Properties

Label 196.2.p.a.103.5
Level $196$
Weight $2$
Character 196.103
Analytic conductor $1.565$
Analytic rank $0$
Dimension $312$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(3,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.p (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(312\)
Relative dimension: \(26\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 103.5
Character \(\chi\) \(=\) 196.103
Dual form 196.2.p.a.59.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20490 - 0.740415i) q^{2} +(1.89744 + 1.29365i) q^{3} +(0.903573 + 1.78425i) q^{4} +(0.459106 + 0.0344052i) q^{5} +(-1.32839 - 2.96362i) q^{6} +(-0.101996 - 2.64378i) q^{7} +(0.232371 - 2.81887i) q^{8} +(0.830721 + 2.11664i) q^{9} +O(q^{10})\) \(q+(-1.20490 - 0.740415i) q^{2} +(1.89744 + 1.29365i) q^{3} +(0.903573 + 1.78425i) q^{4} +(0.459106 + 0.0344052i) q^{5} +(-1.32839 - 2.96362i) q^{6} +(-0.101996 - 2.64378i) q^{7} +(0.232371 - 2.81887i) q^{8} +(0.830721 + 2.11664i) q^{9} +(-0.527703 - 0.381383i) q^{10} +(5.59412 + 2.19553i) q^{11} +(-0.593729 + 4.55442i) q^{12} +(-4.33422 + 3.45643i) q^{13} +(-1.83460 + 3.26102i) q^{14} +(0.826618 + 0.659206i) q^{15} +(-2.36711 + 3.22440i) q^{16} +(2.11293 + 2.27720i) q^{17} +(0.566257 - 3.16542i) q^{18} +(3.06297 - 5.30522i) q^{19} +(0.353448 + 0.850248i) q^{20} +(3.22661 - 5.14837i) q^{21} +(-5.11476 - 6.78737i) q^{22} +(-3.35196 + 3.61255i) q^{23} +(4.08755 - 5.04803i) q^{24} +(-4.73456 - 0.713620i) q^{25} +(7.78150 - 0.955531i) q^{26} +(0.371087 - 1.62584i) q^{27} +(4.62502 - 2.57084i) q^{28} +(0.395863 + 1.73439i) q^{29} +(-0.507907 - 1.40632i) q^{30} +(-1.92532 - 3.33475i) q^{31} +(5.23953 - 2.13244i) q^{32} +(7.77426 + 11.4027i) q^{33} +(-0.859803 - 4.30825i) q^{34} +(0.0441332 - 1.21729i) q^{35} +(-3.02601 + 3.39476i) q^{36} +(-2.78661 - 0.859554i) q^{37} +(-7.61863 + 4.12440i) q^{38} +(-12.6954 + 0.951386i) q^{39} +(0.203666 - 1.28616i) q^{40} +(-4.16086 - 8.64012i) q^{41} +(-7.69968 + 3.81425i) q^{42} +(-0.134323 + 0.278925i) q^{43} +(1.13731 + 11.9651i) q^{44} +(0.308565 + 1.00034i) q^{45} +(6.71356 - 1.87093i) q^{46} +(-3.46750 + 0.522642i) q^{47} +(-8.66272 + 3.05589i) q^{48} +(-6.97919 + 0.539309i) q^{49} +(5.17630 + 4.36538i) q^{50} +(1.06326 + 7.05426i) q^{51} +(-10.0834 - 4.61022i) q^{52} +(-0.191211 + 0.0589807i) q^{53} +(-1.65092 + 1.68421i) q^{54} +(2.49276 + 1.20045i) q^{55} +(-7.47617 - 0.326827i) q^{56} +(12.6749 - 6.10392i) q^{57} +(0.807192 - 2.38287i) q^{58} +(-0.0565834 - 0.755053i) q^{59} +(-0.429280 + 2.07053i) q^{60} +(0.954189 - 3.09340i) q^{61} +(-0.149279 + 5.44358i) q^{62} +(5.51122 - 2.41214i) q^{63} +(-7.89201 - 1.31005i) q^{64} +(-2.10879 + 1.43775i) q^{65} +(-0.924455 - 19.4954i) q^{66} +(-10.0103 + 5.77947i) q^{67} +(-2.15391 + 5.82762i) q^{68} +(-11.0335 + 2.51833i) q^{69} +(-0.954472 + 1.43403i) q^{70} +(10.3098 + 2.35315i) q^{71} +(6.15957 - 1.84985i) q^{72} +(-0.0295568 + 0.196097i) q^{73} +(2.72116 + 3.09892i) q^{74} +(-8.06037 - 7.47893i) q^{75} +(12.2335 + 0.671460i) q^{76} +(5.23394 - 15.0136i) q^{77} +(16.0011 + 8.25350i) q^{78} +(-3.05893 - 1.76607i) q^{79} +(-1.19769 + 1.39890i) q^{80} +(7.80788 - 7.24465i) q^{81} +(-1.38384 + 13.4913i) q^{82} +(3.10144 - 3.88908i) q^{83} +(12.1015 + 1.10516i) q^{84} +(0.891712 + 1.11817i) q^{85} +(0.368367 - 0.236623i) q^{86} +(-1.49257 + 3.80302i) q^{87} +(7.48882 - 15.2589i) q^{88} +(-8.95632 + 3.51510i) q^{89} +(0.368879 - 1.43378i) q^{90} +(9.58012 + 11.1062i) q^{91} +(-9.47444 - 2.71654i) q^{92} +(0.660832 - 8.81820i) q^{93} +(4.56497 + 1.93766i) q^{94} +(1.58875 - 2.33027i) q^{95} +(12.7003 + 2.73196i) q^{96} +4.04201i q^{97} +(8.80855 + 4.51768i) q^{98} +13.6646i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9} - 20 q^{10} + 9 q^{12} - 28 q^{13} - 51 q^{14} - 17 q^{16} - 22 q^{17} - 12 q^{18} - 14 q^{20} - 34 q^{21} - 18 q^{22} - 44 q^{24} - 48 q^{25} - 2 q^{26} - 36 q^{28} - 11 q^{30} - 13 q^{32} - 34 q^{33} - 98 q^{34} - 4 q^{36} - 58 q^{37} - 18 q^{38} + 30 q^{40} - 28 q^{41} - 26 q^{42} + 16 q^{44} - 28 q^{45} - 14 q^{46} - 24 q^{49} + 96 q^{50} - 14 q^{52} - 22 q^{53} - 17 q^{54} + 40 q^{56} + 34 q^{57} - 12 q^{58} + 98 q^{60} - 38 q^{61} - 4 q^{64} - 32 q^{65} - 176 q^{66} - 21 q^{68} + 28 q^{69} + 50 q^{70} - 120 q^{72} - 58 q^{73} - 14 q^{74} - 91 q^{76} - 18 q^{77} - 112 q^{78} + 66 q^{80} - 170 q^{81} + 114 q^{82} + 140 q^{84} - 24 q^{85} + 97 q^{86} + 127 q^{88} - 82 q^{89} + 266 q^{90} + 34 q^{92} + 226 q^{94} + 122 q^{96} + 183 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20490 0.740415i −0.851994 0.523552i
