575\pi\)
0.361131 + 0.932515i \(0.382391\pi\)
\(80\) 8.75397 1.88152i 0.978724 0.210360i
\(81\) −5.63197 + 5.22570i −0.625774 + 0.580634i
\(82\) 15.6740 + 4.25317i 1.73091 + 0.469685i
\(83\) 1.95783 2.45504i 0.214899 0.269475i −0.662684 0.748899i \(-0.730583\pi\)
0.877584 + 0.479424i \(0.159154\pi\)
\(84\) −0.669908 + 1.92814i −0.0730930 + 0.210378i
\(85\) 3.76829 + 4.72528i 0.408728 + 0.512529i
\(86\) 2.54967 + 5.89485i 0.274938 + 0.635658i
\(87\) 1.22627 3.12448i 0.131470 0.334979i
\(88\) 8.23416 + 11.3820i 0.877765 + 1.21333i
\(89\) −1.74456 + 0.684691i −0.184923 + 0.0725771i −0.455996 0.889982i \(-0.650717\pi\)
0.271073 + 0.962559i \(0.412622\pi\)
\(90\) −8.26137 3.63564i −0.870825 0.383230i
\(91\) 9.63011 9.79626i 1.00951 1.02693i
\(92\) −5.15269 3.56113i −0.537205 0.371273i
\(93\) 0.00337496 0.0450357i 0.000349967 0.00466998i
\(94\) 7.86055 12.4223i 0.810753 1.28127i
\(95\) −3.03664 + 4.45393i −0.311552 + 0.456963i
\(96\) −1.86585 + 1.13152i −0.190432 + 0.115485i
\(97\) 1.56668i 0.159072i −0.996832 0.0795360i \(-0.974656\pi\)
0.996832 0.0795360i \(-0.0253439\pi\)
\(98\) −4.50332 + 8.81590i −0.454904 + 0.890540i
\(99\) 14.1613i 1.42326i
\(100\) 0.000136529 0.0215225i 1.36529e−5 0.00215225i
\(101\) −2.65201 + 3.88978i −0.263885 + 0.387047i −0.935198 0.354126i \(-0.884778\pi\)
0.671313 + 0.741174i \(0.265731\pi\)
\(102\) −1.24468 0.787603i −0.123242 0.0779843i
\(103\) −1.18362 + 15.7943i −0.116625 + 1.55626i 0.565331 + 0.824864i \(0.308748\pi\)
−0.681957 + 0.731393i \(0.738871\pi\)
\(104\) 14.6081 1.50532i 1.43245 0.147609i
\(105\) 1.94474 + 1.19889i 0.189787 + 0.116999i
\(106\) −1.64363 + 3.73487i −0.159643 + 0.362763i
\(107\) −3.99573 + 1.56821i −0.386281 + 0.151604i −0.550531 0.834814i \(-0.685575\pi\)
0.164250 + 0.986419i \(0.447480\pi\)
\(108\) 4.49936 + 0.365896i 0.432951 + 0.0352084i
\(109\) 0.0952969 0.242812i 0.00912778 0.0232572i −0.926237 0.376941i \(-0.876976\pi\)
0.935365 + 0.353684i \(0.115071\pi\)
\(110\) 14.4312 6.24186i 1.37596 0.595138i
\(111\) 0.0403326 + 0.0505755i 0.00382820 + 0.00480041i
\(112\) −9.71740 + 4.19192i −0.918208 + 0.396100i
\(113\) −2.75151 + 3.45029i −0.258840 + 0.324576i −0.894223 0.447622i \(-0.852271\pi\)
0.635382 + 0.772198i \(0.280842\pi\)
\(114\) 0.344043 1.26789i 0.0322226 0.118748i
\(115\) −5.13897 + 4.76826i −0.479211 + 0.444643i
\(116\) 16.2395 6.25493i 1.50780 0.580756i
\(117\) −12.8204 7.40185i −1.18525 0.684302i
\(118\) −11.5269 8.56386i −1.06114 0.788367i
\(119\) −5.45424 4.61314i −0.499989 0.422886i
\(120\) 0.784678 + 2.31284i 0.0716310 + 0.211133i
\(121\) 10.0200 + 9.29722i 0.910911 + 0.845202i
\(122\) −6.66989 10.6902i −0.603863 0.967844i
\(123\) −0.660253 + 4.38049i −0.0595330 + 0.394975i
\(124\) 0.183989 0.144826i 0.0165227 0.0130058i
\(125\) 10.8883 + 2.48518i 0.973876 + 0.222281i
\(126\) 10.4133 + 2.31790i 0.927695 + 0.206495i
\(127\) −12.3552 + 2.82000i −1.09635 + 0.250235i −0.732189 0.681101i \(-0.761501\pi\)
−0.364161 + 0.931336i \(0.618644\pi\)
\(128\) −10.8605 3.17009i −0.959942 0.280199i
\(129\) −1.51717 + 0.875941i −0.133580 + 0.0771223i
\(130\) 1.89210 16.3273i 0.165948 1.43200i
\(131\) −0.0396336 + 0.0270217i −0.00346280 + 0.00236090i −0.565050 0.825057i \(-0.691143\pi\)
0.561587 + 0.827417i \(0.310191\pi\)
\(132\) −2.82545 + 2.58847i −0.245923 + 0.225297i
\(133\) 2.49783 5.86136i 0.216589 0.508244i
\(134\) 1.56641 8.13731i 0.135317 0.702957i
\(135\) 1.48924 4.82800i 0.128173 0.415528i
\(136\) −1.34830 7.51677i −0.115615 0.644558i
\(137\) 0.234947 + 3.13515i 0.0200729 + 0.267854i 0.998206 + 0.0598738i \(0.0190698\pi\)
−0.978133 + 0.207980i \(0.933311\pi\)
\(138\) 0.803109 1.50796i 0.0683652 0.128366i
\(139\) −3.06434 + 1.47571i −0.259914 + 0.125168i −0.559303 0.828963i \(-0.688931\pi\)
0.299390 + 0.954131i \(0.403217\pi\)
\(140\) 2.22781 + 11.6335i 0.188284 + 0.983210i
\(141\) 3.61270 + 1.73979i 0.304245 + 0.146516i
\(142\) −11.1029 + 8.14005i −0.931735 + 0.683098i
\(143\) 24.6424 7.60116i 2.06070 0.635641i
\(144\) 6.99707 + 9.00611i 0.583089 + 0.750509i
\(145\) −2.90296 19.2599i −0.241078 1.59945i
\(146\) 6.85871 + 8.02129i 0.567631 + 0.663846i
\(147\) −2.53011 0.943375i −0.208680 0.0778083i
\(148\) −0.0520900 + 0.331320i −0.00428177 + 0.0272343i
\(149\) −9.85202 + 1.48495i −0.807109 + 0.121652i −0.539620 0.841909i \(-0.681432\pi\)
−0.267489 + 0.963561i \(0.586194\pi\)
\(150\) 0.00583588 0.000638808i 0.000476498 5.21584e-5i
\(151\) 3.68923 + 11.9602i 0.300225 + 0.973305i 0.972480 + 0.232986i \(0.0748496\pi\)
−0.672255 + 0.740319i \(0.734674\pi\)
\(152\) 6.05200 3.12527i 0.490882 0.253493i
\(153\) −3.34013 + 6.93585i −0.270033 + 0.560730i
\(154\) −15.2983 + 10.5512i −1.23277 + 0.850241i
\(155\) −0.113708 0.236117i −0.00913324 0.0189654i
\(156\) 0.866566 + 3.91086i 0.0693808 + 0.313120i
\(157\) −5.51812 + 0.413526i −0.440394 + 0.0330030i −0.293082 0.956087i \(-0.594681\pi\)
−0.147311 + 0.989090i \(0.547062\pi\)
\(158\) −18.5053 + 6.40949i −1.47221 + 0.509912i
\(159\) −1.06359 0.328074i −0.0843480 0.0260179i
\(160\) −6.09368 + 11.1001i −0.481748 + 0.877537i
\(161\) 4.86312 6.70863i 0.383267 0.528714i
\(162\) −0.371826 10.8589i −0.0292134 0.853156i
