Properties

Label 196.2.p.a.103.6
Level $196$
Weight $2$
Character 196.103
Analytic conductor $1.565$
Analytic rank $0$
Dimension $312$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(3,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.p (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(312\)
Relative dimension: \(26\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 103.6
Character \(\chi\) \(=\) 196.103
Dual form 196.2.p.a.59.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.19983 - 0.748605i) q^{2} +(0.318723 + 0.217301i) q^{3} +(0.879181 + 1.79640i) q^{4} +(-2.23221 - 0.167281i) q^{5} +(-0.219740 - 0.499322i) q^{6} +(-2.62649 + 0.318706i) q^{7} +(0.289926 - 2.81353i) q^{8} +(-1.04166 - 2.65410i) q^{9} +O(q^{10})\) \(q+(-1.19983 - 0.748605i) q^{2} +(0.318723 + 0.217301i) q^{3} +(0.879181 + 1.79640i) q^{4} +(-2.23221 - 0.167281i) q^{5} +(-0.219740 - 0.499322i) q^{6} +(-2.62649 + 0.318706i) q^{7} +(0.289926 - 2.81353i) q^{8} +(-1.04166 - 2.65410i) q^{9} +(2.55305 + 1.87176i) q^{10} +(-4.62345 - 1.81457i) q^{11} +(-0.110145 + 0.763599i) q^{12} +(4.05935 - 3.23722i) q^{13} +(3.38992 + 1.58381i) q^{14} +(-0.675106 - 0.538379i) q^{15} +(-2.45408 + 3.15871i) q^{16} +(-1.83646 - 1.97924i) q^{17} +(-0.737063 + 3.96426i) q^{18} +(-1.20408 + 2.08553i) q^{19} +(-1.66202 - 4.15701i) q^{20} +(-0.906375 - 0.469160i) q^{21} +(4.18895 + 5.63831i) q^{22} +(-2.13014 + 2.29575i) q^{23} +(0.703789 - 0.833734i) q^{24} +(0.0106413 + 0.00160391i) q^{25} +(-7.29393 + 0.845265i) q^{26} +(0.502253 - 2.20051i) q^{27} +(-2.88168 - 4.43801i) q^{28} +(1.93620 + 8.48305i) q^{29} +(0.406979 + 1.15135i) q^{30} +(-0.0585377 - 0.101390i) q^{31} +(5.30911 - 1.95278i) q^{32} +(-1.07929 - 1.58303i) q^{33} +(0.721775 + 3.74953i) q^{34} +(5.91619 - 0.272057i) q^{35} +(3.85202 - 4.20467i) q^{36} +(-0.160245 - 0.0494289i) q^{37} +(3.00593 - 1.60090i) q^{38} +(1.99726 - 0.149674i) q^{39} +(-1.11783 + 6.23190i) q^{40} +(-4.98272 - 10.3467i) q^{41} +(0.736280 + 1.24143i) q^{42} +(-1.97048 + 4.09173i) q^{43} +(-0.805158 - 9.90088i) q^{44} +(1.88122 + 6.09878i) q^{45} +(4.27441 - 1.15987i) q^{46} +(10.2787 - 1.54926i) q^{47} +(-1.46856 + 0.473478i) q^{48} +(6.79685 - 1.67415i) q^{49} +(-0.0115670 - 0.00989052i) q^{50} +(-0.155231 - 1.02989i) q^{51} +(9.38424 + 4.44610i) q^{52} +(2.75719 - 0.850480i) q^{53} +(-2.24994 + 2.26425i) q^{54} +(10.0170 + 4.82392i) q^{55} +(0.135203 + 7.48209i) q^{56} +(-0.836956 + 0.403057i) q^{57} +(4.02735 - 11.6277i) q^{58} +(-0.758813 - 10.1257i) q^{59} +(0.373603 - 1.68609i) q^{60} +(-2.62620 + 8.51392i) q^{61} +(-0.00566603 + 0.165473i) q^{62} +(3.58178 + 6.63898i) q^{63} +(-7.83189 - 1.63143i) q^{64} +(-9.60287 + 6.54712i) q^{65} +(0.109901 + 2.70732i) q^{66} +(5.07455 - 2.92979i) q^{67} +(1.94091 - 5.03912i) q^{68} +(-1.17779 + 0.268824i) q^{69} +(-7.30208 - 4.10247i) q^{70} +(-9.49078 - 2.16621i) q^{71} +(-7.76940 + 2.16124i) q^{72} +(1.11225 - 7.37932i) q^{73} +(0.155263 + 0.179266i) q^{74} +(0.00304308 + 0.00282356i) q^{75} +(-4.80504 - 0.329450i) q^{76} +(12.7217 + 3.29242i) q^{77} +(-2.50842 - 1.31558i) q^{78} +(-11.9926 - 6.92396i) q^{79} +(6.00643 - 6.64040i) q^{80} +(-5.63197 + 5.22570i) q^{81} +(-1.76720 + 16.1444i) q^{82} +(-1.95783 + 2.45504i) q^{83} +(0.0459303 - 2.04069i) q^{84} +(3.76829 + 4.72528i) q^{85} +(5.42733 - 3.43427i) q^{86} +(-1.22627 + 3.12448i) q^{87} +(-6.44580 + 12.4821i) q^{88} +(-1.74456 + 0.684691i) q^{89} +(2.30843 - 8.72578i) q^{90} +(-9.63011 + 9.79626i) q^{91} +(-5.99685 - 1.80820i) q^{92} +(0.00337496 - 0.0450357i) q^{93} +(-13.4924 - 5.83582i) q^{94} +(3.03664 - 4.45393i) q^{95} +(2.11647 + 0.531282i) q^{96} -1.56668i q^{97} +(-9.40834 - 3.07946i) q^{98} +14.1613i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9} - 20 q^{10} + 9 q^{12} - 28 q^{13} - 51 q^{14} - 17 q^{16} - 22 q^{17} - 12 q^{18} - 14 q^{20} - 34 q^{21} - 18 q^{22} - 44 q^{24} - 48 q^{25} - 2 q^{26} - 36 q^{28} - 11 q^{30} - 13 q^{32} - 34 q^{33} - 98 q^{34} - 4 q^{36} - 58 q^{37} - 18 q^{38} + 30 q^{40} - 28 q^{41} - 26 q^{42} + 16 q^{44} - 28 q^{45} - 14 q^{46} - 24 q^{49} + 96 q^{50} - 14 q^{52} - 22 q^{53} - 17 q^{54} + 40 q^{56} + 34 q^{57} - 12 q^{58} + 98 q^{60} - 38 q^{61} - 4 q^{64} - 32 q^{65} - 176 q^{66} - 21 q^{68} + 28 q^{69} + 50 q^{70} - 120 q^{72} - 58 q^{73} - 14 q^{74} - 91 q^{76} - 18 q^{77} - 112 q^{78} + 66 q^{80} - 170 q^{81} + 114 q^{82} + 140 q^{84} - 24 q^{85} + 97 q^{86} + 127 q^{88} - 82 q^{89} + 266 q^{90} + 34 q^{92} + 226 q^{94} + 122 q^{96} + 183 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.19983 0.748605i −0.848407 0.529344i
\(3\) 0.318723 + 0.217301i 0.184015 + 0.125459i 0.651824 0.758370i \(-0.274004\pi\)
−0.467809 + 0.883829i \(0.654957\pi\)
\(4\) 0.879181 + 1.79640i 0.439590 + 0.898198i
\(5\) −2.23221 0.167281i −0.998276 0.0748105i −0.434443 0.900699i \(-0.643055\pi\)
−0.563833 + 0.825889i \(0.690674\pi\)
\(6\) −0.219740 0.499322i −0.0897084 0.203847i
\(7\) −2.62649 + 0.318706i −0.992718 + 0.120459i
\(8\) 0.289926 2.81353i 0.102504 0.994733i
\(9\) −1.04166 2.65410i −0.347220 0.884701i
\(10\) 2.55305 + 1.87176i 0.807345 + 0.591901i
\(11\) −4.62345 1.81457i −1.39402 0.547113i −0.454852 0.890567i \(-0.650308\pi\)
−0.939170 + 0.343454i \(0.888403\pi\)
\(12\) −0.110145 + 0.763599i −0.0317961 + 0.220432i
\(13\) 4.05935 3.23722i 1.12586 0.897845i 0.130255 0.991481i \(-0.458420\pi\)
0.995606 + 0.0936360i \(0.0298490\pi\)
\(14\) 3.38992 + 1.58381i 0.905994 + 0.423291i
\(15\) −0.675106 0.538379i −0.174312 0.139009i
\(16\) −2.45408 + 3.15871i −0.613521 + 0.789679i
\(17\) −1.83646 1.97924i −0.445408 0.480035i 0.469941 0.882698i \(-0.344275\pi\)
−0.915348 + 0.402663i \(0.868085\pi\)
\(18\) −0.737063 + 3.96426i −0.173727 + 0.934386i
\(19\) −1.20408 + 2.08553i −0.276235 + 0.478453i −0.970446 0.241318i \(-0.922420\pi\)
0.694211 + 0.719772i \(0.255754\pi\)
\(20\) −1.66202 4.15701i −0.371638 0.929536i
\(21\) −0.906375 0.469160i −0.197787 0.102379i
\(22\) 4.18895 + 5.63831i 0.893087 + 1.20209i
\(23\) −2.13014 + 2.29575i −0.444165 + 0.478696i −0.914959 0.403547i \(-0.867777\pi\)
0.470794 + 0.882243i \(0.343968\pi\)
\(24\) 0.703789 0.833734i 0.143660 0.170185i
\(25\) 0.0106413 + 0.00160391i 0.00212825 + 0.000320782i
\(26\) −7.29393 + 0.845265i −1.43046 + 0.165770i
\(27\) 0.502253 2.20051i 0.0966587 0.423489i
\(28\) −2.88168 4.43801i −0.544586 0.838705i