\(3\) 1.89744 + 1.29365i 1.09549 + 0.746891i 0.969488 0.245139i \(-0.0788336\pi\)
0.126000 + 0.992030i \(0.459786\pi\)
\(4\) 0.903573 + 1.78425i 0.451786 + 0.892126i
\(5\) 0.459106 + 0.0344052i 0.205318 + 0.0153865i 0.176992 0.984212i \(-0.443363\pi\)
0.0283261 + 0.999599i \(0.490982\pi\)
\(6\) −1.32839 2.96362i −0.542313 1.20989i
\(7\) −0.101996 2.64378i −0.0385507 0.999257i
\(8\) 0.232371 2.81887i 0.0821556 0.996620i
\(9\) 0.830721 + 2.11664i 0.276907 + 0.705548i
\(10\) −0.527703 0.381383i −0.166874 0.120604i
\(11\) 5.59412 + 2.19553i 1.68669 + 0.661978i 0.998008 0.0630850i \(-0.0200939\pi\)
0.688683 + 0.725063i \(0.258189\pi\)
\(12\) −0.593729 + 4.55442i −0.171395 + 1.31475i
\(13\) −4.33422 + 3.45643i −1.20210 + 0.958641i −0.999786 0.0206804i \(-0.993417\pi\)
−0.202311 + 0.979321i \(0.564845\pi\)
\(14\) −1.83460 + 3.26102i −0.490318 + 0.871544i
\(15\) 0.826618 + 0.659206i 0.213432 + 0.170206i
\(16\) −2.36711 + 3.22440i −0.591778 + 0.806101i
\(17\) 2.11293 + 2.27720i 0.512461 + 0.552302i 0.935278 0.353913i \(-0.115149\pi\)
−0.422817 + 0.906215i \(0.638959\pi\)
\(18\) 0.566257 3.16542i 0.133468 0.746098i
\(19\) 3.06297 5.30522i 0.702693 1.21710i −0.264824 0.964297i \(-0.585314\pi\)
0.967518 0.252804i \(-0.0813527\pi\)
\(20\) 0.353448 + 0.850248i 0.0790333 + 0.190121i
\(21\) 3.22661 5.14837i 0.704104 1.12347i
\(22\) −5.11476 6.78737i −1.09047 1.44707i
\(23\) −3.35196 + 3.61255i −0.698932 + 0.753269i −0.978363 0.206897i \(-0.933664\pi\)
0.279431 + 0.960166i \(0.409854\pi\)
\(24\) 4.08755 5.04803i 0.834367 1.03042i
\(25\) −4.73456 0.713620i −0.946912 0.142724i
\(26\) 7.78150 0.955531i 1.52608 0.187395i
\(27\) 0.371087 1.62584i 0.0714157 0.312892i
\(28\) 4.62502 2.57084i 0.874046 0.485843i
\(29\) 0.395863 + 1.73439i 0.0735100 + 0.322068i 0.998291 0.0584303i \(-0.0186095\pi\)
−0.924782 + 0.380499i \(0.875752\pi\)
\(30\) −0.507907 1.40632i −0.0927307 0.256757i
\(31\) −1.92532 3.33475i −0.345798 0.598939i 0.639701 0.768624i \(-0.279058\pi\)
−0.985498 + 0.169685i \(0.945725\pi\)
\(32\) 5.23953 2.13244i 0.926227 0.376966i
\(33\) 7.77426 + 11.4027i 1.35333 + 1.98496i
\(34\) −0.859803 4.30825i −0.147455 0.738858i
\(35\) 0.0441332 1.21729i 0.00745987 0.205759i
\(36\) −3.02601 + 3.39476i −0.504335 + 0.565793i
\(37\) −2.78661 0.859554i −0.458115 0.141310i 0.0571041 0.998368i \(-0.481813\pi\)
−0.515219 + 0.857058i \(0.672290\pi\)
\(38\) −7.61863 + 4.12440i −1.23591 + 0.669065i
\(39\) −12.6954 + 0.951386i −2.03288 + 0.152344i
\(40\) 0.203666 1.28616i 0.0322025 0.203360i
\(41\) −4.16086 8.64012i −0.649818 1.34936i −0.922028 0.387123i \(-0.873469\pi\)
0.272210 0.962238i \(-0.412245\pi\)
\(42\) −7.69968 + 3.81425i −1.18809 + 0.588552i
\(43\) −0.134323 + 0.278925i −0.0204841 + 0.0425357i −0.910960 0.412495i \(-0.864657\pi\)
0.890476 + 0.455031i \(0.150372\pi\)
\(44\) 1.13731 + 11.9651i 0.171456 + 1.80381i
\(45\) 0.308565 + 1.00034i 0.0459982 + 0.149122i
\(46\) 6.71356 1.87093i 0.989861 0.275853i
\(47\) −3.46750 + 0.522642i −0.505787 + 0.0762351i −0.396979 0.917828i \(-0.629941\pi\)
−0.108808 + 0.994063i \(0.534703\pi\)
\(48\) −8.66272 + 3.05589i −1.25036 + 0.441080i
\(49\) −6.97919 + 0.539309i −0.997028 + 0.0770441i
\(50\) 5.17630 + 4.36538i 0.732040 + 0.617358i
\(51\) 1.06326 + 7.05426i 0.148886 + 0.987793i
\(52\) −10.0834 4.61022i −1.39832 0.639322i
\(53\) −0.191211 + 0.0589807i −0.0262648 + 0.00810162i −0.307860 0.951432i \(-0.599613\pi\)
0.281595 + 0.959533i \(0.409137\pi\)
\(54\) −1.65092 + 1.68421i −0.224661 + 0.229193i
\(55\) 2.49276 + 1.20045i 0.336123 + 0.161868i
\(56\) −7.47617 0.326827i −0.999046 0.0436741i
\(57\) 12.6749 6.10392i 1.67883 0.808484i
\(58\) 0.807192 2.38287i 0.105990 0.312886i
\(59\) −0.0565834 0.755053i −0.00736653 0.0982995i 0.992309 0.123789i \(-0.0395046\pi\)
−0.999675 + 0.0254895i \(0.991886\pi\)
\(60\) −0.429280 + 2.07053i −0.0554198 + 0.267305i
\(61\) 0.954189 3.09340i 0.122171 0.396070i −0.873741 0.486391i \(-0.838313\pi\)
0.995913 + 0.0903211i \(0.0287893\pi\)
\(62\) −0.149279 + 5.44358i −0.0189585 + 0.691336i
\(63\) 5.51122 2.41214i 0.694348 0.303901i
\(64\) −7.89201 1.31005i −0.986501 0.163756i
\(65\) −2.10879 + 1.43775i −0.261563 + 0.178330i
\(66\) −0.924455 19.4954i −0.113793 2.39971i
\(67\) −10.0103 + 5.77947i −1.22296 + 0.706075i −0.965547 0.260227i \(-0.916203\pi\)
−0.257411 + 0.966302i \(0.582869\pi\)
\(68\) −2.15391 + 5.82762i −0.261200 + 0.706703i
\(69\) −11.0335 + 2.51833i −1.32828 + 0.303172i
\(70\) −0.954472 + 1.43403i −0.114081 + 0.171400i
\(71\) 10.3098 + 2.35315i 1.22355 + 0.279267i 0.785032 0.619456i \(-0.212647\pi\)
0.438517 + 0.898723i \(0.355504\pi\)