\(163\) 0.118870 + 0.174351i 0.00931065 + 0.0136562i 0.830866 0.556473i \(-0.187846\pi\)
−0.821555 + 0.570129i \(0.806893\pi\)
\(164\) −19.0588 + 12.8177i −1.48824 + 1.00089i
\(165\) 2.14439 + 3.71420i 0.166941 + 0.289150i
\(166\) 0.811750 + 4.36597i 0.0630041 + 0.338865i
\(167\) −2.35188 10.3042i −0.181994 0.797366i −0.980680 0.195619i \(-0.937329\pi\)
0.798686 0.601747i \(-0.205529\pi\)
\(168\) −1.44094 2.50134i −0.111171 0.192983i
\(169\) 3.10594 13.6080i 0.238918 1.04677i
\(170\) −8.54028 0.346684i −0.655010 0.0265894i
\(171\) −6.78945 1.02335i −0.519202 0.0782572i
\(172\) −8.66228 2.73225i −0.660492 0.208332i
\(173\) 13.1334 14.1544i 0.998511 1.07614i 0.00141437 0.999999i \(-0.499550\pi\)
0.997097 0.0761404i \(-0.0242597\pi\)
\(174\) 2.20471 + 4.20374i 0.167139 + 0.318685i
\(175\) 0.0284603 0.000821220i 0.00215139 6.20784e-5i
\(176\) −19.7911 1.73589i −1.49181 0.130848i
\(177\) 1.95847 3.39217i 0.147207 0.254971i
\(178\) 0.883301 2.49888i 0.0662062 0.187299i
\(179\) −11.7479 12.6612i −0.878076 0.946341i 0.120850 0.992671i \(-0.461438\pi\)
−0.998926 + 0.0463299i \(0.985247\pi\)
\(180\) 11.5355 5.46531i 0.859802 0.407360i
\(181\) −5.72802 4.56794i −0.425760 0.339532i 0.387052 0.922058i \(-0.373493\pi\)
−0.812813 + 0.582525i \(0.802065\pi\)
\(182\) 1.55601 + 19.3647i 0.115339 + 1.43540i
\(183\) 2.68711 2.14290i 0.198637 0.158408i
\(184\) 8.57757 2.21110i 0.632347 0.163004i
\(185\) 0.349432 + 0.137142i 0.0256907 + 0.0100829i
\(186\) 0.0450185 + 0.0453050i 0.00330091 + 0.00332192i
\(187\) −4.89933 12.4833i −0.358274 0.912868i
\(188\) 6.00169 + 19.9044i 0.437718 + 1.45168i
\(189\) −0.617844 + 5.93969i −0.0449415 + 0.432049i
\(190\) −1.94973 7.36993i −0.141448 0.534671i
\(191\) 8.12560 + 0.608929i 0.587947 + 0.0440606i 0.365383 0.930857i \(-0.380938\pi\)
0.222565 + 0.974918i \(0.428557\pi\)
\(192\) 0.517931 3.04224i 0.0373785 0.219554i
\(193\) −18.2779 12.4617i −1.31567 0.897009i −0.316994 0.948428i \(-0.602674\pi\)
−0.998677 + 0.0514180i \(0.983626\pi\)
\(194\) 1.67478 + 1.45054i 0.120242 + 0.104143i
\(195\) 4.48335 0.321059
\(196\) −5.25473 12.9764i −0.375338 0.926888i
\(197\) −8.72284 −0.621476 −0.310738 0.950496i \(-0.600576\pi\)
−0.310738 + 0.950496i \(0.600576\pi\)
\(198\) 15.1384 + 13.1115i 1.07584 + 0.931792i
\(199\) 2.84823 + 1.94189i 0.201905 + 0.137657i 0.660052 0.751220i \(-0.270534\pi\)
−0.458147 + 0.888877i \(0.651487\pi\)
\(200\) 0.0228812 + 0.0200729i 0.00161794 + 0.00141937i
\(201\) 2.25402 + 0.168916i 0.158986 + 0.0119144i
\(202\) −1.70277 6.43643i −0.119807 0.452865i
\(203\) 7.78900 + 21.6635i 0.546681 + 1.52048i
\(204\) 1.99436 0.601351i 0.139633 0.0421030i
\(205\) 9.39169 + 23.9296i 0.655944 + 1.67132i
\(206\) −15.7883 15.8887i −1.10002 1.10702i
\(207\) −8.31203 3.26223i −0.577726 0.226741i
\(208\) −11.9160 + 17.0099i −0.826228 + 1.17942i
\(209\) 9.35134 7.45745i 0.646846 0.515842i
\(210\) −3.08219 + 0.968923i −0.212691 + 0.0668621i
\(211\) 16.4025 + 13.0806i 1.12919 + 0.900503i 0.995890 0.0905722i \(-0.0288696\pi\)
0.133305 + 0.991075i \(0.457441\pi\)
\(212\) −2.47081 5.21505i −0.169696 0.358171i
\(213\) −2.55421 2.75278i −0.175011 0.188617i
\(214\) 2.02310 5.72340i 0.138296 0.391243i
\(215\) −5.08299 + 8.80400i −0.346657 + 0.600428i
\(216\) −4.55696 + 4.47105i −0.310062 + 0.304217i
\(217\) 0.186062 + 0.247644i 0.0126307 + 0.0168111i
\(218\) 0.171335 + 0.326685i 0.0116043 + 0.0221259i
\(219\) −1.95804 + 2.11026i −0.132312 + 0.142598i
\(220\) −6.68883 + 21.2061i −0.450961 + 1.42972i
\(221\) −13.8621 2.08937i −0.932464 0.140546i
\(222\) −0.0914080 0.00371061i −0.00613490 0.000249040i
\(223\) −1.54366 + 6.76320i −0.103371 + 0.452897i 0.896579 + 0.442884i \(0.146045\pi\)
−0.999950 + 0.0100134i \(0.996813\pi\)
\(224\) 4.51586 14.2691i 0.301728 0.953394i
\(225\) −0.00682761 0.0299137i −0.000455174 0.00199425i
\(226\) −1.14083 6.13589i −0.0758866 0.408153i
\(227\) 7.76907 + 13.4564i 0.515651 + 0.893134i 0.999835 + 0.0181679i \(0.00578335\pi\)
−0.484184 + 0.874966i \(0.660883\pi\)
\(228\) 1.03683 + 1.54168i 0.0686661 + 0.102100i
\(229\) 14.3587 + 21.0603i 0.948850 + 1.39171i 0.919912 + 0.392125i \(0.128260\pi\)
0.0289378 + 0.999581i \(0.490788\pi\)
\(230\) −0.339277 9.90836i −0.0223713 0.653338i
\(231\) −3.33925 3.81382i −0.219707 0.250931i
\(232\) −8.34907 + 23.1513i −0.548144 + 1.51996i
\(233\) −6.91974 2.13446i −0.453327 0.139833i 0.0596795 0.998218i \(-0.480992\pi\)
−0.513006 + 0.858385i \(0.671468\pi\)
\(234\) 19.7826 6.85188i 1.29323 0.447922i
\(235\) 23.2034 1.73885i 1.51362 0.113430i
\(236\) 19.8272 4.39329i 1.29064 0.285979i
\(237\) −2.31774 4.81284i −0.150553 0.312627i
\(238\) 9.98137 1.55943i 0.646996 0.101083i
\(239\) 3.55856 7.38943i 0.230184 0.477982i −0.753601 0.657332i \(-0.771685\pi\)
0.983785 + 0.179349i \(0.0573993\pi\)
\(240\) −3.19895 1.30257i −0.206491 0.0840803i
\(241\) −1.33055 4.31355i −0.0857085 0.277860i 0.902565 0.430553i \(-0.141682\pi\)
−0.988274 + 0.152693i \(0.951205\pi\)
\(242\) −19.2160 + 2.10342i −1.23525 + 0.135213i
\(243\) 9.62627 1.45093i 0.617526 0.0930770i
\(244\) 17.6033 + 2.76758i 1.12693 + 0.177176i
\(245\) −15.4521 + 2.60008i −0.987197 + 0.166113i
\(246\) −4.07145 4.76157i −0.259586 0.303587i
\(247\) −1.86354 12.3638i −0.118574 0.786688i