\(29\) 1.93620 + 8.48305i 0.359544 + 1.57526i 0.754333 + 0.656492i \(0.227960\pi\)
−0.394790 + 0.918771i \(0.629183\pi\)
\(30\) 0.406979 + 1.15135i 0.0743038 + 0.210207i
\(31\) −0.0585377 0.101390i −0.0105137 0.0182102i 0.860721 0.509077i \(-0.170013\pi\)
−0.871234 + 0.490867i \(0.836680\pi\)
\(32\) 5.30911 1.95278i 0.938527 0.345206i
\(33\) −1.07929 1.58303i −0.187880 0.275569i
\(34\) 0.721775 + 3.74953i 0.123783 + 0.643039i
\(35\) 5.91619 0.272057i 1.00002 0.0459861i
\(36\) 3.85202 4.20467i 0.642003 0.700778i
\(37\) −0.160245 0.0494289i −0.0263441 0.00812606i 0.281555 0.959545i \(-0.409150\pi\)
−0.307899 + 0.951419i \(0.599626\pi\)
\(38\) 3.00593 1.60090i 0.487626 0.259700i
\(39\) 1.99726 0.149674i 0.319818 0.0239670i
\(40\) −1.11783 + 6.23190i −0.176744 + 0.985350i
\(41\) −4.98272 10.3467i −0.778171 1.61589i −0.787797 0.615935i \(-0.788778\pi\)
0.00962633 0.999954i \(-0.496936\pi\)
\(42\) 0.736280 + 1.24143i 0.113610 + 0.191557i
\(43\) −1.97048 + 4.09173i −0.300495 + 0.623984i −0.995473 0.0950473i \(-0.969700\pi\)
0.694978 + 0.719031i \(0.255414\pi\)
\(44\) −0.805158 9.90088i −0.121382 1.49261i
\(45\) 1.88122 + 6.09878i 0.280436 + 0.909152i
\(46\) 4.27441 1.15987i 0.630228 0.171013i
\(47\) 10.2787 1.54926i 1.49930 0.225983i 0.652457 0.757826i \(-0.273738\pi\)
0.846843 + 0.531843i \(0.178500\pi\)
\(48\) −1.46856 + 0.473478i −0.211969 + 0.0683406i
\(49\) 6.79685 1.67415i 0.970979 0.239165i
\(50\) −0.0115670 0.00989052i −0.00163582 0.00139873i
\(51\) −0.155231 1.02989i −0.0217367 0.144214i
\(52\) 9.38424 + 4.44610i 1.30136 + 0.616563i
\(53\) 2.75719 0.850480i 0.378729 0.116822i −0.0995451 0.995033i \(-0.531739\pi\)
0.478274 + 0.878211i \(0.341263\pi\)
\(54\) −2.24994 + 2.26425i −0.306177 + 0.308126i
\(55\) 10.0170 + 4.82392i 1.35069 + 0.650458i
\(56\) 0.135203 + 7.48209i 0.0180672 + 0.999837i
\(57\) −0.836956 + 0.403057i −0.110858 + 0.0533862i
\(58\) 4.02735 11.6277i 0.528816 1.52679i
\(59\) −0.758813 10.1257i −0.0987890 1.31825i −0.797707 0.603046i \(-0.793954\pi\)
0.698918 0.715202i \(-0.253665\pi\)
\(60\) 0.373603 1.68609i 0.0482319 0.217673i
\(61\) −2.62620 + 8.51392i −0.336250 + 1.09010i 0.616759 + 0.787152i \(0.288445\pi\)
−0.953009 + 0.302943i \(0.902031\pi\)
\(62\) −0.00566603 + 0.165473i −0.000719587 + 0.0210150i
\(63\) 3.58178 + 6.63898i 0.451262 + 0.836433i
\(64\) −7.83189 1.63143i −0.978986 0.203928i
\(65\) −9.60287 + 6.54712i −1.19109 + 0.812071i
\(66\) 0.109901 + 2.70732i 0.0135279 + 0.333248i
\(67\) 5.07455 2.92979i 0.619955 0.357931i −0.156896 0.987615i \(-0.550149\pi\)
0.776852 + 0.629684i \(0.216816\pi\)
\(68\) 1.94091 5.03912i 0.235370 0.611083i
\(69\) −1.17779 + 0.268824i −0.141790 + 0.0323625i
\(70\) −7.30208 4.10247i −0.872766 0.490339i
\(71\) −9.49078 2.16621i −1.12635 0.257082i −0.381535 0.924354i \(-0.624604\pi\)
−0.744814 + 0.667273i \(0.767462\pi\)
\(72\) −7.76940 + 2.16124i −0.915633 + 0.254705i
\(73\) 1.11225 7.37932i 0.130179 0.863684i −0.824460 0.565920i \(-0.808521\pi\)
0.954639 0.297764i \(-0.0962409\pi\)
\(74\) 0.155263 + 0.179266i 0.0180490 + 0.0208393i
\(75\) 0.00304308 + 0.00282356i 0.000351384 + 0.000326037i
\(76\) −4.80504 0.329450i −0.551176 0.0377906i
\(77\) 12.7217 + 3.29242i 1.44978 + 0.375206i
\(78\) −2.50842 1.31558i −0.284022 0.148960i
\(79\) −11.9926 6.92396i −1.34928 0.779006i −0.361131 0.932515i \(-0.617609\pi\)
−0.988147 + 0.153509i \(0.950942\pi\)
\(80\) 6.00643 6.64040i 0.671540 0.742420i
\(81\) −5.63197 + 5.22570i −0.625774 + 0.580634i
\(82\) −1.76720 + 16.1444i −0.195155 + 1.78285i
\(83\) −1.95783 + 2.45504i −0.214899 + 0.269475i −0.877584 0.479424i \(-0.840846\pi\)
0.662684 + 0.748899i \(0.269417\pi\)
\(84\) 0.0459303 2.04069i 0.00501141 0.222657i
\(85\) 3.76829 + 4.72528i 0.408728 + 0.512529i
\(86\) 5.42733 3.43427i 0.585244 0.370327i
\(87\) −1.22627 + 3.12448i −0.131470 + 0.334979i
\(88\) −6.44580 + 12.4821i −0.687124 + 1.33060i
\(89\) −1.74456 + 0.684691i −0.184923 + 0.0725771i −0.455996 0.889982i \(-0.650717\pi\)
0.271073 + 0.962559i \(0.412622\pi\)
\(90\) 2.30843 8.72578i 0.243330 0.919778i
\(91\) −9.63011 + 9.79626i −1.00951 + 1.02693i
\(92\) −5.99685 1.80820i −0.625215 0.188518i
\(93\) 0.00337496 0.0450357i 0.000349967 0.00466998i
\(94\) −13.4924 5.83582i −1.39164 0.601919i
\(95\) 3.03664 4.45393i 0.311552 0.456963i
\(96\) 2.11647 + 0.531282i 0.216012 + 0.0542238i
\(97\) 1.56668i 0.159072i −0.996832 0.0795360i \(-0.974656\pi\)
0.996832 0.0795360i \(-0.0253439\pi\)
\(98\) −9.40834 3.07946i −0.950386 0.311073i
\(99\) 14.1613i 1.42326i
\(100\) 0.00647432 + 0.0205260i 0.000647432 + 0.00205260i
\(101\) −2.65201 + 3.88978i −0.263885 + 0.387047i −0.935198 0.354126i \(-0.884778\pi\)
0.671313 + 0.741174i \(0.265731\pi\)
\(102\) −0.584732 + 1.35190i −0.0578971 + 0.133858i
\(103\) 1.18362 15.7943i 0.116625 1.55626i −0.565331 0.824864i \(-0.691252\pi\)
0.681957 0.731393i \(-0.261129\pi\)
\(104\) −7.93111 12.3597i −0.777710 1.21196i
\(105\) 1.94474 + 1.19889i 0.189787 + 0.116999i
\(106\) −3.94483 1.04361i −0.383156 0.101365i
\(107\) 3.99573 1.56821i 0.386281 0.151604i −0.164250 0.986419i \(-0.552520\pi\)
0.550531 + 0.834814i \(0.314425\pi\)
\(108\) 4.39457 1.03240i 0.422868 0.0993431i
\(109\) 0.0952969 0.242812i 0.00912778 0.0232572i −0.926237 0.376941i \(-0.876976\pi\)
0.935365 + 0.353684i \(0.115071\pi\)
\(110\) −8.40745 13.2866i −0.801619 1.26683i
\(111\) −0.0403326 0.0505755i −0.00382820 0.00480041i
\(112\) 5.43891 9.07845i 0.513929 0.857833i
\(113\) −2.75151 + 3.45029i −0.258840 + 0.324576i −0.894223 0.447622i \(-0.852271\pi\)
0.635382 + 0.772198i \(0.280842\pi\)
\(114\) 1.30593 + 0.142950i 0.122312 + 0.0133885i
\(115\) 5.13897 4.76826i 0.479211 0.444643i
\(116\) −13.5367 + 10.9363i −1.25685 + 1.01541i
\(117\) −12.8204 7.40185i −1.18525 0.684302i
\(118\) −6.66967 + 12.7171i −0.613993 + 1.17070i
\(119\) 5.45424 + 4.61314i 0.499989 + 0.422886i
\(120\) −1.71048 + 1.74334i −0.156144 + 0.159145i
\(121\) 10.0200 + 9.29722i 0.910911 + 0.845202i
\(122\) 9.52455 8.24926i 0.862312 0.746853i
\(123\) 0.660253 4.38049i 0.0595330 0.394975i
\(124\) 0.130672 0.194297i 0.0117347 0.0174484i
\(125\) 10.8883 + 2.48518i 0.973876 + 0.222281i
\(126\) 0.672452 10.6470i 0.0599068 0.948509i
\(127\) 12.3552 2.82000i 1.09635 0.250235i 0.364161 0.931336i \(-0.381356\pi\)
0.732189 + 0.681101i \(0.238499\pi\)
\(128\) 8.17563 + 7.82043i 0.722631 + 0.691234i
\(129\) −1.51717 + 0.875941i −0.133580 + 0.0771223i
\(130\) 16.4230 0.666675i 1.44039 0.0584712i