\(72\) 6.15957 1.84985i 0.725912 0.218006i
\(73\) −0.0295568 + 0.196097i −0.00345936 + 0.0229514i −0.990494 0.137557i \(-0.956075\pi\)
0.987035 + 0.160508i \(0.0513132\pi\)
\(74\) 2.72116 + 3.09892i 0.316328 + 0.360242i
\(75\) −8.06037 7.47893i −0.930732 0.863593i
\(76\) 12.2335 + 0.671460i 1.40327 + 0.0770218i
\(77\) 5.23394 15.0136i 0.596462 1.71096i
\(78\) 16.0011 + 8.25350i 1.81176 + 0.934525i
\(79\) −3.05893 1.76607i −0.344157 0.198699i 0.317952 0.948107i \(-0.397005\pi\)
−0.662109 + 0.749408i \(0.730338\pi\)
\(80\) −1.19769 + 1.39890i −0.133906 + 0.156402i
\(81\) 7.80788 7.24465i 0.867542 0.804961i
\(82\) −1.38384 + 13.4913i −0.152820 + 1.48986i
\(83\) 3.10144 3.88908i 0.340427 0.426882i −0.581919 0.813247i \(-0.697698\pi\)
0.922346 + 0.386365i \(0.126269\pi\)
\(84\) 12.1015 + 1.10516i 1.32038 + 0.120583i
\(85\) 0.891712 + 1.11817i 0.0967197 + 0.121283i
\(86\) 0.368367 0.236623i 0.0397220 0.0255157i
\(87\) −1.49257 + 3.80302i −0.160021 + 0.407726i
\(88\) 7.48882 15.2589i 0.798311 1.62660i
\(89\) −8.95632 + 3.51510i −0.949368 + 0.372600i −0.788955 0.614450i \(-0.789378\pi\)
−0.160413 + 0.987050i \(0.551283\pi\)
\(90\) 0.368879 1.43378i 0.0388832 0.151134i
\(91\) 9.58012 + 11.1062i 1.00427 + 1.16425i
\(92\) −9.47444 2.71654i −0.987779 0.283219i
\(93\) 0.660832 8.81820i 0.0685251 0.914404i
\(94\) 4.56497 + 1.93766i 0.470840 + 0.199854i
\(95\) 1.58875 2.33027i 0.163003 0.239081i
\(96\) 12.7003 + 2.73196i 1.29622 + 0.278829i
\(97\) 4.04201i 0.410404i 0.978720 + 0.205202i \(0.0657851\pi\)
−0.978720 + 0.205202i \(0.934215\pi\)
\(98\) 8.80855 + 4.51768i 0.889798 + 0.456355i
\(99\) 13.6646i 1.37335i
\(100\) −3.00474 9.09246i −0.300474 0.909246i
\(101\) 1.52853 2.24194i 0.152094 0.223081i −0.742628 0.669704i \(-0.766421\pi\)
0.894722 + 0.446623i \(0.147373\pi\)
\(102\) 3.94195 9.28693i 0.390312 0.919543i
\(103\) 0.419882 5.60294i 0.0413722 0.552074i −0.937551 0.347847i \(-0.886913\pi\)
0.978924 0.204227i \(-0.0654681\pi\)
\(104\) 8.73606 + 13.0208i 0.856641 + 1.27679i
\(105\) 1.65849 2.25264i 0.161852 0.219835i
\(106\) 0.274060 + 0.0705093i 0.0266191 + 0.00684846i
\(107\) 1.91195 0.750387i 0.184836 0.0725426i −0.271118 0.962546i \(-0.587393\pi\)
0.455954 + 0.890003i \(0.349298\pi\)
\(108\) 3.23621 0.806949i 0.311404 0.0776487i
\(109\) 0.455150 1.15970i 0.0435955 0.111079i −0.907418 0.420230i \(-0.861949\pi\)
0.951013 + 0.309150i \(0.100045\pi\)
\(110\) −2.11469 3.29209i −0.201628 0.313889i
\(111\) −4.17546 5.23586i −0.396317 0.496965i
\(112\) 8.76606 + 5.92926i 0.828315 + 0.560263i
\(113\) −4.31606 + 5.41217i −0.406021 + 0.509134i −0.942237 0.334947i \(-0.891282\pi\)
0.536216 + 0.844081i \(0.319853\pi\)
\(114\) −19.7915 2.03008i −1.85364 0.190134i
\(115\) −1.66319 + 1.54322i −0.155094 + 0.143906i
\(116\) −2.73690 + 2.27347i −0.254115 + 0.211086i
\(117\) −10.9166 6.30268i −1.00924 0.582683i
\(118\) −0.490875 + 0.951659i −0.0451887 + 0.0876073i
\(119\) 5.80491 5.81840i 0.532136 0.533372i
\(120\) 2.05029 2.17694i 0.187165 0.198727i
\(121\) 18.4103 + 17.0822i 1.67366 + 1.55293i
\(122\) −3.44010 + 3.02075i −0.311452 + 0.273486i
\(123\) 3.28233 21.7768i 0.295958 1.96355i
\(124\) 4.21037 6.44845i 0.378103 0.579088i
\(125\) −4.39336 1.00276i −0.392954 0.0896892i
\(126\) −8.42645 1.17420i −0.750688 0.104606i
\(127\) 9.99984 2.28240i 0.887342 0.202530i 0.245527 0.969390i \(-0.421039\pi\)
0.641815 + 0.766860i \(0.278182\pi\)
\(128\) 8.53911 + 7.42183i 0.754758 + 0.656003i
\(129\) −0.615704 + 0.355477i −0.0542097 + 0.0312980i
\(130\) 3.60541 0.170966i 0.316215 0.0149947i
\(131\) −9.61994 + 6.55876i −0.840498 + 0.573042i −0.905260 0.424859i \(-0.860324\pi\)
0.0647615 + 0.997901i \(0.479371\pi\)
\(132\) −13.3208 + 24.1745i −1.15942 + 2.10412i
\(133\) −14.3383 7.55672i −1.24329 0.655251i
\(134\) 16.3407 + 0.448110i 1.41162 + 0.0387108i
\(135\) 0.226305 0.733663i 0.0194773 0.0631437i
\(136\) 6.91010 5.42692i 0.592536 0.465354i
\(137\) 1.53435 + 20.4745i 0.131089 + 1.74926i 0.544543 + 0.838733i \(0.316703\pi\)
−0.413454 + 0.910525i \(0.635678\pi\)
\(138\) 15.1589 + 5.13505i 1.29041 + 0.437124i
\(139\) 5.61736 2.70518i 0.476458 0.229450i −0.180212 0.983628i \(-0.557679\pi\)
0.656670 + 0.754178i \(0.271964\pi\)
\(140\) 2.21182 1.02116i 0.186933 0.0863039i
\(141\) −7.25550 3.49406i −0.611023 0.294253i
\(142\) −10.6800 10.4688i −0.896245 0.878525i
\(143\) −31.8349 + 9.81976i −2.66217 + 0.821169i
\(144\) −8.79132 2.33175i −0.732610 0.194313i
\(145\) 0.122071 + 0.809888i 0.0101374 + 0.0672576i
\(146\) 0.180806 0.214393i 0.0149636 0.0177433i
\(147\) −13.9403 8.00535i −1.14978 0.660270i