\(248\) −0.0155297 + 0.330775i −0.000986139 + 0.0210042i
\(249\) −1.15749 + 0.357037i −0.0733527 + 0.0226263i
\(250\) −12.7378 + 9.33864i −0.805607 + 0.590627i
\(251\) −23.7535 11.4391i −1.49931 0.722027i −0.508978 0.860779i \(-0.669977\pi\)
−0.990327 + 0.138752i \(0.955691\pi\)
\(252\) −12.1192 + 8.98583i −0.763440 + 0.566054i
\(253\) 14.0144 6.74897i 0.881077 0.424304i
\(254\) 8.42474 15.8187i 0.528615 0.992555i
\(255\) −0.174228 2.32491i −0.0109106 0.145591i
\(256\) 13.4442 8.67482i 0.840265 0.542176i
\(257\) 3.74970 12.1562i 0.233900 0.758284i −0.760188 0.649703i \(-0.774893\pi\)
0.994088 0.108581i \(-0.0346306\pi\)
\(258\) 0.468321 2.43287i 0.0291564 0.151464i
\(259\) −0.436633 0.0787535i −0.0271311 0.00489350i
\(260\) 15.7021 + 17.1396i 0.973800 + 1.06295i
\(261\) 20.4980 13.9753i 1.26880 0.865051i
\(262\) 0.00780922 0.0673870i 0.000482455 0.00416318i
\(263\) 6.60660 3.81432i 0.407380 0.235201i −0.282283 0.959331i \(-0.591092\pi\)
0.689663 + 0.724130i \(0.257758\pi\)
\(264\) −0.151090 5.41699i −0.00929896 0.333393i
\(265\) −6.29690 + 1.43723i −0.386816 + 0.0882882i
\(266\) 3.95315 + 8.09704i 0.242383 + 0.496461i
\(267\) 0.704816 + 0.160870i 0.0431341 + 0.00984507i
\(268\) 7.24852 + 9.20859i 0.442774 + 0.562504i
\(269\) −2.44037 + 16.1908i −0.148792 + 0.987169i 0.782436 + 0.622731i \(0.213977\pi\)
−0.931228 + 0.364438i \(0.881261\pi\)
\(270\) 3.78230 + 6.06210i 0.230184 + 0.368928i
\(271\) 8.84305 + 8.20516i 0.537177 + 0.498428i 0.901461 0.432860i \(-0.142496\pi\)
−0.364284 + 0.931288i \(0.618686\pi\)
\(272\) 9.28379 + 5.51821i 0.562913 + 0.334591i
\(273\) −5.19807 + 1.02965i −0.314602 + 0.0623175i
\(274\) −3.56901 2.65158i −0.215612 0.160188i
\(275\) 0.0462889 + 0.0267249i 0.00279132 + 0.00161157i
\(276\) 0.868439 + 2.25470i 0.0522739 + 0.135717i
\(277\) 3.13377 2.90772i 0.188290 0.174708i −0.580395 0.814335i \(-0.697102\pi\)
0.768685 + 0.639627i \(0.220911\pi\)
\(278\) 1.25964 4.64210i 0.0755482 0.278414i
\(279\) 0.208124 0.260979i 0.0124600 0.0156244i
\(280\) −14.4989 8.38956i −0.866475 0.501372i
\(281\) −1.91007 2.39515i −0.113945 0.142883i 0.721588 0.692323i \(-0.243413\pi\)
−0.835533 + 0.549440i \(0.814841\pi\)
\(282\) −5.20473 + 2.25118i −0.309937 + 0.134056i
\(283\) 0.126189 0.321525i 0.00750117 0.0191127i −0.927074 0.374878i \(-0.877685\pi\)
0.934575 + 0.355765i \(0.115780\pi\)
\(284\) 1.57810 19.4057i 0.0936432 1.15151i
\(285\) 1.93569 0.759702i 0.114660 0.0450009i
\(286\) −14.6899 + 33.3804i −0.868634 + 1.97383i
\(287\) −16.3846 25.5875i −0.967153 1.51038i
\(288\) −16.1059 0.858592i −0.949051 0.0505930i
\(289\) 0.725632 9.68288i 0.0426842 0.569581i
\(290\) 23.2766 + 14.7288i 1.36685 + 0.864908i
\(291\) −0.340441 + 0.499336i −0.0199570 + 0.0292716i
\(292\) −14.9250 0.0946782i −0.873422 0.00554062i
\(293\) 8.80258i 0.514252i 0.966378 + 0.257126i \(0.0827755\pi\)
−0.966378 + 0.257126i \(0.917224\pi\)
\(294\) 3.35102 1.83125i 0.195435 0.106801i
\(295\) 22.7296i 1.32337i
\(296\) −0.305953 0.362443i −0.0177832 0.0210666i
\(297\) −6.31513 + 9.26259i −0.366441 + 0.537470i
\(298\) 7.53426 11.9067i 0.436448 0.689737i
\(299\) 1.21515 16.2150i 0.0702737 0.937737i
\(300\) −0.00472038 + 0.00683003i −0.000272531 + 0.000394332i
\(301\) 3.87137 11.3749i 0.223142 0.655637i
\(302\) −16.2012 7.12976i −0.932274 0.410272i
\(303\) 1.69051 0.663476i 0.0971172 0.0381157i
\(304\) −2.26244 + 9.36319i −0.129760 + 0.537016i
\(305\) 7.28645 18.5656i 0.417221 1.06306i
\(306\) −4.32192 9.99229i −0.247068 0.571221i
\(307\) 19.2512 + 24.1402i 1.09872 + 1.37776i 0.919102 + 0.394019i \(0.128916\pi\)
0.179621 + 0.983736i \(0.442513\pi\)
\(308\) 2.88491 26.1229i 0.164383 1.48849i
\(309\) 3.80936 4.77679i 0.216707 0.271742i
\(310\) 0.357688 + 0.0970592i 0.0203153 + 0.00551259i
\(311\) −20.9862 + 19.4723i −1.19002 + 1.10417i −0.197725 + 0.980258i \(0.563355\pi\)
−0.992293 + 0.123917i \(0.960454\pi\)
\(312\) −4.98305 2.69459i −0.282110 0.152551i
\(313\) 9.33603 + 5.39016i 0.527704 + 0.304670i 0.740081 0.672518i \(-0.234787\pi\)
−0.212377 + 0.977188i \(0.568121\pi\)
\(314\) 4.66699 6.28175i 0.263374 0.354500i
\(315\) 6.88472 + 15.4188i 0.387910 + 0.868751i
\(316\) 10.2818 25.7166i 0.578394 1.44667i
\(317\) 0.855108 + 0.793424i 0.0480276 + 0.0445631i 0.703822 0.710377i \(-0.251475\pi\)
−0.655794 + 0.754940i \(0.727666\pi\)
\(318\) 1.33546 0.833226i 0.0748886 0.0467250i
\(319\) −6.44116 + 42.7343i −0.360636 + 2.39266i
\(320\) −6.22405 16.7914i −0.347935 0.938666i
\(321\) 1.61430 + 0.368454i 0.0901015 + 0.0205651i
\(322\) 2.66894 + 11.4100i 0.148734 + 0.635855i
\(323\) −6.33900 + 1.44684i −0.352712 + 0.0805041i
\(324\) 11.9525 + 9.65644i 0.664026 + 0.536469i
\(325\) 0.0483888 0.0279373i 0.00268413 0.00154968i
\(326\) −0.296440 0.0343533i −0.0164183 0.00190265i
\(327\) −0.0831367 + 0.0566817i −0.00459747 + 0.00313450i
\(328\) 3.94375 32.2414i 0.217757 1.78023i
\(329\) −26.5030 + 7.34499i −1.46116 + 0.404942i
\(330\) −5.95591 1.14650i −0.327862 0.0631126i
\(331\) 1.29973 4.21361i 0.0714394 0.231601i −0.912811 0.408383i \(-0.866093\pi\)
0.984250 + 0.176782i \(0.0565689\pi\)
\(332\) −5.41880 3.17455i −0.297396 0.174226i
\(333\) 0.0357308 + 0.476794i 0.00195803 + 0.0261281i