\(131\) 0.0396336 0.0270217i 0.00346280 0.00236090i −0.561587 0.827417i \(-0.689809\pi\)
0.565050 + 0.825057i \(0.308857\pi\)
\(132\) 1.89485 3.33059i 0.164926 0.289891i
\(133\) 2.49783 5.86136i 0.216589 0.508244i
\(134\) −8.28185 0.283583i −0.715443 0.0244979i
\(135\) −1.48924 + 4.82800i −0.128173 + 0.415528i
\(136\) −6.10107 + 4.59311i −0.523163 + 0.393856i
\(137\) 0.234947 + 3.13515i 0.0200729 + 0.267854i 0.998206 + 0.0598738i \(0.0190698\pi\)
−0.978133 + 0.207980i \(0.933311\pi\)
\(138\) 1.61439 + 0.559159i 0.137426 + 0.0475988i
\(139\) 3.06434 1.47571i 0.259914 0.125168i −0.299390 0.954131i \(-0.596783\pi\)
0.559303 + 0.828963i \(0.311069\pi\)
\(140\) 5.69012 + 10.3886i 0.480903 + 0.878000i
\(141\) 3.61270 + 1.73979i 0.304245 + 0.146516i
\(142\) 9.76568 + 9.70393i 0.819518 + 0.814336i
\(143\) −24.6424 + 7.60116i −2.06070 + 0.635641i
\(144\) 10.9399 + 3.22309i 0.911656 + 0.268591i
\(145\) −2.90296 19.2599i −0.241078 1.59945i
\(146\) −6.85871 + 8.02129i −0.567631 + 0.663846i
\(147\) 2.53011 + 0.943375i 0.208680 + 0.0778083i
\(148\) −0.0520900 0.331320i −0.00428177 0.0272343i
\(149\) −9.85202 + 1.48495i −0.807109 + 0.121652i −0.539620 0.841909i \(-0.681432\pi\)
−0.267489 + 0.963561i \(0.586194\pi\)
\(150\) −0.00153744 0.00566585i −0.000125531 0.000462615i
\(151\) −3.68923 11.9602i −0.300225 0.973305i −0.972480 0.232986i \(-0.925150\pi\)
0.672255 0.740319i \(-0.265326\pi\)
\(152\) 5.51860 + 3.99236i 0.447618 + 0.323824i
\(153\) −3.34013 + 6.93585i −0.270033 + 0.560730i
\(154\) −12.7992 13.4739i −1.03139 1.08576i
\(155\) 0.113708 + 0.236117i 0.00913324 + 0.0189654i
\(156\) 2.02483 + 3.45628i 0.162116 + 0.276724i
\(157\) −5.51812 + 0.413526i −0.440394 + 0.0330030i −0.293082 0.956087i \(-0.594681\pi\)
−0.147311 + 0.989090i \(0.547062\pi\)
\(158\) 9.20581 + 17.2853i 0.732375 + 1.37515i
\(159\) 1.06359 + 0.328074i 0.0843480 + 0.0260179i
\(160\) −12.1777 + 3.47090i −0.962734 + 0.274399i
\(161\) 4.86312 6.70863i 0.383267 0.528714i
\(162\) 10.6694 2.05383i 0.838267 0.161364i
\(163\) −0.118870 0.174351i −0.00931065 0.0136562i 0.821555 0.570129i \(-0.193107\pi\)
−0.830866 + 0.556473i \(0.812154\pi\)
\(164\) 14.2061 18.0476i 1.10931 1.40928i
\(165\) 2.14439 + 3.71420i 0.166941 + 0.289150i
\(166\) 4.18691 1.47999i 0.324967 0.114869i
\(167\) 2.35188 + 10.3042i 0.181994 + 0.797366i 0.980680 + 0.195619i \(0.0626715\pi\)
−0.798686 + 0.601747i \(0.794471\pi\)
\(168\) −1.58278 + 2.41409i −0.122114 + 0.186251i
\(169\) 3.10594 13.6080i 0.238918 1.04677i
\(170\) −0.983930 8.49049i −0.0754640 0.651191i
\(171\) 6.78945 + 1.02335i 0.519202 + 0.0782572i
\(172\) −9.08278 + 0.0576173i −0.692556 + 0.00439328i
\(173\) 13.1334 14.1544i 0.998511 1.07614i 0.00141437 0.999999i \(-0.499550\pi\)
0.997097 0.0761404i \(-0.0242597\pi\)
\(174\) 3.81031 2.83085i 0.288859 0.214606i
\(175\) −0.0284603 0.000821220i −0.00215139 6.20784e-5i
\(176\) 17.0780 10.1510i 1.28730 0.765164i
\(177\) 1.95847 3.39217i 0.147207 0.254971i
\(178\) 2.60574 + 0.484478i 0.195309 + 0.0363131i
\(179\) 11.7479 + 12.6612i 0.878076 + 0.946341i 0.998926 0.0463299i \(-0.0147525\pi\)
−0.120850 + 0.992671i \(0.538562\pi\)
\(180\) −9.30189 + 8.74135i −0.693322 + 0.651542i
\(181\) −5.72802 4.56794i −0.425760 0.339532i 0.387052 0.922058i \(-0.373493\pi\)
−0.812813 + 0.582525i \(0.802065\pi\)
\(182\) 18.8880 4.54469i 1.40007 0.336875i
\(183\) −2.68711 + 2.14290i −0.198637 + 0.158408i
\(184\) 5.84157 + 6.65881i 0.430646 + 0.490894i
\(185\) 0.349432 + 0.137142i 0.0256907 + 0.0100829i
\(186\) −0.0377633 + 0.0515086i −0.00276894 + 0.00377679i
\(187\) 4.89933 + 12.4833i 0.358274 + 0.912868i
\(188\) 11.8199 + 17.1025i 0.862055 + 1.24733i
\(189\) −0.617844 + 5.93969i −0.0449415 + 0.432049i
\(190\) −6.97768 + 3.07071i −0.506214 + 0.222773i
\(191\) −8.12560 0.608929i −0.587947 0.0440606i −0.222565 0.974918i \(-0.571443\pi\)
−0.365383 + 0.930857i \(0.619062\pi\)
\(192\) −2.14169 2.22185i −0.154563 0.160348i
\(193\) −18.2779 12.4617i −1.31567 0.897009i −0.316994 0.948428i \(-0.602674\pi\)
−0.998677 + 0.0514180i \(0.983626\pi\)
\(194\) −1.17282 + 1.87975i −0.0842038 + 0.134958i
\(195\) −4.48335 −0.321059
\(196\) 8.98310 + 10.7380i 0.641650 + 0.766997i
\(197\) −8.72284 −0.621476 −0.310738 0.950496i \(-0.600576\pi\)
−0.310738 + 0.950496i \(0.600576\pi\)
\(198\) 10.6012 16.9911i 0.753394 1.20751i
\(199\) −2.84823 1.94189i −0.201905 0.137657i 0.458147 0.888877i \(-0.348513\pi\)
−0.660052 + 0.751220i \(0.729466\pi\)
\(200\) 0.00759782 0.0294745i 0.000537247 0.00208416i
\(201\) 2.25402 + 0.168916i 0.158986 + 0.0119144i
\(202\) 6.09386 2.68176i 0.428763 0.188688i
\(203\) −7.78900 21.6635i −0.546681 1.52048i
\(204\) 1.71362 1.18432i 0.119977 0.0829189i
\(205\) 9.39169 + 23.9296i 0.655944 + 1.67132i
\(206\) −13.2438 + 18.0644i −0.922741 + 1.25860i
\(207\) 8.31203 + 3.26223i 0.577726 + 0.226741i
\(208\) 0.263481 + 20.7667i 0.0182692 + 1.43991i
\(209\) 9.35134 7.45745i 0.646846 0.515842i
\(210\) −1.43587 2.89430i −0.0990842 0.199726i
\(211\) −16.4025 13.0806i −1.12919 0.900503i −0.133305 0.991075i \(-0.542559\pi\)
−0.995890 + 0.0905722i \(0.971130\pi\)
\(212\) 3.95187 + 4.20528i 0.271415 + 0.288820i
\(213\) −2.55421 2.75278i −0.175011 0.188617i
\(214\) −5.96816 1.10964i −0.407975 0.0758535i
\(215\) 5.08299 8.80400i 0.346657 0.600428i
\(216\) −6.04560 2.05109i −0.411351 0.139559i
\(217\) 0.186062 + 0.247644i 0.0126307 + 0.0168111i
\(218\) −0.296111 + 0.219994i −0.0200551 + 0.0148999i
\(219\) 1.95804 2.11026i 0.132312 0.142598i
\(220\) 0.141053 + 22.2356i 0.00950979 + 1.49912i
\(221\) −13.8621 2.08937i −0.932464 0.140546i
\(222\) 0.0105312 + 0.0908751i 0.000706806 + 0.00609914i
\(223\) 1.54366 6.76320i 0.103371 0.452897i −0.896579 0.442884i \(-0.853955\pi\)
0.999950 0.0100134i \(-0.00318742\pi\)
\(224\) −13.3219 + 6.82099i −0.890110 + 0.455746i
\(225\) −0.00682761 0.0299137i −0.000455174 0.00199425i
\(226\) 5.88425 2.07996i 0.391414 0.138357i
\(227\) −7.76907 13.4564i −0.515651 0.893134i −0.999835 0.0181679i \(-0.994217\pi\)
0.484184 0.874966i \(-0.339117\pi\)
\(228\) −1.45989 1.14915i −0.0966833 0.0761040i
\(229\) 14.3587 + 21.0603i 0.948850 + 1.39171i 0.919912 + 0.392125i \(0.128260\pi\)
0.0289378 + 0.999581i \(0.490788\pi\)
\(230\) −9.73543 + 1.87405i −0.641935 + 0.123571i
\(231\) 3.33925 + 3.81382i 0.219707 + 0.250931i
\(232\) 24.4287 2.98810i 1.60382 0.196179i
\(233\) −6.91974 2.13446i −0.453327 0.139833i 0.0596795 0.998218i \(-0.480992\pi\)