\(148\) −0.984239 5.74868i −0.0809040 0.472538i
\(149\) 10.1068 1.52335i 0.827980 0.124798i 0.278639 0.960396i \(-0.410117\pi\)
0.549341 + 0.835598i \(0.314879\pi\)
\(150\) 4.17444 + 14.9794i 0.340842 + 1.22306i
\(151\) 2.51353 + 8.14865i 0.204548 + 0.663128i 0.998480 + 0.0551212i \(0.0175545\pi\)
−0.793932 + 0.608007i \(0.791969\pi\)
\(152\) −14.2430 9.86688i −1.15526 0.800309i
\(153\) −3.06476 + 6.36404i −0.247771 + 0.514502i
\(154\) −17.4227 + 14.2146i −1.40396 + 1.14545i
\(155\) −0.769192 1.59724i −0.0617830 0.128294i
\(156\) −13.1687 21.7921i −1.05434 1.74476i
\(157\) −15.5026 + 1.16176i −1.23724 + 0.0927186i −0.677234 0.735768i \(-0.736822\pi\)
−0.560010 + 0.828486i \(0.689203\pi\)
\(158\) 2.37808 + 4.39282i 0.189190 + 0.349474i
\(159\) −0.439111 0.135448i −0.0348238 0.0107417i
\(160\) 2.47887 0.798749i 0.195972 0.0631466i
\(161\) 9.89269 + 8.49339i 0.779653 + 0.669373i
\(162\) −14.7718 + 2.94802i −1.16058 + 0.231618i
\(163\) −0.677667 0.993955i −0.0530790 0.0778526i 0.798782 0.601621i \(-0.205478\pi\)
−0.851861 + 0.523768i \(0.824526\pi\)
\(164\) 11.6565 15.2310i 0.910221 1.18934i
\(165\) 3.17689 + 5.50254i 0.247321 + 0.428372i
\(166\) −6.61645 + 2.38961i −0.513536 + 0.185469i
\(167\) −1.08347 4.74700i −0.0838416 0.367334i 0.915550 0.402204i \(-0.131756\pi\)
−0.999392 + 0.0348695i \(0.988898\pi\)
\(168\) −13.7628 10.2917i −1.06182 0.794023i
\(169\) 3.94583 17.2878i 0.303525 1.32983i
\(170\) −0.246514 2.00752i −0.0189068 0.153970i
\(171\) 13.7737 + 2.07606i 1.05330 + 0.158760i
\(172\) −0.619044 + 0.0123625i −0.0472017 + 0.000942632i
\(173\) 3.12885 3.37210i 0.237882 0.256376i −0.602816 0.797880i \(-0.705955\pi\)
0.840698 + 0.541504i \(0.182145\pi\)
\(174\) 4.61421 3.47713i 0.349802 0.263601i
\(175\) −1.40375 + 12.5899i −0.106114 + 0.951710i
\(176\) −20.3212 + 12.8406i −1.53177 + 0.967899i
\(177\) 0.869413 1.50587i 0.0653491 0.113188i
\(178\) 13.3941 + 2.39605i 1.00393 + 0.179591i
\(179\) 1.11511 + 1.20180i 0.0833473 + 0.0898270i 0.773348 0.633981i \(-0.218580\pi\)
−0.690001 + 0.723808i \(0.742390\pi\)
\(180\) −1.50606 + 1.45444i −0.112255 + 0.108408i
\(181\) 9.79535 + 7.81153i 0.728082 + 0.580626i 0.915818 0.401593i \(-0.131543\pi\)
−0.187736 + 0.982220i \(0.560115\pi\)
\(182\) −3.31990 20.4752i −0.246087 1.51772i
\(183\) 5.81231 4.63516i 0.429658 0.342641i
\(184\) 9.40440 + 10.2882i 0.693302 + 0.758454i
\(185\) −1.24977 0.490500i −0.0918852 0.0360623i
\(186\) −7.32536 + 10.1358i −0.537121 + 0.743190i
\(187\) 6.82034 + 17.3779i 0.498753 + 1.27080i
\(188\) −4.06566 5.71465i −0.296519 0.416784i
\(189\) −4.33621 0.815245i −0.315413 0.0593003i
\(190\) −3.63966 + 1.63141i −0.264049 + 0.118355i
\(191\) 19.5997 + 1.46879i 1.41818 + 0.106278i 0.761634 0.648007i \(-0.224397\pi\)
0.656547 + 0.754285i \(0.272016\pi\)
\(192\) −13.2799 12.6953i −0.958393 0.916201i
\(193\) 15.0199 + 10.2404i 1.08116 + 0.737119i 0.966598 0.256297i \(-0.0825026\pi\)
0.114558 + 0.993417i \(0.463455\pi\)
\(194\) 2.99276 4.87022i 0.214868 0.349661i
\(195\) −5.86124 −0.419732
\(196\) −7.26847 11.9653i −0.519177 0.854667i
\(197\) 18.7302 1.33447 0.667235 0.744847i \(-0.267478\pi\)
0.667235 + 0.744847i \(0.267478\pi\)
\(198\) 10.1175 16.4645i 0.719019 1.17008i
\(199\) 16.9839 + 11.5794i 1.20396 + 0.820844i 0.987832 0.155522i \(-0.0497059\pi\)
0.216125 + 0.976366i \(0.430658\pi\)
\(200\) −3.11177 + 13.1803i −0.220036 + 0.931985i
\(201\) −26.4707 1.98370i −1.86710 0.139920i
\(202\) −3.50169 + 1.56957i −0.246378 + 0.110435i
\(203\) 4.54498 1.22348i 0.318995 0.0858713i
\(204\) −11.6258 + 8.27115i −0.813972 + 0.579097i
\(205\) −1.61301 4.10988i −0.112658 0.287047i
\(206\) −4.65442 + 6.44010i −0.324289 + 0.448703i
\(207\) −10.4310 4.09388i −0.725007 0.284544i
\(208\) −0.885319 22.1570i −0.0613858 1.53631i
\(209\) 28.7824 22.9532i 1.99092 1.58771i
\(210\) −3.66620 + 1.48623i −0.252992 + 0.102560i
\(211\) −14.1520 11.2859i −0.974267 0.776952i 0.000540468 1.00000i \(-0.499828\pi\)
−0.974808 + 0.223048i \(0.928399\pi\)
\(212\) −0.278009 0.287875i −0.0190937 0.0197713i
\(213\) 16.5181 + 17.8023i 1.13180 + 1.21979i
\(214\) −2.85931 0.511497i −0.195459 0.0349652i
\(215\) −0.0712651 + 0.123435i −0.00486024 + 0.00841818i
\(216\) −4.49679 1.42384i −0.305968 0.0968801i
\(217\) −8.61999 + 5.43026i −0.585163 + 0.368630i
\(218\) −1.40707 + 1.06033i −0.0952990 + 0.0718145i
\(219\) −0.309764 + 0.333846i −0.0209319 + 0.0225592i
\(220\) 0.110484 + 5.53240i 0.00744881 + 0.372994i
\(221\) −17.0289 2.56669i −1.14549 0.172655i
\(222\) 1.15431 + 9.40026i 0.0774720 + 0.630904i
\(223\) 3.80609 16.6756i 0.254874 1.11668i −0.671776 0.740754i \(-0.734468\pi\)