\(334\) 13.1928 + 7.02622i 0.721877 + 0.384457i
\(335\) 11.8176 5.69105i 0.645664 0.310935i
\(336\) 4.00806 + 0.775543i 0.218658 + 0.0423093i
\(337\) 15.4478 + 7.43927i 0.841495 + 0.405243i 0.804414 0.594069i \(-0.202480\pi\)
0.0370816 + 0.999312i \(0.488194\pi\)
\(338\) 11.6713 + 15.9195i 0.634835 + 0.865905i
\(339\) 1.62672 0.501777i 0.0883513 0.0272528i
\(340\) 8.27779 8.80860i 0.448926 0.477713i
\(341\) 0.0866662 + 0.574993i 0.00469324 + 0.0311376i
\(342\) 7.38010 6.31046i 0.399070 0.341231i
\(343\) 17.3183 6.56333i 0.935099 0.354387i
\(344\) 10.9409 6.73029i 0.589895 0.362873i
\(345\) 2.67405 0.403049i 0.143966 0.0216994i
\(346\) 2.97132 + 27.1447i 0.159739 + 1.45931i
\(347\) −6.81460 22.0924i −0.365827 1.18598i −0.932234 0.361856i \(-0.882143\pi\)
0.566407 0.824126i \(-0.308333\pi\)
\(348\) −6.53509 1.53527i −0.350317 0.0822991i
\(349\) −11.6755 + 24.2445i −0.624977 + 1.29778i 0.312562 + 0.949897i \(0.398813\pi\)
−0.937539 + 0.347881i \(0.886901\pi\)
\(350\) −0.0272284 + 0.0296638i −0.00145542 + 0.00158559i
\(351\) 5.08474 + 10.5586i 0.271403 + 0.563575i
\(352\) 20.1797 19.5496i 1.07558 1.04200i
\(353\) −22.6879 + 1.70023i −1.20756 + 0.0904939i −0.663254 0.748395i \(-0.730825\pi\)
−0.544303 + 0.838889i \(0.683206\pi\)
\(354\) 1.81295 + 5.23431i 0.0963572 + 0.278200i
\(355\) −20.8231 6.42307i −1.10517 0.340901i
\(356\) 1.85349 + 3.25789i 0.0982346 + 0.172668i
\(357\) 0.735946 + 2.65553i 0.0389504 + 0.140545i
\(358\) 24.4118 0.835898i 1.29020 0.0441786i
\(359\) 8.89416 + 13.0453i 0.469416 + 0.688506i 0.985814 0.167842i \(-0.0536800\pi\)
−0.516398 + 0.856349i \(0.672728\pi\)
\(360\) −4.83789 + 17.3916i −0.254979 + 0.916617i
\(361\) 6.60038 + 11.4322i 0.347388 + 0.601694i
\(362\) 10.1865 1.89395i 0.535392 0.0995438i
\(363\) −1.17331 5.14060i −0.0615827 0.269811i
\(364\) −22.1415 16.2658i −1.16053 0.852557i
\(365\) −3.71721 + 16.2862i −0.194568 + 0.852457i
\(366\) −0.197148 + 4.85658i −0.0103051 + 0.253857i
\(367\) −7.19442 1.08438i −0.375546 0.0566044i −0.0414424 0.999141i \(-0.513195\pi\)
−0.334103 + 0.942536i \(0.608433\pi\)
\(368\) −5.57804 + 11.2166i −0.290775 + 0.584707i
\(369\) −22.2710 + 24.0024i −1.15938 + 1.24952i
\(370\) −0.470133 + 0.246568i −0.0244411 + 0.0128185i
\(371\) 6.97066 3.11251i 0.361899 0.161593i
\(372\) −0.0901123 + 0.00617841i −0.00467211 + 0.000320336i
\(373\) 5.38922 9.33441i 0.279043 0.483317i −0.692104 0.721798i \(-0.743316\pi\)
0.971147 + 0.238481i \(0.0766493\pi\)
\(374\) 17.8808 + 6.32049i 0.924594 + 0.326825i
\(375\) −2.93030 3.15812i −0.151320 0.163084i
\(376\) −26.8346 12.0131i −1.38389 0.619526i
\(377\) 35.3213 + 28.1678i 1.81914 + 1.45071i
\(378\) −5.77750 6.15985i −0.297163 0.316829i
\(379\) −24.0797 + 19.2029i −1.23689 + 0.986387i −0.237001 + 0.971509i \(0.576164\pi\)
−0.999889 + 0.0148777i \(0.995264\pi\)
\(380\) 9.68367 + 4.73932i 0.496762 + 0.243122i
\(381\) 4.55068 + 1.78601i 0.233138 + 0.0915001i
\(382\) −8.17418 + 8.12249i −0.418228 + 0.415583i
\(383\) −9.49472 24.1922i −0.485158 1.23616i −0.938641 0.344896i \(-0.887914\pi\)
0.453483 0.891265i \(-0.350181\pi\)
\(384\) 2.77262 + 3.37038i 0.141490 + 0.171994i
\(385\) −27.8469 9.47749i −1.41921 0.483018i
\(386\) 30.2445 8.00125i 1.53940 0.407253i
\(387\) −12.9124 0.967654i −0.656377 0.0491886i
\(388\) −3.10126 + 0.447339i −0.157443 + 0.0227102i
\(389\) 0.447822 + 0.305320i 0.0227055 + 0.0154803i 0.574620 0.818421i \(-0.305150\pi\)
−0.551914 + 0.833901i \(0.686102\pi\)
\(390\) −4.15099 + 4.79271i −0.210194 + 0.242688i
\(391\) −8.45575 −0.427626
\(392\) 18.7370 + 6.39715i 0.946363 + 0.323105i
\(393\) 0.0185040 0.000933402
\(394\) 8.07620 9.32473i 0.406873 0.469773i
\(395\) −25.6119 17.4619i −1.28867 0.878603i
\(396\) −28.0324 + 4.04351i −1.40868 + 0.203194i
\(397\) 8.00894 + 0.600187i 0.401957 + 0.0301225i 0.274175 0.961680i \(-0.411595\pi\)
0.127782 + 0.991802i \(0.459214\pi\)
\(398\) −4.71297 + 1.24683i −0.236240 + 0.0624979i
\(399\) −2.06980 + 1.32537i −0.103619 + 0.0663513i
\(400\) −0.0426430 + 0.00587512i −0.00213215 + 0.000293756i
\(401\) 1.25364 + 3.19422i 0.0626037 + 0.159512i 0.958753 0.284242i \(-0.0917418\pi\)
−0.896149 + 0.443753i \(0.853647\pi\)
\(402\) −2.26750 + 2.25316i −0.113093 + 0.112377i
\(403\) 0.565848 + 0.222079i 0.0281869 + 0.0110625i
\(404\) 8.45710 + 4.13902i 0.420757 + 0.205924i
\(405\) 13.4459 10.7228i 0.668133 0.532819i
\(406\) −30.3700 11.7311i −1.50724 0.582206i
\(407\) −0.651190 0.519307i −0.0322783 0.0257411i
\(408\) −1.20367 + 2.68875i −0.0595906 + 0.133113i
\(409\) 25.5146 + 27.4982i 1.26162 + 1.35970i 0.904978 + 0.425459i \(0.139887\pi\)
0.356640 + 0.934242i \(0.383922\pi\)
\(410\) −34.2763 12.1160i −1.69279 0.598365i
\(411\) 0.606389 1.05030i 0.0299110 0.0518073i
\(412\) 31.6029 2.16681i 1.55697 0.106751i
\(413\) 5.22012 + 26.3531i 0.256865 + 1.29675i
\(414\) 11.1832 5.86518i 0.549624 0.288258i
\(415\) −4.78097 + 5.15266i −0.234689 + 0.252934i
\(416\) −7.15092 28.4872i −0.350603 1.39670i
\(417\) 1.29735 + 0.195544i 0.0635313 + 0.00957581i
\(418\) −0.686087 + 16.9012i −0.0335576 + 0.826666i
\(419\) −2.22293 + 9.73931i −0.108597 + 0.475796i 0.891158 + 0.453693i \(0.149894\pi\)
−0.999756 + 0.0221037i \(0.992964\pi\)