−0.513006 + 0.858385i \(0.671468\pi\)
\(234\) 9.84121 + 18.4784i 0.643340 + 1.20797i
\(235\) −23.2034 + 1.73885i −1.51362 + 0.113430i
\(236\) 17.5226 10.2654i 1.14062 0.668221i
\(237\) −2.31774 4.81284i −0.150553 0.312627i
\(238\) −3.09073 9.61805i −0.200342 0.623446i
\(239\) −3.55856 + 7.38943i −0.230184 + 0.477982i −0.983785 0.179349i \(-0.942601\pi\)
0.753601 + 0.657332i \(0.228315\pi\)
\(240\) 3.35735 0.811240i 0.216716 0.0523653i
\(241\) −1.33055 4.31355i −0.0857085 0.277860i 0.902565 0.430553i \(-0.141682\pi\)
−0.988274 + 0.152693i \(0.951205\pi\)
\(242\) −5.06237 18.6561i −0.325421 1.19926i
\(243\) −9.62627 + 1.45093i −0.617526 + 0.0930770i
\(244\) −17.6033 + 2.76758i −1.12693 + 0.177176i
\(245\) −15.4521 + 2.60008i −0.987197 + 0.166113i
\(246\) −4.07145 + 4.76157i −0.259586 + 0.303587i
\(247\) 1.86354 + 12.3638i 0.118574 + 0.786688i
\(248\) −0.302236 + 0.135302i −0.0191920 + 0.00859167i
\(249\) −1.15749 + 0.357037i −0.0733527 + 0.0226263i
\(250\) −11.2036 11.1328i −0.708581 0.704100i
\(251\) 23.7535 + 11.4391i 1.49931 + 0.722027i 0.990327 0.138752i \(-0.0443090\pi\)
0.508978 + 0.860779i \(0.330023\pi\)
\(252\) −8.77722 + 12.2712i −0.552913 + 0.773011i
\(253\) 14.0144 6.74897i 0.881077 0.424304i
\(254\) −16.9352 5.86567i −1.06261 0.368045i
\(255\) 0.174228 + 2.32491i 0.0109106 + 0.145591i
\(256\) −3.95495 15.5035i −0.247184 0.968968i
\(257\) 3.74970 12.1562i 0.233900 0.758284i −0.760188 0.649703i \(-0.774893\pi\)
0.994088 0.108581i \(-0.0346306\pi\)
\(258\) 2.47608 + 0.0847849i 0.154154 + 0.00527848i
\(259\) 0.436633 + 0.0787535i 0.0271311 + 0.00489350i
\(260\) −20.2039 11.4945i −1.25299 0.712856i
\(261\) 20.4980 13.9753i 1.26880 0.865051i
\(262\) −0.0677821 + 0.00275154i −0.00418760 + 0.000169991i
\(263\) −6.60660 + 3.81432i −0.407380 + 0.235201i −0.689663 0.724130i \(-0.742242\pi\)
0.282283 + 0.959331i \(0.408908\pi\)
\(264\) −4.76680 + 2.57765i −0.293376 + 0.158643i
\(265\) −6.29690 + 1.43723i −0.386816 + 0.0882882i
\(266\) −7.38482 + 5.16274i −0.452792 + 0.316548i
\(267\) −0.704816 0.160870i −0.0431341 0.00984507i
\(268\) 9.72452 + 6.54009i 0.594020 + 0.399500i
\(269\) −2.44037 + 16.1908i −0.148792 + 0.987169i 0.782436 + 0.622731i \(0.213977\pi\)
−0.931228 + 0.364438i \(0.881261\pi\)
\(270\) 5.40110 4.67792i 0.328701 0.284689i
\(271\) −8.84305 8.20516i −0.537177 0.498428i 0.364284 0.931288i \(-0.381314\pi\)
−0.901461 + 0.432860i \(0.857504\pi\)
\(272\) 10.7587 0.943651i 0.652340 0.0572172i
\(273\) −5.19807 + 1.02965i −0.314602 + 0.0623175i
\(274\) 2.06509 3.93752i 0.124757 0.237875i
\(275\) −0.0462889 0.0267249i −0.00279132 0.00161157i
\(276\) −1.51841 1.87944i −0.0913973 0.113129i
\(277\) 3.13377 2.90772i 0.188290 0.174708i −0.580395 0.814335i \(-0.697102\pi\)
0.768685 + 0.639627i \(0.220911\pi\)
\(278\) −4.78140 0.523382i −0.286770 0.0313904i
\(279\) −0.208124 + 0.260979i −0.0124600 + 0.0156244i
\(280\) 0.949813 16.7242i 0.0567622 0.999465i
\(281\) −1.91007 2.39515i −0.113945 0.142883i 0.721588 0.692323i \(-0.243413\pi\)
−0.835533 + 0.549440i \(0.814841\pi\)
\(282\) −3.03221 4.79194i −0.180566 0.285356i
\(283\) −0.126189 + 0.321525i −0.00750117 + 0.0191127i −0.934575 0.355765i \(-0.884220\pi\)
0.927074 + 0.374878i \(0.122315\pi\)
\(284\) −4.45274 18.9537i −0.264222 1.12470i
\(285\) 1.93569 0.759702i 0.114660 0.0450009i
\(286\) 35.2569 + 9.32730i 2.08478 + 0.551535i
\(287\) 16.3846 + 25.5875i 0.967153 + 1.51038i
\(288\) −10.7132 12.0568i −0.631279 0.710454i
\(289\) 0.725632 9.68288i 0.0426842 0.569581i
\(290\) −10.9350 + 25.2817i −0.642125 + 1.48459i
\(291\) 0.340441 0.499336i 0.0199570 0.0292716i
\(292\) 14.2341 4.48971i 0.832985 0.262740i
\(293\) 8.80258i 0.514252i 0.966378 + 0.257126i \(0.0827755\pi\)
−0.966378 + 0.257126i \(0.917224\pi\)
\(294\) −2.32948 3.02594i −0.135858 0.176476i
\(295\) 22.7296i 1.32337i
\(296\) −0.185529 + 0.436522i −0.0107836 + 0.0253723i
\(297\) −6.31513 + 9.26259i −0.366441 + 0.537470i
\(298\) 12.9324 + 5.59358i 0.749153 + 0.324028i
\(299\) −1.21515 + 16.2150i −0.0702737 + 0.937737i
\(300\) −0.00239682 + 0.00794899i −0.000138381 + 0.000458935i
\(301\) 3.87137 11.3749i 0.223142 0.655637i
\(302\) −4.52701 + 17.1119i −0.260500 + 0.984682i
\(303\) −1.69051 + 0.663476i −0.0971172 + 0.0381157i
\(304\) −3.63268 8.92141i −0.208348 0.511678i
\(305\) 7.28645 18.5656i 0.417221 1.06306i
\(306\) 9.19980 5.82140i 0.525917 0.332787i
\(307\) −19.2512 24.1402i −1.09872 1.37776i −0.919102 0.394019i \(-0.871084\pi\)
−0.179621 0.983736i \(-0.557487\pi\)
\(308\) 5.27020 + 25.7479i 0.300298 + 1.46712i
\(309\) 3.80936 4.77679i 0.216707 0.271742i
\(310\) 0.0403283 0.368422i 0.00229049 0.0209250i
\(311\) 20.9862 19.4723i 1.19002 1.10417i 0.197725 0.980258i \(-0.436645\pi\)
0.992293 0.123917i \(-0.0395458\pi\)
\(312\) 0.157945 5.66274i 0.00894186 0.320590i
\(313\) 9.33603 + 5.39016i 0.527704 + 0.304670i 0.740081 0.672518i \(-0.234787\pi\)
−0.212377 + 0.977188i \(0.568121\pi\)
\(314\) 6.93037 + 3.63473i 0.391103 + 0.205120i
\(315\) −6.88472 15.4188i −0.387910 0.868751i
\(316\) 1.89447 27.6310i 0.106572 1.55436i
\(317\) 0.855108 + 0.793424i 0.0480276 + 0.0445631i 0.703822 0.710377i \(-0.251475\pi\)
−0.655794 + 0.754940i \(0.727666\pi\)
\(318\) −1.03053 1.18984i −0.0577891 0.0667229i
\(319\) 6.44116 42.7343i 0.360636 2.39266i
\(320\) 17.2095 + 4.95182i 0.962042 + 0.276815i
\(321\) 1.61430 + 0.368454i 0.0901015 + 0.0205651i
\(322\) −10.8570 + 4.40866i −0.605039 + 0.245685i
\(323\) 6.33900 1.44684i 0.352712 0.0805041i
\(324\) −14.3390 5.52292i −0.796609 0.306829i
\(325\) 0.0483888 0.0279373i 0.00268413 0.00154968i
\(326\) 0.0121042 + 0.298178i 0.000670391 + 0.0165146i
\(327\) 0.0831367 0.0566817i 0.00459747 0.00313450i
\(328\) −30.5555 + 11.0193i −1.68714 + 0.608437i
\(329\) −26.5030 + 7.34499i −1.46116 + 0.404942i
\(330\) 0.207562 6.06170i 0.0114259 0.333686i
\(331\) −1.29973 + 4.21361i −0.0714394 + 0.231601i −0.984250 0.176782i \(-0.943431\pi\)
0.912811 + 0.408383i \(0.133907\pi\)
\(332\) −6.13151 1.35861i −0.336510 0.0745636i
\(333\) 0.0357308 + 0.476794i 0.00195803 + 0.0261281i
\(334\) 4.89196 14.1240i 0.267676 0.772829i
\(335\) −11.8176 + 5.69105i −0.645664 + 0.310935i
\(336\) 3.70626 1.71162i 0.202193 0.0933767i
\(337\) 15.4478 + 7.43927i 0.841495 + 0.405243i 0.804414 0.594069i \(-0.202480\pi\)
0.0370816 + 0.999312i \(0.488194\pi\)
\(338\) −13.9136 + 14.0022i −0.756801 + 0.761617i