0.926651 0.375924i \(-0.122675\pi\)
\(224\) −6.17212 13.6347i −0.412392 0.911006i
\(225\) −2.42262 10.6142i −0.161508 0.707613i
\(226\) 9.20767 3.32545i 0.612485 0.221206i
\(227\) −7.27865 12.6070i −0.483101 0.836755i 0.516711 0.856160i \(-0.327156\pi\)
−0.999812 + 0.0194049i \(0.993823\pi\)
\(228\) 22.3436 + 17.0999i 1.47974 + 1.13247i
\(229\) 4.28828 + 6.28975i 0.283378 + 0.415639i 0.941365 0.337391i \(-0.109544\pi\)
−0.657987 + 0.753029i \(0.728592\pi\)
\(230\) 3.14660 0.627972i 0.207481 0.0414073i
\(231\) 29.3535 21.7165i 1.93132 1.42884i
\(232\) 4.98100 0.712864i 0.327019 0.0468018i
\(233\) −5.65474 1.74426i −0.370454 0.114270i 0.103937 0.994584i \(-0.466856\pi\)
−0.474392 + 0.880314i \(0.657332\pi\)
\(234\) 8.48678 + 15.6769i 0.554798 + 1.02483i
\(235\) −1.60993 + 0.120648i −0.105020 + 0.00787018i
\(236\) 1.29608 0.783204i 0.0843675 0.0509822i
\(237\) −3.51945 7.30822i −0.228613 0.474720i
\(238\) −11.3024 + 2.71255i −0.732624 + 0.175829i
\(239\) −7.47961 + 15.5316i −0.483816 + 1.00465i 0.506031 + 0.862515i \(0.331112\pi\)
−0.989847 + 0.142139i \(0.954602\pi\)
\(240\) −4.08224 + 1.10493i −0.263508 + 0.0713232i
\(241\) 3.04935 + 9.88577i 0.196426 + 0.636798i 0.999180 + 0.0404876i \(0.0128911\pi\)
−0.802754 + 0.596311i \(0.796633\pi\)
\(242\) −9.53462 34.2136i −0.612908 2.19934i
\(243\) 19.2400 2.89996i 1.23425 0.186033i
\(244\) 6.38159 1.09260i 0.408539 0.0699466i
\(245\) −3.22274 + 0.00747910i −0.205893 + 0.000477822i
\(246\) −20.0788 + 23.8087i −1.28018 + 1.51798i
\(247\) 5.06151 + 33.5809i 0.322056 + 2.13670i
\(248\) −9.84761 + 4.65232i −0.625324 + 0.295423i
\(249\) 10.9159 3.36711i 0.691768 0.213382i
\(250\) 4.55111 + 4.46113i 0.287837 + 0.282147i
\(251\) 10.7403 + 5.17227i 0.677924 + 0.326471i 0.740969 0.671540i \(-0.234367\pi\)
−0.0630445 + 0.998011i \(0.520081\pi\)
\(252\) 9.28365 + 7.65387i 0.584815 + 0.482148i
\(253\) −26.6827 + 12.8497i −1.67753 + 0.807855i
\(254\) −13.7387 4.65396i −0.862045 0.292015i
\(255\) 0.245445 + 3.27523i 0.0153703 + 0.205103i
\(256\) −4.79355 15.2651i −0.299597 0.954066i
\(257\) −3.92974 + 12.7399i −0.245131 + 0.794694i 0.746477 + 0.665411i \(0.231744\pi\)
−0.991608 + 0.129283i \(0.958732\pi\)
\(258\) 1.00506 + 0.0275618i 0.0625724 + 0.00171592i
\(259\) −1.98825 + 7.45486i −0.123544 + 0.463222i
\(260\) −4.47074 2.46350i −0.277264 0.152780i
\(261\) −3.34223 + 2.27870i −0.206879 + 0.141048i
\(262\) 16.4473 0.779917i 1.01612 0.0481835i
\(263\) 18.8488 10.8824i 1.16227 0.671036i 0.210422 0.977611i \(-0.432516\pi\)
0.951847 + 0.306574i \(0.0991827\pi\)
\(264\) 33.9493 19.2649i 2.08944 1.18567i
\(265\) −0.0898151 + 0.0204997i −0.00551730 + 0.00125929i
\(266\) 11.6811 + 19.7214i 0.716213 + 1.20919i
\(267\) −21.5414 4.91669i −1.31831 0.300896i
\(268\) −19.3571 12.6388i −1.18242 0.772038i
\(269\) 2.07411 13.7608i 0.126461 0.839014i −0.832203 0.554472i \(-0.812920\pi\)
0.958664 0.284542i \(-0.0918415\pi\)
\(270\) −0.815890 + 0.716432i −0.0496535 + 0.0436007i
\(271\) −6.77814 6.28920i −0.411743 0.382042i 0.446927 0.894570i \(-0.352518\pi\)
−0.858670 + 0.512529i \(0.828709\pi\)
\(272\) −12.3442 + 1.42256i −0.748475 + 0.0862552i
\(273\) 3.81013 + 33.4668i 0.230600 + 2.02550i
\(274\) 13.3109 25.8058i 0.804141 1.55899i
\(275\) −24.9189 14.3870i −1.50267 0.867566i
\(276\) −14.4629 17.4111i −0.870567 1.04803i
\(277\) −23.1473 + 21.4776i −1.39079 + 1.29046i −0.480196 + 0.877161i \(0.659434\pi\)
−0.910594 + 0.413302i \(0.864375\pi\)
\(278\) −8.77131 0.899703i −0.526068 0.0539606i
\(279\) 5.45908 6.84547i 0.326826 0.409827i
\(280\) −3.42111 0.407267i −0.204450 0.0243389i
\(281\) 6.51396 + 8.16825i 0.388590 + 0.487277i 0.937195 0.348805i \(-0.113412\pi\)
−0.548605 + 0.836082i \(0.684841\pi\)
\(282\) 6.15510 + 9.58207i 0.366531 + 0.570604i
\(283\) −5.02488 + 12.8032i −0.298698 + 0.761070i 0.700191 + 0.713955i \(0.253098\pi\)
−0.998889 + 0.0471152i \(0.984997\pi\)
\(284\) 5.11705 + 20.5215i 0.303641 + 1.21773i
\(285\) 6.02913 2.36626i 0.357135 0.140165i
\(286\) 45.6286 + 11.7392i 2.69807 + 0.694152i
\(287\) −22.4182 + 11.8817i −1.32331 + 0.701354i
\(288\) 8.86621 + 9.31876i 0.522446 + 0.549113i
\(289\) 0.549257 7.32933i 0.0323092 0.431137i
\(290\) 0.452570 1.06622i 0.0265758 0.0626105i
\(291\) −5.22896 + 7.66947i −0.306527 + 0.449592i
\(292\) −0.376593 + 0.124451i −0.0220384 + 0.00728293i
\(293\) 4.24335i 0.247899i −0.992289 0.123949i \(-0.960444\pi\)
0.992289 0.123949i \(-0.0395561\pi\)
\(294\) 10.8694 + 19.9673i 0.633916 + 1.16451i
\(295\) 0.348596i 0.0202960i
\(296\) −3.07049 + 7.65533i −0.178469 + 0.444957i