\(420\) 1.81792 4.19196i 0.0887054 0.204547i
\(421\) −6.58417 28.8472i −0.320893 1.40592i −0.835968 0.548779i \(-0.815093\pi\)
0.515074 0.857145i \(-0.327764\pi\)
\(422\) −29.1697 + 5.42344i −1.41996 + 0.264009i
\(423\) 14.8188 + 25.6669i 0.720514 + 1.24797i
\(424\) 7.86254 + 2.18715i 0.381839 + 0.106218i
\(425\) −0.0163677 0.0240071i −0.000793952 0.00116451i
\(426\) 5.30759 0.181740i 0.257154 0.00880533i
\(427\) −4.18423 + 23.1987i −0.202489 + 1.12266i
\(428\) 4.24520 + 7.46182i 0.205199 + 0.360680i
\(429\) −9.50582 2.93216i −0.458945 0.141566i
\(430\) −4.70532 13.5851i −0.226910 0.655131i
\(431\) 0.396927 0.0297455i 0.0191193 0.00143279i −0.0651670 0.997874i \(-0.520758\pi\)
0.0842863 + 0.996442i \(0.473139\pi\)
\(432\) −0.560420 9.01101i −0.0269632 0.433542i
\(433\) −3.88217 8.06141i −0.186565 0.387406i 0.786617 0.617441i \(-0.211830\pi\)
−0.973183 + 0.230034i \(0.926116\pi\)
\(434\) −0.437001 0.0303848i −0.0209767 0.00145852i
\(435\) −3.25996 + 6.76937i −0.156303 + 0.324567i
\(436\) −0.507861 0.119310i −0.0243221 0.00571393i
\(437\) −2.22298 7.20674i −0.106340 0.344745i
\(438\) −0.442990 4.04697i −0.0211669 0.193372i
\(439\) 1.83712 0.276901i 0.0876809 0.0132158i −0.105055 0.994466i \(-0.533502\pi\)
0.192736 + 0.981251i \(0.438264\pi\)
\(440\) −16.4764 26.7845i −0.785482 1.27690i
\(441\) −11.5234 16.2957i −0.548732 0.775984i
\(442\) 15.0680 12.8841i 0.716712 0.612835i
\(443\) −3.70078 24.5531i −0.175829 1.16655i −0.886398 0.462924i \(-0.846800\pi\)
0.710569 0.703628i \(-0.248438\pi\)
\(444\) 0.0885985 0.0942799i 0.00420470 0.00447433i
\(445\) 4.00878 1.23654i 0.190034 0.0586178i
\(446\) −5.80065 7.91201i −0.274669 0.374644i
\(447\) 3.46274 + 1.66757i 0.163782 + 0.0788733i
\(448\) 11.0726 + 18.0388i 0.523131 + 0.852252i
\(449\) −9.17598 + 4.41892i −0.433041 + 0.208542i −0.637689 0.770294i \(-0.720109\pi\)
0.204648 + 0.978836i \(0.434395\pi\)
\(450\) 0.0382993 + 0.0203974i 0.00180545 + 0.000961545i
\(451\) −4.26250 56.8791i −0.200713 2.67833i
\(452\) 7.61553 + 4.46148i 0.358205 + 0.209850i
\(453\) 1.42312 4.61365i 0.0668641 0.216768i
\(454\) −21.5781 4.15373i −1.01271 0.194944i
\(455\) −23.1352 + 20.2564i −1.08459 + 0.949635i
\(456\) −2.60803 0.319013i −0.122132 0.0149392i
\(457\) −4.27692 + 2.91596i −0.200066 + 0.136403i −0.659209 0.751960i \(-0.729109\pi\)
0.459143 + 0.888362i \(0.348156\pi\)
\(458\) −35.8078 4.14963i −1.67319 0.193900i
\(459\) 5.27771 3.04709i 0.246342 0.142226i
\(460\) 10.9062 + 8.81115i 0.508504 + 0.410822i
\(461\) 5.80544 1.32505i 0.270386 0.0617139i −0.0851780 0.996366i \(-0.527146\pi\)
0.355564 + 0.934652i \(0.384289\pi\)
\(462\) 7.16869 0.0385765i 0.333518 0.00179474i
\(463\) −24.4393 5.57811i −1.13579 0.259237i −0.387024 0.922070i \(-0.626497\pi\)
−0.748767 + 0.662833i \(0.769354\pi\)
\(464\) −17.0186 30.3602i −0.790069 1.40944i
\(465\) −0.0150672 + 0.0999646i −0.000698727 + 0.00463575i
\(466\) 8.68851 5.42099i 0.402487 0.251122i
\(467\) 20.6998 + 19.2066i 0.957871 + 0.888774i 0.993867 0.110578i \(-0.0352701\pi\)
−0.0359966 + 0.999352i \(0.511461\pi\)
\(468\) −10.9914 + 27.4916i −0.508078 + 1.27080i
\(469\) −12.3945 + 9.31235i −0.572325 + 0.430004i
\(470\) −19.6244 + 26.4144i −0.905208 + 1.21841i
\(471\) 1.84861 + 1.06729i 0.0851794 + 0.0491783i
\(472\) −13.6609 + 25.2629i −0.628796 + 1.16282i
\(473\) 16.5351 15.3423i 0.760286 0.705442i
\(474\) 7.29086 + 1.97839i 0.334880 + 0.0908703i
\(475\) 0.0161579 0.0202614i 0.000741377 0.000929657i
\(476\) −7.57441 + 12.1139i −0.347172 + 0.555241i
\(477\) −5.12931 6.43195i −0.234855 0.294499i
\(478\) 4.60456 + 10.6458i 0.210608 + 0.486926i
\(479\) 8.93940 22.7772i 0.408451 1.04072i −0.567624 0.823288i \(-0.692137\pi\)
0.976076 0.217430i \(-0.0697673\pi\)
\(480\) 4.35425 2.21368i 0.198744 0.101040i
\(481\) −0.810502 + 0.318098i −0.0369557 + 0.0145040i
\(482\) 5.84311 + 2.57142i 0.266147 + 0.117125i
\(483\) −3.00778 + 1.08143i −0.136859 + 0.0492068i
\(484\) 15.5429 22.4894i 0.706496 1.02225i
\(485\) −0.262076 + 3.49716i −0.0119003 + 0.158798i
\(486\) −7.36162 + 11.6339i −0.333930 + 0.527724i
\(487\) 14.3263 21.0129i 0.649188 0.952183i −0.350689 0.936492i \(-0.614053\pi\)
0.999877 0.0156914i \(-0.00499494\pi\)
\(488\) −19.2569 + 16.2555i −0.871718 + 0.735853i
\(489\) 0.0814002i 0.00368105i
\(490\) 11.5271 18.9257i 0.520742 0.854974i
\(491\) 14.8458i 0.669983i 0.942221 + 0.334992i \(0.108733\pi\)
−0.942221 + 0.334992i \(0.891267\pi\)
\(492\) 8.85976 + 0.0562025i 0.399429 + 0.00253381i
\(493\) 13.2342 19.4110i 0.596038 0.874228i
\(494\) 14.9423 + 9.45511i 0.672286 + 0.425405i
\(495\) −2.36892 + 31.6110i −0.106475 + 1.42081i
\(496\) −0.339221 0.322855i −0.0152315 0.0144966i
\(497\) 25.6178 + 2.66475i 1.14911 + 0.119530i
\(498\) 0.690007 1.56793i 0.0309200 0.0702605i
\(499\) −33.9503 + 13.3245i −1.51982 + 0.596487i −0.970921 0.239399i \(-0.923050\pi\)
−0.548903 + 0.835886i \(0.684954\pi\)
\(500\) 1.81047 22.2631i 0.0809668 0.995634i
\(501\) −1.48953 + 3.79526i −0.0665473 + 0.169560i
\(502\) 34.2210 14.8014i 1.52736 0.660621i
\(503\) 19.0064 + 23.8332i 0.847453 + 1.06267i 0.997261 + 0.0739570i \(0.0235628\pi\)
−0.149809 + 0.988715i \(0.547866\pi\)
\(504\) 1.61494 21.2752i 0.0719354 0.947672i