\(339\) −1.62672 + 0.501777i −0.0883513 + 0.0272528i
\(340\) −5.17548 + 10.9237i −0.280680 + 0.592422i
\(341\) 0.0866662 + 0.574993i 0.00469324 + 0.0311376i
\(342\) −7.38010 6.31046i −0.399070 0.341231i
\(343\) −17.3183 + 6.56333i −0.935099 + 0.354387i
\(344\) 10.9409 + 6.73029i 0.589895 + 0.362873i
\(345\) 2.67405 0.403049i 0.143966 0.0216994i
\(346\) −26.3539 + 7.15116i −1.41679 + 0.384449i
\(347\) 6.81460 + 22.0924i 0.365827 + 1.18598i 0.932234 + 0.361856i \(0.117857\pi\)
−0.566407 + 0.824126i \(0.691667\pi\)
\(348\) −6.69091 + 0.544118i −0.358671 + 0.0291678i
\(349\) −11.6755 + 24.2445i −0.624977 + 1.29778i 0.312562 + 0.949897i \(0.398813\pi\)
−0.937539 + 0.347881i \(0.886901\pi\)
\(350\) 0.0335327 + 0.0222908i 0.00179240 + 0.00119150i
\(351\) −5.08474 10.5586i −0.271403 0.563575i
\(352\) −28.0898 0.605182i −1.49719 0.0322563i
\(353\) −22.6879 + 1.70023i −1.20756 + 0.0904939i −0.663254 0.748395i \(-0.730825\pi\)
−0.544303 + 0.838889i \(0.683206\pi\)
\(354\) −4.88922 + 2.60390i −0.259859 + 0.138396i
\(355\) 20.8231 + 6.42307i 1.10517 + 0.340901i
\(356\) −2.76376 2.53196i −0.146479 0.134194i
\(357\) 0.735946 + 2.65553i 0.0389504 + 0.140545i
\(358\) −4.61720 23.9858i −0.244027 1.26769i
\(359\) −8.89416 13.0453i −0.469416 0.688506i 0.516398 0.856349i \(-0.327272\pi\)
−0.985814 + 0.167842i \(0.946320\pi\)
\(360\) 17.7045 3.52469i 0.933109 0.185767i
\(361\) 6.60038 + 11.4322i 0.347388 + 0.601694i
\(362\) 3.45306 + 9.76877i 0.181489 + 0.513435i
\(363\) 1.17331 + 5.14060i 0.0615827 + 0.269811i
\(364\) −26.0646 8.68681i −1.36615 0.455312i
\(365\) −3.71721 + 16.2862i −0.194568 + 0.852457i
\(366\) 4.82826 0.559529i 0.252377 0.0292470i
\(367\) 7.19442 + 1.08438i 0.375546 + 0.0566044i 0.334103 0.942536i \(-0.391567\pi\)
0.0414424 + 0.999141i \(0.486805\pi\)
\(368\) −2.02406 12.3625i −0.105512 0.644438i
\(369\) −22.2710 + 24.0024i −1.15938 + 1.24952i
\(370\) −0.316593 0.426133i −0.0164589 0.0221536i
\(371\) −6.97066 + 3.11251i −0.361899 + 0.161593i
\(372\) 0.0838691 0.0335317i 0.00434841 0.00173854i
\(373\) 5.38922 9.33441i 0.279043 0.483317i −0.692104 0.721798i \(-0.743316\pi\)
0.971147 + 0.238481i \(0.0766493\pi\)
\(374\) 3.46669 18.6455i 0.179258 0.964134i
\(375\) 2.93030 + 3.15812i 0.151320 + 0.163084i
\(376\) −1.37884 29.3685i −0.0711083 1.51457i
\(377\) 35.3213 + 28.1678i 1.81914 + 1.45071i
\(378\) 5.18779 6.66409i 0.266831 0.342764i
\(379\) 24.0797 19.2029i 1.23689 0.986387i 0.237001 0.971509i \(-0.423836\pi\)
0.999889 0.0148777i \(-0.00473590\pi\)
\(380\) 10.6708 + 1.53920i 0.547399 + 0.0789592i
\(381\) 4.55068 + 1.78601i 0.233138 + 0.0915001i
\(382\) 9.29348 + 6.81347i 0.475496 + 0.348608i
\(383\) 9.49472 + 24.1922i 0.485158 + 1.23616i 0.938641 + 0.344896i \(0.112086\pi\)
−0.453483 + 0.891265i \(0.649819\pi\)
\(384\) 0.906369 + 4.26912i 0.0462529 + 0.217858i
\(385\) −27.8469 9.47749i −1.41921 0.483018i
\(386\) 12.6015 + 28.6348i 0.641399 + 1.45747i
\(387\) 12.9124 + 0.967654i 0.656377 + 0.0491886i
\(388\) 2.81438 1.37739i 0.142878 0.0699265i
\(389\) 0.447822 + 0.305320i 0.0227055 + 0.0154803i 0.574620 0.818421i \(-0.305150\pi\)
−0.551914 + 0.833901i \(0.686102\pi\)
\(390\) 5.37925 + 3.35626i 0.272389 + 0.169951i
\(391\) 8.45575 0.427626
\(392\) −2.73969 19.6085i −0.138375 0.990380i
\(393\) 0.0185040 0.000933402
\(394\) 10.4659 + 6.52996i 0.527265 + 0.328975i
\(395\) 25.6119 + 17.4619i 1.28867 + 0.878603i
\(396\) −25.4393 + 12.4503i −1.27837 + 0.625652i
\(397\) 8.00894 + 0.600187i 0.401957 + 0.0301225i 0.274175 0.961680i \(-0.411595\pi\)
0.127782 + 0.991802i \(0.459214\pi\)
\(398\) 1.96368 + 4.46213i 0.0984303 + 0.223667i
\(399\) 2.06980 1.32537i 0.103619 0.0663513i
\(400\) −0.0311808 + 0.0296765i −0.00155904 + 0.00148383i
\(401\) 1.25364 + 3.19422i 0.0626037 + 0.159512i 0.958753 0.284242i \(-0.0917418\pi\)
−0.896149 + 0.443753i \(0.853647\pi\)
\(402\) −2.57799 1.89004i −0.128578 0.0942667i
\(403\) −0.565848 0.222079i −0.0281869 0.0110625i
\(404\) −9.31918 1.34424i −0.463647 0.0668783i
\(405\) 13.4459 10.7228i 0.668133 0.532819i
\(406\) −6.87196 + 31.8234i −0.341050 + 1.57937i
\(407\) 0.651190 + 0.519307i 0.0322783 + 0.0257411i
\(408\) −2.94264 + 0.138156i −0.145682 + 0.00683973i
\(409\) 25.5146 + 27.4982i 1.26162 + 1.35970i 0.904978 + 0.425459i \(0.139887\pi\)
0.356640 + 0.934242i \(0.383922\pi\)
\(410\) 6.64543 35.7422i 0.328194 1.76518i
\(411\) −0.606389 + 1.05030i −0.0299110 + 0.0518073i
\(412\) 29.4134 11.7598i 1.44909 0.579363i
\(413\) 5.22012 + 26.3531i 0.256865 + 1.29675i
\(414\) −7.53089 10.1365i −0.370123 0.498184i
\(415\) 4.78097 5.15266i 0.234689 0.252934i
\(416\) 15.2300 25.1138i 0.746710 1.23131i
\(417\) 1.29735 + 0.195544i 0.0635313 + 0.00957581i
\(418\) −16.8027 + 1.94720i −0.821847 + 0.0952406i
\(419\) 2.22293 9.73931i 0.108597 0.475796i −0.891158 0.453693i \(-0.850106\pi\)
0.999756 0.0221037i \(-0.00703641\pi\)
\(420\) −0.443895 + 4.54756i −0.0216599 + 0.221898i
\(421\) −6.58417 28.8472i −0.320893 1.40592i −0.835968 0.548779i \(-0.815093\pi\)
0.515074 0.857145i \(-0.327764\pi\)
\(422\) 9.88803 + 27.9734i 0.481342 + 1.36173i
\(423\) −14.8188 25.6669i −0.720514 1.24797i
\(424\) −1.59347 8.00400i −0.0773858 0.388709i
\(425\) −0.0163677 0.0240071i −0.000793952 0.00116451i
\(426\) 1.00387 + 5.21496i 0.0486375 + 0.252666i
\(427\) 4.18423 23.1987i 0.202489 1.12266i
\(428\) 6.33009 + 5.79917i 0.305976 + 0.280314i
\(429\) −9.50582 2.93216i −0.458945 0.141566i
\(430\) −12.6894 + 6.75814i −0.611939 + 0.325907i
\(431\) −0.396927 + 0.0297455i −0.0191193 + 0.00143279i −0.0842863 0.996442i \(-0.526861\pi\)
0.0651670 + 0.997874i \(0.479242\pi\)
\(432\) 5.71823 + 6.98672i 0.275118 + 0.336149i
\(433\) −3.88217 8.06141i −0.186565 0.387406i 0.786617 0.617441i \(-0.211830\pi\)
−0.973183 + 0.230034i \(0.926116\pi\)
\(434\) −0.0378553 0.436417i −0.00181711 0.0209487i
\(435\) 3.25996 6.76937i 0.156303 0.324567i
\(436\) 0.519971 0.0422850i 0.0249021 0.00202508i
\(437\) −2.22298 7.20674i −0.106340 0.344745i
\(438\) −3.92906 + 1.06616i −0.187738 + 0.0509430i
\(439\) −1.83712 + 0.276901i −0.0876809 + 0.0132158i −0.192736 0.981251i \(-0.561736\pi\)
0.105055 + 0.994466i \(0.466498\pi\)
\(440\) 16.4764 26.7845i 0.785482 1.27690i
\(441\) −11.5234 16.2957i −0.548732 0.775984i
\(442\) 15.0680 + 12.8841i 0.716712 + 0.612835i
\(443\) 3.70078 + 24.5531i 0.175829 + 1.16655i 0.886398 + 0.462924i \(0.153200\pi\)
−0.710569 + 0.703628i \(0.751562\pi\)