\(297\) 5.64548 8.28040i 0.327584 0.480477i
\(298\) −13.3056 5.64772i −0.770772 0.327164i
\(299\) 2.04161 27.2434i 0.118069 1.57553i
\(300\) 6.06117 21.1395i 0.349942 1.22049i
\(301\) 0.751119 + 0.326673i 0.0432938 + 0.0188291i
\(302\) 3.00483 11.6794i 0.172909 0.672072i
\(303\) 5.80059 2.27656i 0.333235 0.130785i
\(304\) 9.85577 + 22.4343i 0.565267 + 1.28670i
\(305\) 0.544503 1.38737i 0.0311781 0.0794406i
\(306\) 8.40476 5.39885i 0.480468 0.308632i
\(307\) −17.4235 21.8484i −0.994412 1.24695i −0.968945 0.247277i \(-0.920464\pi\)
−0.0254669 0.999676i \(-0.508107\pi\)
\(308\) 31.5173 4.22720i 1.79586 0.240867i
\(309\) 8.04497 10.0881i 0.457662 0.573890i
\(310\) −0.255822 + 2.49404i −0.0145297 + 0.141652i
\(311\) 4.38763 4.07113i 0.248800 0.230853i −0.545907 0.837846i \(-0.683815\pi\)
0.794707 + 0.606993i \(0.207624\pi\)
\(312\) −0.268205 + 36.0076i −0.0151841 + 2.03853i
\(313\) −12.0092 6.93349i −0.678798 0.391904i 0.120604 0.992701i \(-0.461517\pi\)
−0.799402 + 0.600797i \(0.794850\pi\)
\(314\) 19.5393 + 10.0786i 1.10267 + 0.568766i
\(315\) 2.61322 0.917811i 0.147238 0.0517128i
\(316\) 0.387157 7.05368i 0.0217793 0.396801i
\(317\) 2.23450 + 2.07332i 0.125502 + 0.116449i 0.740427 0.672137i \(-0.234623\pi\)
−0.614925 + 0.788586i \(0.710814\pi\)
\(318\) 0.428798 + 0.488326i 0.0240458 + 0.0273840i
\(319\) −1.59340 + 10.5715i −0.0892133 + 0.591892i
\(320\) −3.57819 0.872975i −0.200027 0.0488008i
\(321\) 4.59856 + 1.04959i 0.256667 + 0.0585825i
\(322\) −5.63109 17.5584i −0.313808 0.978491i
\(323\) 18.5529 4.23458i 1.03231 0.235618i
\(324\) 19.9813 + 7.38516i 1.11007 + 0.410286i
\(325\) 22.9872 13.2717i 1.27510 0.736180i
\(326\) 0.0805829 + 1.69937i 0.00446308 + 0.0941195i
\(327\) 2.36388 1.61166i 0.130723 0.0891252i
\(328\) −25.3222 + 9.72120i −1.39819 + 0.536764i
\(329\) 1.73542 + 9.11402i 0.0956769 + 0.502472i
\(330\) 0.246319 8.98224i 0.0135594 0.494456i
\(331\) 3.11298 10.0920i 0.171105 0.554709i −0.828884 0.559421i \(-0.811024\pi\)
0.999989 + 0.00471200i \(0.00149988\pi\)
\(332\) 9.74147 + 2.01968i 0.534633 + 0.110844i
\(333\) −0.495523 6.61230i −0.0271545 0.362352i
\(334\) −2.20927 + 6.52189i −0.120886 + 0.356862i
\(335\) −4.79465 + 2.30898i −0.261960 + 0.126153i
\(336\) 8.96268 + 22.5907i 0.488954 + 1.23242i
\(337\) −26.2667 12.6494i −1.43084 0.689055i −0.451684 0.892178i \(-0.649177\pi\)
−0.979153 + 0.203123i \(0.934891\pi\)
\(338\) −17.5545 + 17.9086i −0.954838 + 0.974097i
\(339\) −15.1909 + 4.68578i −0.825059 + 0.254497i
\(340\) −1.18937 + 2.60139i −0.0645028 + 0.141080i
\(341\) −3.44892 22.8821i −0.186770 1.23914i
\(342\) −15.0588 12.6997i −0.814289 0.686722i
\(343\) 2.13766 + 18.3965i 0.115423 + 0.993316i
\(344\) 0.755041 + 0.443454i 0.0407091 + 0.0239094i
\(345\) −5.15220 + 0.776569i −0.277385 + 0.0418091i
\(346\) −6.26671 + 1.74640i −0.336900 + 0.0938870i
\(347\) 0.299949 + 0.972412i 0.0161021 + 0.0522018i 0.963267 0.268544i \(-0.0865426\pi\)
−0.947165 + 0.320746i \(0.896066\pi\)
\(348\) −8.13419 + 0.773172i −0.436038 + 0.0414464i
\(349\) −1.03525 + 2.14971i −0.0554155 + 0.115072i −0.926838 0.375462i \(-0.877484\pi\)
0.871422 + 0.490534i \(0.163198\pi\)
\(350\) 11.0132 14.1303i 0.588678 0.755295i
\(351\) 4.01122 + 8.32938i 0.214103 + 0.444589i
\(352\) 33.9924 0.425581i 1.81180 0.0226836i
\(353\) −16.7757 + 1.25716i −0.892878 + 0.0669120i −0.513262 0.858232i \(-0.671563\pi\)
−0.379616 + 0.925144i \(0.623944\pi\)
\(354\) −2.16252 + 1.17070i −0.114937 + 0.0622218i
\(355\) 4.65233 + 1.43505i 0.246920 + 0.0761647i
\(356\) −14.3645 12.8042i −0.761317 0.678621i
\(357\) 18.5415 3.53053i 0.981319 0.186855i
\(358\) −0.453765 2.27370i −0.0239822 0.120169i
\(359\) 6.38516 + 9.36531i 0.336996 + 0.494282i 0.956909 0.290389i \(-0.0937845\pi\)
−0.619913 + 0.784670i \(0.712832\pi\)
\(360\) 2.89154 0.637353i 0.152397 0.0335915i
\(361\) −9.26356 16.0450i −0.487556 0.844471i
\(362\) −6.01865 16.6647i −0.316333 0.875879i
\(363\) 12.8339 + 56.2291i 0.673606 + 2.95126i
\(364\) −11.1600 + 27.1286i −0.584940 + 1.42193i
\(365\) −0.0203164 + 0.0890122i −0.00106341 + 0.00465911i
\(366\) −10.4352 + 1.28139i −0.545457 + 0.0669795i
\(367\) 11.9730 + 1.80463i 0.624983 + 0.0942010i 0.453896 0.891055i \(-0.350034\pi\)
0.171087 + 0.985256i \(0.445272\pi\)
\(368\) −3.71386 19.3594i −0.193598 1.00918i
\(369\) 14.8315 15.9846i 0.772099 0.832125i
\(370\) 1.14268 + 1.51635i 0.0594051 + 0.0788315i
\(371\) 0.175435 + 0.499504i 0.00910812 + 0.0259329i
\(372\) 16.3310 6.78879i 0.846723 0.351982i
\(373\) 14.3488 24.8529i 0.742954 1.28683i −0.208190 0.978088i \(-0.566757\pi\)
0.951145 0.308746i \(-0.0999093\pi\)