\(505\) 6.57053 8.23919i 0.292385 0.366639i
\(506\) −5.76081 + 21.2301i −0.256099 + 0.943792i
\(507\) −3.94697 + 3.66225i −0.175291 + 0.162646i
\(508\) 9.11006 + 23.6521i 0.404194 + 1.04939i
\(509\) −8.99626 5.19399i −0.398752 0.230220i 0.287193 0.957873i \(-0.407278\pi\)
−0.685945 + 0.727653i \(0.740611\pi\)
\(510\) 2.64664 + 1.96631i 0.117195 + 0.0870697i
\(511\) 0.569486 19.7362i 0.0251926 0.873077i
\(512\) −3.17420 + 22.4037i −0.140281 + 0.990112i
\(513\) 3.98449 + 3.69706i 0.175919 + 0.163229i
\(514\) 9.52330 + 15.2635i 0.420055 + 0.673244i
\(515\) 5.28418 35.0582i 0.232849 1.54485i
\(516\) 2.16714 + 2.75315i 0.0954030 + 0.121201i
\(517\) −50.3342 11.4884i −2.21369 0.505261i
\(518\) 0.488453 0.393847i 0.0214614 0.0173046i
\(519\) −7.26167 + 1.65743i −0.318752 + 0.0727531i
\(520\) −32.8603 + 0.916536i −1.44102 + 0.0401928i
\(521\) 24.5873 14.1955i 1.07719 0.621915i 0.147052 0.989129i \(-0.453022\pi\)
0.930137 + 0.367214i \(0.119688\pi\)
\(522\) −4.03884 + 34.8518i −0.176775 + 1.52542i
\(523\) 12.5826 8.57868i 0.550199 0.375120i −0.256079 0.966656i \(-0.582431\pi\)
0.806278 + 0.591536i \(0.201478\pi\)
\(524\) 0.0648066 + 0.0707396i 0.00283109 + 0.00309027i
\(525\) −0.00889248 0.00644620i −0.000388100 0.000281335i
\(526\) −2.03932 + 10.5940i −0.0889187 + 0.461922i
\(527\) 0.0931729 0.302059i 0.00405868 0.0131579i
\(528\) 5.93067 + 4.85391i 0.258099 + 0.211239i
\(529\) 0.985843 + 13.1552i 0.0428627 + 0.571963i
\(530\) 4.29371 8.06209i 0.186507 0.350195i
\(531\) 26.0841 12.5614i 1.13195 0.545120i
\(532\) −12.3159 3.27087i −0.533960 0.141810i
\(533\) −53.7213 25.8708i −2.32693 1.12059i
\(534\) −0.824538 + 0.604506i −0.0356812 + 0.0261595i
\(535\) 9.18165 2.83216i 0.396957 0.122445i
\(536\) −16.5552 0.777259i −0.715075 0.0335725i
\(537\) 0.993016 + 6.58823i 0.0428518 + 0.284303i
\(538\) −15.0485 17.5993i −0.648788 0.758760i
\(539\) 34.4628 + 4.59301i 1.48442 + 0.197835i
\(540\) −9.98232 1.56942i −0.429571 0.0675369i
\(541\) −28.4631 + 4.29012i −1.22372 + 0.184447i −0.728945 0.684572i \(-0.759989\pi\)
−0.494779 + 0.869019i \(0.664751\pi\)
\(542\) −16.9588 + 1.85635i −0.728445 + 0.0797371i
\(543\) 0.833028 + 2.70061i 0.0357487 + 0.115894i
\(544\) −14.4946 + 4.81526i −0.621449 + 0.206452i
\(545\) −0.253341 + 0.526068i −0.0108519 + 0.0225343i
\(546\) 3.71203 6.51008i 0.158860 0.278606i
\(547\) 9.61599 + 19.9678i 0.411150 + 0.853762i 0.998996 + 0.0447895i \(0.0142617\pi\)
−0.587846 + 0.808973i \(0.700024\pi\)
\(548\) 6.13898 1.36027i 0.262244 0.0581078i
\(549\) 25.3324 1.89840i 1.08116 0.0810218i
\(550\) −0.0714264 + 0.0247392i −0.00304563 + 0.00105488i
\(551\) 20.0230 + 6.17628i 0.853008 + 0.263118i
\(552\) −3.21434 1.15919i −0.136811 0.0493385i
\(553\) 33.7052 + 14.3635i 1.43329 + 0.610800i
\(554\) 0.206894 + 6.04218i 0.00879006 + 0.256708i
\(555\) −0.0815707 0.119642i −0.00346248 0.00507853i
\(556\) 3.79615 + 5.64453i 0.160993 + 0.239381i
\(557\) −6.06410 10.5033i −0.256944 0.445040i 0.708478 0.705733i \(-0.249382\pi\)
−0.965422 + 0.260693i \(0.916049\pi\)
\(558\) 0.0862919 + 0.464117i 0.00365303 + 0.0196477i
\(559\) −5.24701 22.9887i −0.221925 0.972316i
\(560\) 22.3925 7.73173i 0.946257 0.326725i
\(561\) −1.15111 + 5.04333i −0.0485998 + 0.212930i
\(562\) 4.32890 + 0.175727i 0.182604 + 0.00741260i
\(563\) 0.204030 + 0.0307526i 0.00859885 + 0.00129607i 0.153340 0.988173i \(-0.450997\pi\)
−0.144741 + 0.989470i \(0.546235\pi\)
\(564\) 2.41238 7.64816i 0.101580 0.322046i
\(565\) 6.71913 7.24150i 0.282676 0.304652i
\(566\) 0.226876 + 0.432587i 0.00953632 + 0.0181830i
\(567\) −13.1268 + 15.5202i −0.551275 + 0.651786i
\(568\) 19.2836 + 19.6541i 0.809121 + 0.824667i
\(569\) 19.4755 33.7325i 0.816454 1.41414i −0.0918251 0.995775i \(-0.529270\pi\)
0.908279 0.418365i \(-0.137397\pi\)
\(570\) −0.980071 + 2.77264i −0.0410506 + 0.116133i
\(571\) −1.63166 1.75852i −0.0682831 0.0735916i 0.697986 0.716111i \(-0.254080\pi\)
−0.766269 + 0.642520i \(0.777889\pi\)
\(572\) −22.0828 46.6095i −0.923329 1.94884i
\(573\) −2.45749 1.95978i −0.102663 0.0818711i
\(574\) 42.5231 + 6.17550i 1.77488 + 0.257760i
\(575\) 0.0263495 0.0210131i 0.00109885 0.000876305i
\(576\) 15.8298 16.4223i 0.659576 0.684264i
\(577\) −13.1810 5.17315i −0.548731 0.215361i 0.0747462 0.997203i \(-0.476185\pi\)
−0.623477 + 0.781842i \(0.714281\pi\)
\(578\) 9.67919 + 9.74078i 0.402601 + 0.405163i
\(579\) 3.11764 + 7.94362i 0.129565 + 0.330126i
\(580\) −37.2963 + 11.2458i −1.54864 + 0.466956i
\(581\) 4.35977 7.07209i 0.180874 0.293400i
\(582\) −0.218587 0.826252i −0.00906073 0.0342492i
\(583\) 14.2910 + 1.07096i 0.591871 + 0.0443546i
\(584\) 13.9198 15.8673i 0.576007 0.656592i
\(585\) 27.3797 + 18.6671i 1.13201 + 0.771791i
\(586\) −9.40998 8.15003i −0.388723 0.336675i
\(587\) 43.9277 1.81309 0.906546 0.422108i \(-0.138710\pi\)
0.906546 + 0.422108i \(0.138710\pi\)
\(588\) −1.14499 + 5.27774i −0.0472188 + 0.217650i
\(589\) 0.281936 0.0116170
\(590\) 24.2980 + 21.0446i 1.00033 + 0.866392i
\(591\) 2.78016 + 1.89548i 0.114361 + 0.0779698i
\(592\) 0.670725 + 0.00850994i 0.0275666 + 0.000349756i
\(593\) 23.1037 + 1.73139i 0.948757 + 0.0710995i 0.540111 0.841594i \(-0.318382\pi\)
0.408646 + 0.912693i \(0.366001\pi\)