\(444\) 0.0553940 0.116918i 0.00262888 0.00554870i
\(445\) 4.00878 1.23654i 0.190034 0.0586178i
\(446\) −6.91509 + 6.95909i −0.327439 + 0.329523i
\(447\) −3.46274 1.66757i −0.163782 0.0788733i
\(448\) 21.0903 + 1.78885i 0.996422 + 0.0845154i
\(449\) −9.17598 + 4.41892i −0.433041 + 0.208542i −0.637689 0.770294i \(-0.720109\pi\)
0.204648 + 0.978836i \(0.434395\pi\)
\(450\) −0.0142016 + 0.0410025i −0.000669470 + 0.00193288i
\(451\) 4.26250 + 56.8791i 0.200713 + 2.67833i
\(452\) −8.61716 1.90938i −0.405317 0.0898098i
\(453\) 1.42312 4.61365i 0.0668641 0.216768i
\(454\) −0.751992 + 21.9614i −0.0352927 + 1.03070i
\(455\) 23.1352 20.2564i 1.08459 0.949635i
\(456\) 0.891357 + 2.47166i 0.0417416 + 0.115746i
\(457\) −4.27692 + 2.91596i −0.200066 + 0.136403i −0.659209 0.751960i \(-0.729109\pi\)
0.459143 + 0.888362i \(0.348156\pi\)
\(458\) −1.46210 36.0178i −0.0683197 1.68300i
\(459\) −5.27771 + 3.04709i −0.246342 + 0.142226i
\(460\) 13.0838 + 5.03946i 0.610034 + 0.234966i
\(461\) 5.80544 1.32505i 0.270386 0.0617139i −0.0851780 0.996366i \(-0.527146\pi\)
0.355564 + 0.934652i \(0.384289\pi\)
\(462\) −1.15149 7.07571i −0.0535722 0.329192i
\(463\) 24.4393 + 5.57811i 1.13579 + 0.259237i 0.748767 0.662833i \(-0.230646\pi\)
0.387024 + 0.922070i \(0.373503\pi\)
\(464\) −31.5471 14.7022i −1.46454 0.682533i
\(465\) −0.0150672 + 0.0999646i −0.000698727 + 0.00463575i
\(466\) 6.70464 + 7.74113i 0.310586 + 0.358601i
\(467\) −20.6998 19.2066i −0.957871 0.888774i 0.0359966 0.999352i \(-0.488539\pi\)
−0.993867 + 0.110578i \(0.964730\pi\)
\(468\) 2.02523 29.5381i 0.0936164 1.36540i
\(469\) −12.3945 + 9.31235i −0.572325 + 0.430004i
\(470\) 29.1418 + 15.2838i 1.34421 + 0.704991i
\(471\) −1.84861 1.06729i −0.0851794 0.0491783i
\(472\) −28.7088 0.800744i −1.32143 0.0368572i
\(473\) 16.5351 15.3423i 0.760286 0.705442i
\(474\) −0.822022 + 7.50966i −0.0377567 + 0.344930i
\(475\) −0.0161579 + 0.0202614i −0.000741377 + 0.000929657i
\(476\) −3.49178 + 13.8538i −0.160045 + 0.634986i
\(477\) −5.12931 6.43195i −0.234855 0.294499i
\(478\) 9.80143 6.20210i 0.448307 0.283677i
\(479\) −8.93940 + 22.7772i −0.408451 + 1.04072i 0.567624 + 0.823288i \(0.307863\pi\)
−0.976076 + 0.217430i \(0.930233\pi\)
\(480\) −4.63555 1.53998i −0.211583 0.0702903i
\(481\) −0.810502 + 0.318098i −0.0369557 + 0.0145040i
\(482\) −1.63271 + 6.17158i −0.0743678 + 0.281108i
\(483\) 3.00778 1.08143i 0.136859 0.0492068i
\(484\) −7.89209 + 26.1739i −0.358732 + 1.18972i
\(485\) −0.262076 + 3.49716i −0.0119003 + 0.158798i
\(486\) 12.6361 + 5.46541i 0.573183 + 0.247916i
\(487\) −14.3263 + 21.0129i −0.649188 + 0.952183i 0.350689 + 0.936492i \(0.385947\pi\)
−0.999877 + 0.0156914i \(0.995005\pi\)
\(488\) 23.1927 + 9.85728i 1.04989 + 0.446218i
\(489\) 0.0814002i 0.00368105i
\(490\) 20.4863 + 8.44786i 0.925476 + 0.381635i
\(491\) 14.8458i 0.669983i −0.942221 0.334992i \(-0.891267\pi\)
0.942221 0.334992i \(-0.108733\pi\)
\(492\) 8.44958 2.66517i 0.380936 0.120155i
\(493\) 13.2342 19.4110i 0.596038 0.874228i
\(494\) 7.01966 16.2295i 0.315829 0.730199i
\(495\) 2.36892 31.6110i 0.106475 1.42081i
\(496\) 0.463919 + 0.0639163i 0.0208306 + 0.00286992i
\(497\) 25.6178 + 2.66475i 1.14911 + 0.119530i
\(498\) 1.65607 + 0.438117i 0.0742101 + 0.0196325i
\(499\) 33.9503 13.3245i 1.51982 0.596487i 0.548903 0.835886i \(-0.315046\pi\)
0.970921 + 0.239399i \(0.0769503\pi\)
\(500\) 5.10839 + 21.7446i 0.228454 + 0.972446i
\(501\) −1.48953 + 3.79526i −0.0665473 + 0.169560i
\(502\) −19.9368 31.5069i −0.889821 1.40622i
\(503\) −19.0064 23.8332i −0.847453 1.06267i −0.997261 0.0739570i \(-0.976437\pi\)
0.149809 0.988715i \(-0.452134\pi\)
\(504\) 19.7174 8.15263i 0.878284 0.363147i
\(505\) 6.57053 8.23919i 0.292385 0.366639i
\(506\) −21.8672 2.39363i −0.972115 0.106410i
\(507\) 3.94697 3.66225i 0.175291 0.162646i
\(508\) 15.9283 + 19.7156i 0.706705 + 0.874739i
\(509\) −8.99626 5.19399i −0.398752 0.230220i 0.287193 0.957873i \(-0.407278\pi\)
−0.685945 + 0.727653i \(0.740611\pi\)
\(510\) 1.53139 2.91992i 0.0678113 0.129296i
\(511\) −0.569486 + 19.7362i −0.0251926 + 0.873077i
\(512\) −6.86073 + 21.5622i −0.303204 + 0.952926i
\(513\) 3.98449 + 3.69706i 0.175919 + 0.163229i
\(514\) −13.5992 + 11.7783i −0.599835 + 0.519520i
\(515\) −5.28418 + 35.0582i −0.232849 + 1.54485i
\(516\) −2.90741 1.95534i −0.127991 0.0860789i
\(517\) −50.3342 11.4884i −2.21369 0.505261i
\(518\) −0.464930 0.421357i −0.0204279 0.0185134i
\(519\) 7.26167 1.65743i 0.318752 0.0727531i
\(520\) 15.6364 + 28.9161i 0.685702 + 1.26806i
\(521\) 24.5873 14.1955i 1.07719 0.621915i 0.147052 0.989129i \(-0.453022\pi\)
0.930137 + 0.367214i \(0.119688\pi\)
\(522\) −35.0561 + 1.42307i −1.53437 + 0.0622859i
\(523\) −12.5826 + 8.57868i −0.550199 + 0.375120i −0.806278 0.591536i \(-0.798522\pi\)
0.256079 + 0.966656i \(0.417569\pi\)
\(524\) 0.0833868 + 0.0474407i 0.00364277 + 0.00207246i
\(525\) −0.00889248 0.00644620i −0.000388100 0.000281335i
\(526\) 10.7822 + 0.369199i 0.470126 + 0.0160979i
\(527\) −0.0931729 + 0.302059i −0.00405868 + 0.0131579i
\(528\) 7.64899 + 0.475712i 0.332879 + 0.0207027i
\(529\) 0.985843 + 13.1552i 0.0428627 + 0.571963i
\(530\) 8.63112 + 2.98947i 0.374912 + 0.129854i
\(531\) −26.0841 + 12.5614i −1.13195 + 0.545120i
\(532\) 12.7254 0.666098i 0.551715 0.0288790i
\(533\) −53.7213 25.8708i −2.32693 1.12059i
\(534\) 0.725231 + 0.720645i 0.0313838 + 0.0311854i
\(535\) −9.18165 + 2.83216i −0.396957 + 0.122445i
\(536\) −6.77182 15.1268i −0.292498 0.653379i
\(537\) 0.993016 + 6.58823i 0.0428518 + 0.284303i
\(538\) 15.0485 17.5993i 0.648788 0.758760i
\(539\) −34.4628 4.59301i −1.48442 0.197835i
\(540\) −9.98232 + 1.56942i −0.429571 + 0.0675369i
\(541\) −28.4631 + 4.29012i −1.22372 + 0.184447i −0.728945 0.684572i \(-0.759989\pi\)
−0.494779 + 0.869019i \(0.664751\pi\)
\(542\) 4.46773 + 16.4647i 0.191906 + 0.707221i
\(543\) −0.833028 2.70061i −0.0357487 0.115894i
\(544\) −13.6150 6.92178i −0.583738 0.296769i
\(545\) −0.253341 + 0.526068i −0.0108519 + 0.0225343i
\(546\) 7.00760 + 2.65589i 0.299898 + 0.113662i
\(547\) −9.61599 19.9678i −0.411150 0.853762i −0.998996 0.0447895i \(-0.985738\pi\)
0.587846 0.808973i \(-0.299976\pi\)
\(548\) −5.42541 + 3.17842i −0.231762 + 0.135775i
\(549\) 25.3324 1.89840i 1.08116 0.0810218i
\(550\) 0.0355323 + 0.0667174i 0.00151510 + 0.00284484i
\(551\) −20.0230 6.17628i −0.853008 0.263118i
\(552\) 0.414870 + 3.39169i 0.0176581 + 0.144360i