\(374\) 4.64905 25.9886i 0.240396 1.34384i
\(375\) −7.03893 7.58616i −0.363489 0.391748i
\(376\) 0.667510 + 9.89586i 0.0344242 + 0.510340i
\(377\) −7.71056 6.14897i −0.397114 0.316688i
\(378\) 4.62109 + 4.19288i 0.237683 + 0.215659i
\(379\) 11.8209 9.42689i 0.607201 0.484227i −0.270961 0.962590i \(-0.587341\pi\)
0.878162 + 0.478364i \(0.158770\pi\)
\(380\) 5.59335 + 0.729166i 0.286933 + 0.0374054i
\(381\) 21.9267 + 8.60561i 1.12334 + 0.440879i
\(382\) −22.5281 16.2816i −1.15264 0.833040i
\(383\) −6.43889 16.4060i −0.329012 0.838309i −0.995671 0.0929462i \(-0.970372\pi\)
0.666659 0.745363i \(-0.267724\pi\)
\(384\) 6.60118 + 25.1291i 0.336865 + 1.28237i
\(385\) 2.91947 6.71275i 0.148790 0.342113i
\(386\) −10.5154 23.4596i −0.535217 1.19406i
\(387\) −0.701971 0.0526055i −0.0356832 0.00267409i
\(388\) −7.21196 + 3.65225i −0.366132 + 0.185415i
\(389\) −25.9523 17.6939i −1.31583 0.897119i −0.317146 0.948377i \(-0.602724\pi\)
−0.998685 + 0.0512581i \(0.983677\pi\)
\(390\) 7.06222 + 4.33975i 0.357609 + 0.219752i
\(391\) −15.3090 −0.774207
\(392\) −0.101523 + 19.7987i −0.00512768 + 0.999987i
\(393\) −26.7380 −1.34876
\(394\) −22.5680 13.8681i −1.13696 0.698664i
\(395\) −1.34361 0.916058i −0.0676044 0.0460919i
\(396\) −24.3812 + 12.3470i −1.22520 + 0.620460i
\(397\) 39.3005 + 2.94516i 1.97243 + 0.147813i 0.997280 0.0737127i \(-0.0234848\pi\)
0.975154 + 0.221526i \(0.0711038\pi\)
\(398\) −11.8903 26.5272i −0.596009 1.32969i
\(399\) −17.4302 32.8872i −0.872603 1.64642i
\(400\) 13.5082 13.5769i 0.675412 0.678845i
\(401\) 10.3504 + 26.3723i 0.516874 + 1.31697i 0.916405 + 0.400253i \(0.131078\pi\)
−0.399531 + 0.916720i \(0.630827\pi\)
\(402\) 30.4258 + 21.9894i 1.51750 + 1.09673i
\(403\) 19.8711 + 7.79883i 0.989850 + 0.388488i
\(404\) 5.38133 + 0.701526i 0.267731 + 0.0349022i
\(405\) 3.83389 3.05743i 0.190508 0.151925i
\(406\) −6.38213 1.89100i −0.316740 0.0938487i
\(407\) −13.7014 10.9265i −0.679155 0.541608i
\(408\) 20.1321 1.35798i 0.996686 0.0672299i
\(409\) −14.9138 16.0732i −0.737439 0.794770i 0.247276 0.968945i \(-0.420465\pi\)
−0.984715 + 0.174175i \(0.944274\pi\)
\(410\) −1.09950 + 6.14630i −0.0543004 + 0.303544i
\(411\) −23.5756 + 40.8342i −1.16290 + 2.01420i
\(412\) 10.3765 4.31349i 0.511211 0.212510i
\(413\) −1.99043 + 0.226606i −0.0979424 + 0.0111506i
\(414\) 9.53719 + 12.6560i 0.468727 + 0.622008i
\(415\) 1.55769 1.67879i 0.0764641 0.0824087i
\(416\) −15.3387 + 27.3525i −0.752040 + 1.34107i
\(417\) 14.1582 + 2.13400i 0.693328 + 0.104502i
\(418\) −51.6748 + 6.34542i −2.52750 + 0.310365i
\(419\) −6.44355 + 28.2310i −0.314788 + 1.37918i 0.531774 + 0.846886i \(0.321525\pi\)
−0.846562 + 0.532290i \(0.821332\pi\)
\(420\) 5.51783 + 0.923739i 0.269243 + 0.0450738i
\(421\) 6.51895 + 28.5614i 0.317714 + 1.39200i 0.841551 + 0.540178i \(0.181643\pi\)
−0.523836 + 0.851819i \(0.675500\pi\)
\(422\) 8.69558 + 24.0767i 0.423294 + 1.17204i
\(423\) −3.98677 6.90529i −0.193843 0.335747i
\(424\) 0.121827 + 0.552702i 0.00591643 + 0.0268416i
\(425\) −8.37875 12.2894i −0.406429 0.596122i
\(426\) −6.72161 33.6802i −0.325663 1.63181i
\(427\) −8.27562 2.20716i −0.400485 0.106812i
\(428\) 3.06647 + 2.73338i 0.148223 + 0.132123i
\(429\) −73.1082 22.5509i −3.52970 1.08877i
\(430\) 0.177260 0.0959610i 0.00854825 0.00462765i
\(431\) −32.8667 + 2.46302i −1.58313 + 0.118639i −0.837016 0.547178i \(-0.815702\pi\)
−0.746115 + 0.665817i \(0.768083\pi\)
\(432\) 4.36395 + 5.04507i 0.209961 + 0.242731i
\(433\) 9.65223 + 20.0431i 0.463857 + 0.963209i 0.993376 + 0.114910i \(0.0366581\pi\)
−0.529519 + 0.848298i \(0.677628\pi\)
\(434\) 14.4069 0.160560i 0.691552 0.00770711i
\(435\) −0.816092 + 1.69463i −0.0391286 + 0.0812515i
\(436\) 2.48046 0.235774i 0.118793 0.0112915i
\(437\) 8.89843 + 28.8480i 0.425670 + 1.37999i
\(438\) 0.620419 0.172898i 0.0296447 0.00826136i
\(439\) −19.1569 + 2.88744i −0.914309 + 0.137810i −0.589312 0.807905i \(-0.700601\pi\)
−0.324996 + 0.945715i \(0.605363\pi\)
\(440\) 3.96314 6.74779i 0.188935 0.321688i
\(441\) −6.93929 14.3244i −0.330442 0.682117i
\(442\) 18.6177 + 15.7011i 0.885555 + 0.746823i
\(443\) −3.11225 20.6484i −0.147867 0.981036i −0.932525 0.361106i \(-0.882399\pi\)
0.784657 0.619930i \(-0.212839\pi\)
\(444\) 5.56926 12.1810i 0.264305 0.578087i
\(445\) −4.23284 + 1.30566i −0.200656 + 0.0618941i
\(446\) −16.9328 + 17.2743i −0.801791 + 0.817962i
\(447\) 21.1477 + 10.1842i 1.00025 + 0.481696i
\(448\) −2.65853 + 20.9984i −0.125604 + 0.992081i
\(449\) 7.21061 3.47245i 0.340290 0.163875i −0.255932 0.966695i \(-0.582382\pi\)
0.596222 + 0.802820i \(0.296668\pi\)