\(594\) −4.05475 15.3268i −0.166369 0.628868i
\(595\) 11.4033 + 11.2099i 0.467491 + 0.459562i
\(596\) 5.75256 + 19.0782i 0.235634 + 0.781473i
\(597\) −0.485819 1.23785i −0.0198833 0.0506617i
\(598\) 16.2088 + 16.3119i 0.662827 + 0.667045i
\(599\) −9.98255 3.91786i −0.407876 0.160079i 0.152528 0.988299i \(-0.451259\pi\)
−0.560404 + 0.828220i \(0.689354\pi\)
\(600\) −0.00293087 0.0113698i −0.000119652 0.000464170i
\(601\) −19.5056 + 15.5552i −0.795652 + 0.634511i −0.934565 0.355794i \(-0.884211\pi\)
0.138913 + 0.990305i \(0.455639\pi\)
\(602\) 8.57540 + 14.6701i 0.349507 + 0.597911i
\(603\) 13.0619 + 10.4165i 0.531923 + 0.424194i
\(604\) 22.6219 10.7179i 0.920473 0.436105i
\(605\) −20.8116 22.4296i −0.846111 0.911891i
\(606\) −0.855932 + 2.42145i −0.0347699 + 0.0983647i
\(607\) 18.1735 31.4775i 0.737642 1.27763i −0.215913 0.976413i \(-0.569273\pi\)
0.953555 0.301220i \(-0.0973939\pi\)
\(608\) −7.91455 11.0876i −0.320978 0.449663i
\(609\) 2.22498 8.59722i 0.0901609 0.348377i
\(610\) 13.1003 + 24.9785i 0.530418 + 1.01135i
\(611\) −36.7095 + 39.5634i −1.48511 + 1.60056i
\(612\) 14.6833 + 4.63141i 0.593538 + 0.187214i
\(613\) 0.286758 + 0.0432218i 0.0115821 + 0.00174571i 0.154831 0.987941i \(-0.450517\pi\)
−0.143249 + 0.989687i \(0.545755\pi\)
\(614\) −43.6300 1.77111i −1.76076 0.0714764i
\(615\) 2.20660 9.66774i 0.0889787 0.389841i
\(616\) 25.2544 + 27.2704i 1.01753 + 1.09875i
\(617\) 9.12140 + 39.9635i 0.367214 + 1.60887i 0.734397 + 0.678720i \(0.237465\pi\)
−0.367183 + 0.930149i \(0.619678\pi\)
\(618\) 1.57943 + 8.49490i 0.0635340 + 0.341715i
\(619\) −2.36701 4.09978i −0.0951381 0.164784i 0.814528 0.580124i \(-0.196996\pi\)
−0.909666 + 0.415340i \(0.863663\pi\)
\(620\) −0.434929 + 0.292505i −0.0174672 + 0.0117473i
\(621\) 3.98195 + 5.84045i 0.159790 + 0.234369i
\(622\) −1.38552 40.4631i −0.0555543 1.62242i
\(623\) −4.36386 + 2.35433i −0.174834 + 0.0943244i
\(624\) 7.49417 2.83206i 0.300007 0.113373i
\(625\) −23.9406 7.38471i −0.957625 0.295388i
\(626\) −14.4060 + 4.98966i −0.575781 + 0.199427i
\(627\) −4.60100 + 0.344797i −0.183746 + 0.0137699i
\(628\) 2.39419 + 10.8051i 0.0955384 + 0.431171i
\(629\) 0.196452 + 0.407936i 0.00783304 + 0.0162655i
\(630\) −22.8571 6.91600i −0.910648 0.275540i
\(631\) 15.9695 33.1610i 0.635735 1.32012i −0.295376 0.955381i \(-0.595445\pi\)
0.931111 0.364737i \(-0.118841\pi\)
\(632\) 17.9716 + 34.8014i 0.714870 + 1.38433i
\(633\) −2.38542 7.73335i −0.0948121 0.307373i
\(634\) −1.63989 + 0.179506i −0.0651284 + 0.00712908i
\(635\) 28.0513 4.22805i 1.11318 0.167785i
\(636\) −0.345736 + 2.19906i −0.0137093 + 0.0871985i
\(637\) 22.1712 28.7989i 0.878455 1.14105i
\(638\) −39.7194 46.4520i −1.57251 1.83905i
\(639\) −4.13682 27.4460i −0.163650 1.08575i
\(640\) 23.7127 + 8.89308i 0.937325 + 0.351530i
\(641\) 8.57532 2.64513i 0.338705 0.104477i −0.120737 0.992685i \(-0.538526\pi\)
0.459442 + 0.888208i \(0.348050\pi\)
\(642\) −1.88851 + 1.38455i −0.0745335 + 0.0546439i
\(643\) 20.1996 + 9.72762i 0.796595 + 0.383620i 0.787481 0.616338i \(-0.211385\pi\)
0.00911381 + 0.999958i \(0.497099\pi\)
\(644\) −14.6684 7.71107i −0.578016 0.303859i
\(645\) 3.53319 1.70149i 0.139119 0.0669962i
\(646\) 4.32241 8.11599i 0.170063 0.319319i
\(647\) 0.668670 + 8.92279i 0.0262881 + 0.350791i 0.994802 + 0.101830i \(0.0324699\pi\)
−0.968514 + 0.248961i \(0.919911\pi\)
\(648\) −21.3892 + 3.83661i −0.840246 + 0.150716i
\(649\) −14.8654 + 48.1923i −0.583517 + 1.89172i
\(650\) −0.0149367 + 0.0775940i −0.000585864 + 0.00304349i
\(651\) −0.00548885 0.119361i −0.000215125 0.00467813i
\(652\) 0.311188 0.285088i 0.0121871 0.0111649i
\(653\) 25.2057 17.1850i 0.986377 0.672500i 0.0412313 0.999150i \(-0.486872\pi\)
0.945146 + 0.326649i \(0.105920\pi\)
\(654\) 0.0163809 0.141353i 0.000640543 0.00552735i
\(655\) 0.0929909 0.0536883i 0.00363345 0.00209778i
\(656\) 30.8147 + 34.0672i 1.20311 + 1.33010i
\(657\) −20.7441 + 4.73470i −0.809303 + 0.184718i
\(658\) 16.6865 35.1323i 0.650509 1.36960i
\(659\) 20.6664 + 4.71697i 0.805049 + 0.183747i 0.605194 0.796078i \(-0.293096\pi\)
0.199855 + 0.979825i \(0.435953\pi\)
\(660\) 6.74000 5.30538i 0.262354 0.206512i
\(661\) 5.12776 34.0205i 0.199447 1.32324i −0.635153 0.772386i \(-0.719063\pi\)
0.834600 0.550857i \(-0.185699\pi\)
\(662\) 3.30098 + 5.29066i 0.128296 + 0.205627i
\(663\) 3.96413 + 3.67818i 0.153954 + 0.142849i
\(664\) 8.41070 2.85350i 0.326399 0.110737i
\(665\) −6.55619 + 12.6660i −0.254238 + 0.491165i
\(666\) −0.542776 0.403252i −0.0210321 0.0156257i
\(667\) 23.5993 + 13.6251i 0.913769 + 0.527565i
\(668\) −19.7258 + 7.59777i −0.763216 + 0.293967i
\(669\) 1.96165 1.82014i 0.0758418 0.0703709i
\(670\) −4.85779 + 17.9022i −0.187673 + 0.691622i
\(671\) −27.5912 + 34.5982i −1.06515 + 1.33565i
\(672\) −4.54000 + 3.56658i −0.175134 + 0.137584i
\(673\) −23.7840 29.8242i −0.916805 1.14964i −0.988350 0.152200i \(-0.951364\pi\)
0.0715442 0.997437i \(-0.477207\pi\)
\(674\) −22.2552 + 9.62595i −0.857240 + 0.370778i
\(675\) −0.00887403 + 0.0226107i −0.000341562 + 0.000870285i
\(676\) −27.8241 2.26270i −1.07016 0.0870271i
\(677\) −24.5992 + 9.65448i −0.945425 + 0.371052i −0.787441 0.616390i \(-0.788595\pi\)