\(553\) 33.7052 + 14.3635i 1.43329 + 0.610800i
\(554\) −5.93673 + 1.14281i −0.252227 + 0.0485531i
\(555\) 0.0815707 + 0.119642i 0.00346248 + 0.00507853i
\(556\) 5.34506 + 4.20735i 0.226681 + 0.178432i
\(557\) −6.06410 10.5033i −0.256944 0.445040i 0.708478 0.705733i \(-0.249382\pi\)
−0.965422 + 0.260693i \(0.916049\pi\)
\(558\) 0.445083 0.157328i 0.0188419 0.00666021i
\(559\) 5.24701 + 22.9887i 0.221925 + 0.972316i
\(560\) −13.6595 + 19.3552i −0.577218 + 0.817907i
\(561\) −1.15111 + 5.04333i −0.0485998 + 0.212930i
\(562\) 0.498735 + 4.30366i 0.0210379 + 0.181539i
\(563\) −0.204030 0.0307526i −0.00859885 0.00129607i 0.144741 0.989470i \(-0.453765\pi\)
−0.153340 + 0.988173i \(0.549003\pi\)
\(564\) 0.0508719 + 8.01944i 0.00214209 + 0.337679i
\(565\) 6.71913 7.24150i 0.282676 0.304652i
\(566\) 0.392101 0.291309i 0.0164812 0.0122446i
\(567\) 13.1268 15.5202i 0.551275 0.651786i
\(568\) −8.84631 + 26.0746i −0.371183 + 1.09406i
\(569\) 19.4755 33.7325i 0.816454 1.41414i −0.0918251 0.995775i \(-0.529270\pi\)
0.908279 0.418365i \(-0.137397\pi\)
\(570\) −2.89121 0.537554i −0.121100 0.0225157i
\(571\) 1.63166 + 1.75852i 0.0682831 + 0.0735916i 0.766269 0.642520i \(-0.222111\pi\)
−0.697986 + 0.716111i \(0.745920\pi\)
\(572\) −35.3198 37.5847i −1.47679 1.57149i
\(573\) −2.45749 1.95978i −0.102663 0.0818711i
\(574\) −0.503789 42.9663i −0.0210278 1.79338i
\(575\) −0.0263495 + 0.0210131i −0.00109885 + 0.000876305i
\(576\) 3.82818 + 22.4860i 0.159507 + 0.936918i
\(577\) −13.1810 5.17315i −0.548731 0.215361i 0.0747462 0.997203i \(-0.476185\pi\)
−0.623477 + 0.781842i \(0.714281\pi\)
\(578\) −8.11929 + 11.0746i −0.337718 + 0.460642i
\(579\) −3.11764 7.94362i −0.129565 0.330126i
\(580\) 32.0462 22.1478i 1.33064 0.919636i
\(581\) 4.35977 7.07209i 0.180874 0.293400i
\(582\) −0.782277 + 0.344261i −0.0324264 + 0.0142701i
\(583\) −14.2910 1.07096i −0.591871 0.0443546i
\(584\) −20.4395 5.26881i −0.845791 0.218025i
\(585\) 27.3797 + 18.6671i 1.13201 + 0.771791i
\(586\) 6.58966 10.5616i 0.272216 0.436295i
\(587\) −43.9277 −1.81309 −0.906546 0.422108i \(-0.861290\pi\)
−0.906546 + 0.422108i \(0.861290\pi\)
\(588\) 0.529743 + 5.37447i 0.0218462 + 0.221639i
\(589\) 0.281936 0.0116170
\(590\) 17.0155 27.2716i 0.700516 1.12275i
\(591\) −2.78016 1.89548i −0.114361 0.0779698i
\(592\) 0.549385 0.384864i 0.0225796 0.0158178i
\(593\) 23.1037 + 1.73139i 0.948757 + 0.0710995i 0.540111 0.841594i \(-0.318382\pi\)
0.408646 + 0.912693i \(0.366001\pi\)
\(594\) 14.5111 6.38599i 0.595398 0.262020i
\(595\) −11.4033 11.2099i −0.467491 0.459562i
\(596\) −11.3293 16.3926i −0.464065 0.671467i
\(597\) −0.485819 1.23785i −0.0198833 0.0506617i
\(598\) 13.5966 18.5456i 0.556006 0.758384i
\(599\) 9.98255 + 3.91786i 0.407876 + 0.160079i 0.560404 0.828220i \(-0.310646\pi\)
−0.152528 + 0.988299i \(0.548741\pi\)
\(600\) 0.00882643 0.00774316i 0.000360338 0.000316113i
\(601\) −19.5056 + 15.5552i −0.795652 + 0.634511i −0.934565 0.355794i \(-0.884211\pi\)
0.138913 + 0.990305i \(0.455639\pi\)
\(602\) −13.1603 + 10.7498i −0.536373 + 0.438129i
\(603\) −13.0619 10.4165i −0.531923 0.424194i
\(604\) 18.2417 17.1425i 0.742245 0.697517i
\(605\) −20.8116 22.4296i −0.846111 0.911891i
\(606\) 2.52500 + 0.469466i 0.102571 + 0.0190707i
\(607\) −18.1735 + 31.4775i −0.737642 + 1.27763i 0.215913 + 0.976413i \(0.430727\pi\)
−0.953555 + 0.301220i \(0.902606\pi\)
\(608\) −2.32002 + 13.4236i −0.0940893 + 0.544399i
\(609\) 2.22498 8.59722i 0.0901609 0.348377i
\(610\) −22.6408 + 16.8208i −0.916698 + 0.681056i
\(611\) 36.7095 39.5634i 1.48511 1.60056i
\(612\) −15.3961 + 0.0976664i −0.622351 + 0.00394793i
\(613\) 0.286758 + 0.0432218i 0.0115821 + 0.00174571i 0.154831 0.987941i \(-0.450517\pi\)
−0.143249 + 0.989687i \(0.545755\pi\)
\(614\) 5.02664 + 43.3757i 0.202859 + 1.75050i
\(615\) −2.20660 + 9.66774i −0.0889787 + 0.389841i
\(616\) 12.9517 34.8384i 0.521838 1.40368i
\(617\) 9.12140 + 39.9635i 0.367214 + 1.60887i 0.734397 + 0.678720i \(0.237465\pi\)
−0.367183 + 0.930149i \(0.619678\pi\)
\(618\) −8.14652 + 2.87962i −0.327701 + 0.115835i
\(619\) 2.36701 + 4.09978i 0.0951381 + 0.164784i 0.909666 0.415340i \(-0.136337\pi\)
−0.814528 + 0.580124i \(0.803004\pi\)
\(620\) −0.324190 + 0.411854i −0.0130198 + 0.0165404i
\(621\) 3.98195 + 5.84045i 0.159790 + 0.234369i
\(622\) −39.7569 + 7.65311i −1.59411 + 0.306862i
\(623\) 4.36386 2.35433i 0.174834 0.0943244i
\(624\) −4.42866 + 6.67609i −0.177288 + 0.267257i
\(625\) −23.9406 7.38471i −0.957625 0.295388i
\(626\) −7.16654 13.4563i −0.286433 0.537821i
\(627\) 4.60100 0.344797i 0.183746 0.0137699i
\(628\) −5.59428 9.54917i −0.223236 0.381053i
\(629\) 0.196452 + 0.407936i 0.00783304 + 0.0162655i
\(630\) −3.28210 + 23.6539i −0.130762 + 0.942392i
\(631\) −15.9695 + 33.1610i −0.635735 + 1.32012i 0.295376 + 0.955381i \(0.404555\pi\)
−0.931111 + 0.364737i \(0.881159\pi\)
\(632\) −22.9577 + 31.7342i −0.913209 + 1.26232i
\(633\) −2.38542 7.73335i −0.0948121 0.307373i
\(634\) −0.432022 1.59211i −0.0171578 0.0632308i
\(635\) −28.0513 + 4.22805i −1.11318 + 0.167785i
\(636\) 0.345736 + 2.19906i 0.0137093 + 0.0871985i
\(637\) 22.1712 28.7989i 0.878455 1.14105i
\(638\) −39.7194 + 46.4520i −1.57251 + 1.83905i
\(639\) 4.13682 + 27.4460i 0.163650 + 1.08575i
\(640\) −16.9415 18.8245i −0.669673 0.744103i
\(641\) 8.57532 2.64513i 0.338705 0.104477i −0.120737 0.992685i \(-0.538526\pi\)
0.459442 + 0.888208i \(0.348050\pi\)
\(642\) −1.66106 1.65056i −0.0655568 0.0651422i
\(643\) −20.1996 9.72762i −0.796595 0.383620i −0.00911381 0.999958i \(-0.502901\pi\)
−0.787481 + 0.616338i \(0.788615\pi\)
\(644\) 16.3269 + 2.83799i 0.643371 + 0.111832i
\(645\) 3.53319 1.70149i 0.139119 0.0669962i
\(646\) −8.68883 3.00945i −0.341857 0.118405i
\(647\) −0.668670 8.92279i −0.0262881 0.350791i −0.994802 0.101830i \(-0.967530\pi\)
0.968514 0.248961i \(-0.0800890\pi\)
\(648\) 13.0698 + 17.3608i 0.513431 + 0.681996i
\(649\) −14.8654 + 48.1923i −0.583517 + 1.89172i
\(650\) −0.0789723 0.00270413i −0.00309755 0.000106065i
\(651\) 0.00548885 + 0.119361i 0.000215125 + 0.00467813i
\(652\) 0.208695 0.366824i 0.00817312 0.0143659i
\(653\) 25.2057 17.1850i 0.986377 0.672500i 0.0412313 0.999150i \(-0.486872\pi\)
0.945146 + 0.326649i \(0.105920\pi\)
\(654\) −0.142182 + 0.00577173i −0.00555976 + 0.000225692i
\(655\) −0.0929909 + 0.0536883i −0.00363345 + 0.00209778i
\(656\) 44.9104 + 9.65274i 1.75346 + 0.376876i
\(657\) −20.7441 + 4.73470i −0.809303 + 0.184718i
\(658\) 37.2976 + 11.0276i 1.45401 + 0.429900i
\(659\) −20.6664 4.71697i −0.805049 0.183747i −0.199855 0.979825i \(-0.564047\pi\)
−0.605194 + 0.796078i \(0.706904\pi\)
\(660\) −4.78686 + 7.11763i −0.186328 + 0.277053i
\(661\) 5.12776 34.0205i 0.199447 1.32324i −0.635153 0.772386i \(-0.719063\pi\)
0.834600 0.550857i \(-0.185699\pi\)
\(662\) 4.71378 4.08263i 0.183206 0.158676i
\(663\) −3.96413 3.67818i −0.153954 0.142849i
\(664\) 6.33970 + 6.22018i 0.246028 + 0.241390i
\(665\) −6.55619 + 12.6660i −0.254238 + 0.491165i
\(666\) 0.314060 0.598820i 0.0121696 0.0232038i
\(667\) −23.5993 13.6251i −0.913769 0.527565i
\(668\) −16.4428 + 13.2842i −0.636190 + 0.513981i
\(669\) 1.96165 1.82014i 0.0758418 0.0703709i
\(670\) 18.4394 + 2.01842i 0.712377 + 0.0779783i
\(671\) 27.5912 34.5982i 1.06515 1.33565i
\(672\) −5.72821 0.720873i −0.220971 0.0278083i
\(673\) −23.7840 29.8242i −0.916805 1.14964i −0.988350 0.152200i \(-0.951364\pi\)
0.0715442 0.997437i \(-0.477207\pi\)
\(674\) −12.9656 20.4902i −0.499418 0.789251i
\(675\) 0.00887403 0.0226107i 0.000341562 0.000870285i
\(676\) 27.1760 6.38439i 1.04523 0.245554i
\(677\) −24.5992 + 9.65448i −0.945425 + 0.371052i −0.787441 0.616390i \(-0.788595\pi\)
−0.157984 + 0.987442i \(0.550499\pi\)
\(678\) 2.32742 + 0.615725i 0.0893840 + 0.0236468i
\(679\) 0.499309 + 4.11486i 0.0191617 + 0.157914i
\(680\) 14.3872 9.23220i 0.551726 0.354039i
\(681\) 0.447921 5.97710i 0.0171644 0.229043i
\(682\) 0.326458 0.754772i 0.0125007 0.0289017i
\(683\) 12.5734 18.4417i 0.481106 0.705654i −0.506564 0.862203i \(-0.669085\pi\)
0.987670 + 0.156549i \(0.0500369\pi\)
\(684\) 4.13082 + 13.0963i 0.157946 + 0.500748i
\(685\) 7.03762i 0.268894i
\(686\) 25.6923 + 5.08967i 0.980937 + 0.194325i
\(687\) 9.83257i 0.375136i
\(688\) −8.08891 16.2656i −0.308387 0.620121i
\(689\) 8.43920 12.3780i 0.321508 0.471566i
\(690\) −3.51013 1.51822i −0.133628 0.0577977i
\(691\) −1.40836 + 18.7932i −0.0535765 + 0.714929i 0.904144 + 0.427228i \(0.140510\pi\)
−0.957720 + 0.287701i \(0.907109\pi\)
\(692\) 36.9735 + 11.1485i 1.40552 + 0.423801i
\(693\) −4.51328 37.1944i −0.171445 1.41290i
\(694\) 8.36213 31.6086i 0.317422 1.19984i
\(695\) −7.08711 + 2.78149i −0.268830 + 0.105508i
\(696\) 8.43528 + 4.35600i 0.319739 + 0.165114i
\(697\) −11.3280 + 28.8634i −0.429080 + 1.09328i
\(698\) 32.1582 20.3489i 1.21721 0.770217i
\(699\) −1.74166 2.18397i −0.0658755 0.0826052i
\(700\) −0.0235465 0.0518479i −0.000889973 0.00195967i
\(701\) −6.52176 + 8.17802i −0.246323 + 0.308880i −0.889588 0.456764i \(-0.849008\pi\)
0.643264 + 0.765644i \(0.277580\pi\)
\(702\) −1.80338 + 16.4749i −0.0680642 + 0.621807i
\(703\) 0.296033 0.274678i 0.0111651 0.0103597i
\(704\) 33.2500 + 21.7543i 1.25316 + 0.819897i
\(705\) −7.77329 4.48791i −0.292759 0.169025i
\(706\) 28.4944 + 14.9443i 1.07240 + 0.562437i
\(707\) 5.72576 11.0617i 0.215339 0.416016i
\(708\) 7.81552 + 0.535859i 0.293725 + 0.0201388i
\(709\) −5.50248 5.10556i −0.206650 0.191743i 0.570057 0.821605i \(-0.306921\pi\)
−0.776707 + 0.629862i \(0.783112\pi\)
\(710\) −20.1758 23.2949i −0.757185 0.874241i
\(711\) −5.88465 + 39.0421i −0.220692 + 1.46419i
\(712\) 1.42060 + 5.10689i 0.0532394 + 0.191389i
\(713\) 0.357460 + 0.0815878i 0.0133870 + 0.00305549i
\(714\) 1.10493 3.73711i 0.0413510 0.139858i
\(715\) 56.2785 12.8452i 2.10470 0.480384i
\(716\) −12.4160 + 32.2353i −0.464008 + 1.20469i
\(717\) −2.73993 + 1.58190i −0.102324 + 0.0590770i
\(718\) 0.905666 + 22.3104i 0.0337992 + 0.832616i
\(719\) 31.9071 21.7539i 1.18993 0.811282i 0.204089 0.978952i \(-0.434577\pi\)
0.985843 + 0.167670i \(0.0536243\pi\)
\(720\) −23.8810 9.02466i −0.889991 0.336329i
\(721\) 1.92497 + 41.8607i 0.0716897 + 1.55897i
\(722\) 0.638870 18.6578i 0.0237763 0.694370i
\(723\) 0.513263 1.66396i 0.0190884 0.0618832i
\(724\) 3.16987 14.3058i 0.117807 0.531672i
\(725\) 0.00699755 + 0.0933758i 0.000259882 + 0.00346789i
\(726\) 2.44051 7.04619i 0.0905758 0.261509i
\(727\) 42.5423 20.4873i 1.57781 0.759831i 0.579333 0.815091i \(-0.303313\pi\)
0.998472 + 0.0552600i \(0.0175988\pi\)
\(728\) 24.7700 + 29.9348i 0.918039 + 1.10946i
\(729\) 17.3828 + 8.37111i 0.643807 + 0.310041i
\(730\) 16.6519 16.7579i 0.616315 0.620237i
\(731\) 11.7172 3.61428i 0.433377 0.133679i
\(732\) −6.21196 2.94312i −0.229601 0.108781i
\(733\) 0.134809 + 0.894400i 0.00497929 + 0.0330354i 0.991183 0.132504i \(-0.0423017\pi\)
−0.986203 + 0.165539i \(0.947064\pi\)
\(734\) −7.82030 6.68686i −0.288653 0.246816i
\(735\) −5.48993 2.52905i −0.202499 0.0932856i
\(736\) −6.82607 + 16.3481i −0.251612 + 0.602598i
\(737\) −28.7782 + 4.33762i −1.06006 + 0.159778i
\(738\) 44.6898 12.1266i 1.64505 0.446388i
\(739\) 7.07532 + 22.9376i 0.260270 + 0.843774i 0.987533 + 0.157415i \(0.0503159\pi\)
−0.727263 + 0.686359i \(0.759208\pi\)
\(740\) 0.0608524 + 0.748290i 0.00223698 + 0.0275077i
\(741\) −2.09271 + 4.34556i −0.0768777 + 0.159638i
\(742\) 10.6936 + 1.48380i 0.392576 + 0.0544720i
\(743\) 11.2574 + 23.3763i 0.412994 + 0.857592i 0.998885 + 0.0472019i \(0.0150304\pi\)
−0.585891 + 0.810390i \(0.699255\pi\)
\(744\) −0.125731 0.0225525i −0.00460951 0.000826815i
\(745\) 22.2402 1.66667i 0.814818 0.0610622i
\(746\) −13.4539 + 7.16530i −0.492584 + 0.262340i
\(747\) 8.55531 + 2.63896i 0.313023 + 0.0965547i
\(748\) −18.1175 + 19.7762i −0.662442 + 0.723089i
\(749\) −9.99492 + 5.39233i −0.365206 + 0.197032i
\(750\) −1.15168 5.98284i −0.0420535 0.218462i
\(751\) 12.0092 + 17.6142i 0.438221 + 0.642752i 0.980286 0.197584i \(-0.0633097\pi\)
−0.542065 + 0.840337i \(0.682357\pi\)
\(752\) −20.3311 + 36.2694i −0.741398 + 1.32261i
\(753\) 5.08504 + 8.80755i 0.185309 + 0.320965i
\(754\) −21.2929 60.2382i −0.775443 2.19375i
\(755\) 6.23443 + 27.3148i 0.226894 + 0.994088i
\(756\) −11.2132 + 4.11217i −0.407822 + 0.149558i
\(757\) −2.43155 + 10.6533i −0.0883762 + 0.387201i −0.999700 0.0244887i \(-0.992204\pi\)
0.911324 + 0.411690i \(0.135061\pi\)
\(758\) −43.2669 + 5.01403i −1.57152 + 0.182118i
\(759\) 5.93326 + 0.894295i 0.215364 + 0.0324609i
\(760\) −11.6509 9.83497i −0.422621 0.356752i
\(761\) 22.0839 23.8008i 0.800542 0.862779i −0.192407 0.981315i \(-0.561630\pi\)
0.992950 + 0.118536i \(0.0378200\pi\)
\(762\) −4.12302 5.54957i −0.149361 0.201040i
\(763\) −0.172910 + 0.668115i −0.00625977 + 0.0241874i
\(764\) −6.04999 15.1322i −0.218881 0.547462i
\(765\) 8.61612 14.9236i 0.311516 0.539562i
\(766\) 6.71833 36.1342i 0.242743 1.30558i