−0.157984 + 0.987442i \(0.550499\pi\)
\(678\) −0.969729 + 2.20355i −0.0372422 + 0.0846268i
\(679\) −0.499309 4.11486i −0.0191617 0.157914i
\(680\) 1.75227 + 17.0046i 0.0671965 + 0.652096i
\(681\) 0.447921 5.97710i 0.0171644 0.229043i
\(682\) −0.694910 0.439722i −0.0266095 0.0168378i
\(683\) −12.5734 + 18.4417i −0.481106 + 0.705654i −0.987670 0.156549i \(-0.949963\pi\)
0.506564 + 0.862203i \(0.330915\pi\)
\(684\) −0.0871100 + 13.7320i −0.00333073 + 0.525056i
\(685\) 7.03762i 0.268894i
\(686\) −9.01823 + 24.5901i −0.344318 + 0.938853i
\(687\) 9.83257i 0.375136i
\(688\) −2.93516 + 17.9272i −0.111902 + 0.683469i
\(689\) 8.43920 12.3780i 0.321508 0.471566i
\(690\) −2.04496 + 3.23174i −0.0778504 + 0.123030i
\(691\) 1.40836 18.7932i 0.0535765 0.714929i −0.904144 0.427228i \(-0.859490\pi\)
0.957720 0.287701i \(-0.0928908\pi\)
\(692\) −31.7688 21.9561i −1.20767 0.834646i
\(693\) −4.51328 37.1944i −0.171445 1.41290i
\(694\) 29.9263 + 13.1698i 1.13599 + 0.499920i
\(695\) 7.08711 2.78149i 0.268830 0.105508i
\(696\) 7.69184 5.56457i 0.291558 0.210924i
\(697\) −11.3280 + 28.8634i −0.429080 + 1.09328i
\(698\) −15.1074 34.9284i −0.571824 1.32206i
\(699\) 1.74166 + 2.18397i 0.0658755 + 0.0826052i
\(700\) −0.00650074 0.0565720i −0.000245705 0.00213822i
\(701\) −6.52176 + 8.17802i −0.246323 + 0.308880i −0.889588 0.456764i \(-0.849008\pi\)
0.643264 + 0.765644i \(0.277580\pi\)
\(702\) −15.9949 4.34025i −0.603690 0.163812i
\(703\) −0.296033 + 0.274678i −0.0111651 + 0.0103597i
\(704\) 2.21481 + 39.6725i 0.0834736 + 1.49521i
\(705\) −7.77329 4.48791i −0.292759 0.169025i
\(706\) 19.1885 25.8276i 0.722169 0.972036i
\(707\) −5.72576 + 11.0617i −0.215339 + 0.416016i
\(708\) −7.27404 2.90824i −0.273375 0.109298i
\(709\) −5.50248 5.10556i −0.206650 0.191743i 0.570057 0.821605i \(-0.306921\pi\)
−0.776707 + 0.629862i \(0.783112\pi\)
\(710\) 26.1457 16.3130i 0.981232 0.612217i
\(711\) 5.88465 39.0421i 0.220692 1.46419i
\(712\) −5.19877 1.03499i −0.194832 0.0387880i
\(713\) 0.357460 + 0.0815878i 0.0133870 + 0.00305549i
\(714\) −3.52015 1.67194i −0.131738 0.0625708i
\(715\) −56.2785 + 12.8452i −2.10470 + 0.480384i
\(716\) −21.7086 + 26.8702i −0.811287 + 1.00419i
\(717\) −2.73993 + 1.58190i −0.102324 + 0.0590770i
\(718\) −22.1803 2.57039i −0.827762 0.0959261i
\(719\) −31.9071 + 21.7539i −1.18993 + 0.811282i −0.985843 0.167670i \(-0.946376\pi\)
−0.204089 + 0.978952i \(0.565423\pi\)
\(720\) −14.1124 21.2741i −0.525938 0.792837i
\(721\) 1.92497 + 41.8607i 0.0716897 + 1.55897i
\(722\) −18.3321 3.52889i −0.682251 0.131332i
\(723\) −0.513263 + 1.66396i −0.0190884 + 0.0618832i
\(724\) −7.40676 + 12.6430i −0.275270 + 0.469873i
\(725\) 0.00699755 + 0.0933758i 0.000259882 + 0.00346789i
\(726\) 6.58164 + 3.50525i 0.244268 + 0.130092i
\(727\) −42.5423 + 20.4873i −1.57781 + 0.759831i −0.998472 0.0552600i \(-0.982401\pi\)
−0.579333 + 0.815091i \(0.696687\pi\)
\(728\) 37.8883 8.60941i 1.40423 0.319086i
\(729\) 17.3828 + 8.37111i 0.643807 + 0.310041i
\(730\) −13.9683 19.0526i −0.516990 0.705167i
\(731\) −11.7172 + 3.61428i −0.433377 + 0.133679i
\(732\) −5.00916 4.70731i −0.185144 0.173987i
\(733\) 0.134809 + 0.894400i 0.00497929 + 0.0330354i 0.991183 0.132504i \(-0.0423017\pi\)
−0.986203 + 0.165539i \(0.947064\pi\)
\(734\) 7.82030 6.68686i 0.288653 0.246816i
\(735\) 5.48993 + 2.52905i 0.202499 + 0.0932856i
\(736\) −6.82607 16.3481i −0.251612 0.602598i
\(737\) −28.7782 + 4.33762i −1.06006 + 0.159778i
\(738\) −5.03863 46.0309i −0.185475 1.69442i
\(739\) −7.07532 22.9376i −0.260270 0.843774i −0.987533 0.157415i \(-0.949684\pi\)
0.727263 0.686359i \(-0.240792\pi\)
\(740\) 0.171700 0.730863i 0.00631180 0.0268671i
\(741\) −2.09271 + 4.34556i −0.0768777 + 0.159638i
\(742\) −3.12664 + 10.3334i −0.114783 + 0.379352i
\(743\) −11.2574 23.3763i −0.412994 0.857592i −0.998885 0.0472019i \(-0.984970\pi\)
0.585891 0.810390i \(-0.300745\pi\)
\(744\) 0.0768275 0.102051i 0.00281663 0.00374136i
\(745\) 22.2402 1.66667i 0.814818 0.0610622i
\(746\) 4.98879 + 14.4035i 0.182653 + 0.527351i
\(747\) −8.55531 2.63896i −0.313023 0.0965547i
\(748\) −23.3119 + 13.2627i −0.852367 + 0.484931i
\(749\) −9.99492 + 5.39233i −0.365206 + 0.197032i
\(750\) 6.08911 0.208501i 0.222343 0.00761336i
\(751\) −12.0092 17.6142i −0.438221 0.642752i 0.542065 0.840337i \(-0.317643\pi\)
−0.980286 + 0.197584i \(0.936690\pi\)
\(752\) 37.6874 17.5638i 1.37432 0.640486i
\(753\) 5.08504 + 8.80755i 0.185309 + 0.320965i
\(754\) −62.8143 + 11.6789i −2.28756 + 0.425319i
\(755\) −6.23443 27.3148i −0.226894 0.994088i
\(756\) 11.9341 0.472950i 0.434039 0.0172010i
\(757\) −2.43155 + 10.6533i −0.0883762 + 0.387201i −0.999700 0.0244887i \(-0.992204\pi\)
0.911324 + 0.411690i \(0.135061\pi\)
\(758\) 1.76667 43.5206i 0.0641685 1.58074i
\(759\) −5.93326 0.894295i −0.215364 0.0324609i
\(760\) −14.0321 + 5.96388i −0.508999 + 0.216333i
\(761\) 22.0839 23.8008i 0.800542 0.862779i −0.192407 0.981315i \(-0.561630\pi\)
0.992950 + 0.118536i \(0.0378200\pi\)
\(762\) −6.12259 + 3.21108i −0.221798 + 0.116325i
\(763\) 0.172910 0.668115i 0.00625977 0.0241874i
\(764\) −1.11475 16.2586i −0.0403301 0.588215i
\(765\) 8.61612 14.9236i 0.311516 0.539562i
\(766\) 34.6523 + 12.2489i 1.25204 + 0.442570i