\(450\) −4.93989 + 14.5828i −0.232868 + 0.687440i
\(451\) −4.30672 57.4692i −0.202796 2.70612i
\(452\) −13.5565 2.81065i −0.637646 0.132202i
\(453\) −5.77227 + 18.7132i −0.271205 + 0.879224i
\(454\) −0.564348 + 20.5794i −0.0264861 + 0.965838i
\(455\) 4.01618 + 5.42853i 0.188281 + 0.254493i
\(456\) −14.2608 37.1473i −0.667825 1.73958i
\(457\) 31.3813 21.3954i 1.46796 1.00083i 0.475304 0.879822i \(-0.342338\pi\)
0.992651 0.121013i \(-0.0386144\pi\)
\(458\) −0.509929 10.7536i −0.0238274 0.502484i
\(459\) 4.48644 2.59024i 0.209409 0.120902i
\(460\) −4.25631 1.57315i −0.198451 0.0733484i
\(461\) −10.1732 + 2.32198i −0.473815 + 0.108145i −0.452759 0.891633i \(-0.649560\pi\)
−0.0210566 + 0.999778i \(0.506703\pi\)
\(462\) −51.4472 + 4.43250i −2.39354 + 0.206219i
\(463\) 2.30682 + 0.526517i 0.107207 + 0.0244693i 0.275788 0.961219i \(-0.411061\pi\)
−0.168581 + 0.985688i \(0.553918\pi\)
\(464\) −6.52943 2.82908i −0.303121 0.131337i
\(465\) 0.606784 4.02575i 0.0281389 0.186690i
\(466\) 5.52193 + 6.28851i 0.255798 + 0.291310i
\(467\) 19.8384 + 18.4073i 0.918012 + 0.851790i 0.989334 0.145663i \(-0.0465315\pi\)
−0.0713226 + 0.997453i \(0.522722\pi\)
\(468\) 1.38167 25.1728i 0.0638675 1.16361i
\(469\) 16.3007 + 25.8757i 0.752696 + 1.19483i
\(470\) 2.02914 + 1.04665i 0.0935971 + 0.0482782i
\(471\) −30.9182 17.8506i −1.42464 0.822514i
\(472\) −2.14154 0.0159514i −0.0985724 0.000734223i
\(473\) −1.36381 + 1.26543i −0.0627081 + 0.0581846i
\(474\) −1.17052 + 11.4115i −0.0537638 + 0.524149i
\(475\) −18.2877 + 22.9321i −0.839098 + 1.05220i
\(476\) 15.6267 + 5.10008i 0.716247 + 0.233762i
\(477\) −0.283684 0.355728i −0.0129890 0.0162877i
\(478\) 20.5120 13.1760i 0.938197 0.602656i
\(479\) 3.74300 9.53701i 0.171022 0.435757i −0.819505 0.573071i \(-0.805752\pi\)
0.990528 + 0.137314i \(0.0438470\pi\)
\(480\) 5.73681 + 1.69122i 0.261848 + 0.0771931i
\(481\) 15.0488 5.90620i 0.686164 0.269300i
\(482\) 3.64539 14.1692i 0.166043 0.645387i
\(483\) 7.78330 + 28.9134i 0.354152 + 1.31561i
\(484\) −13.8440 + 48.2836i −0.629273 + 2.19471i
\(485\) −0.139066 + 1.85571i −0.00631467 + 0.0842634i
\(486\) −25.3295 10.7514i −1.14897 0.487694i
\(487\) −3.63640 + 5.33362i −0.164781 + 0.241689i −0.899744 0.436418i \(-0.856247\pi\)
0.734963 + 0.678107i \(0.237199\pi\)
\(488\) −8.49816 3.40855i −0.384694 0.154298i
\(489\) 2.76264i 0.124931i
\(490\) 3.88862 + 2.37715i 0.175670 + 0.107389i
\(491\) 18.9214i 0.853913i 0.904272 + 0.426956i \(0.140414\pi\)
−0.904272 + 0.426956i \(0.859586\pi\)
\(492\) 41.8212 13.8205i 1.88545 0.623074i
\(493\) −3.11312 + 4.56611i −0.140208 + 0.205647i
\(494\) 18.7652 44.2093i 0.844286 1.98907i
\(495\) −0.470135 + 6.27351i −0.0211310 + 0.281973i
\(496\) 15.3100 + 1.68573i 0.687441 + 0.0756914i
\(497\) 5.16966 27.4969i 0.231891 1.23341i
\(498\) −15.6457 4.02526i −0.701099 0.180376i
\(499\) 10.9223 4.28670i 0.488951 0.191899i −0.108041 0.994146i \(-0.534458\pi\)
0.596992 + 0.802247i \(0.296363\pi\)
\(500\) −2.18055 8.74493i −0.0975172 0.391085i
\(501\) 4.08515 10.4088i 0.182511 0.465031i
\(502\) −9.11142 14.1844i −0.406662 0.633080i
\(503\) −16.0235 20.0928i −0.714452 0.895894i 0.283558 0.958955i \(-0.408485\pi\)
−0.998010 + 0.0630611i \(0.979914\pi\)
\(504\) −5.51884 16.0959i −0.245829 0.716968i
\(505\) 0.778891 0.976698i 0.0346602 0.0434625i
\(506\) 41.6642 + 4.27364i 1.85220 + 0.189986i
\(507\) 29.8514 27.6981i 1.32575 1.23011i
\(508\) 13.1079 + 15.7799i 0.581571 + 0.700121i
\(509\) 25.7756 + 14.8815i 1.14248 + 0.659612i 0.947044 0.321104i \(-0.104054\pi\)
0.195437 + 0.980716i \(0.437387\pi\)
\(510\) 2.12929 4.12806i 0.0942866 0.182793i
\(511\) 0.521452 + 0.0581409i 0.0230677 + 0.00257200i
\(512\) −5.52672 + 21.9421i −0.244249 + 0.969713i
\(513\) −7.48879 6.94858i −0.330638 0.306787i
\(514\) 14.1678 12.4407i 0.624913 0.548735i
\(515\) 0.385541 2.55790i 0.0169890 0.112714i
\(516\) −1.19059 0.777372i −0.0524129 0.0342219i
\(517\) −20.5451 4.68928i −0.903572 0.206234i
\(518\) 7.91533 7.51023i 0.347780 0.329981i
\(519\) 10.2991 2.35071i 0.452082 0.103185i
\(520\) 3.56279 + 6.27847i 0.156239 + 0.275329i
\(521\) −22.4340 + 12.9523i −0.982852 + 0.567450i −0.903130 0.429367i \(-0.858737\pi\)
−0.0797224 + 0.996817i \(0.525403\pi\)
\(522\) 5.71424 0.270965i 0.250106 0.0118598i
\(523\) 28.9503 19.7380i 1.26591 0.863082i 0.270875 0.962615i \(-0.412687\pi\)
0.995034 + 0.0995326i \(0.0317347\pi\)
\(524\) −20.3948 11.2381i −0.890951 0.490938i
\(525\) −18.9506 + 22.0727i −0.827071 + 0.963332i
\(526\) −30.7685 0.843762i −1.34157 0.0367898i
\(527\) 3.52582 11.4304i 0.153587 0.497918i
\(528\) −55.1696 1.92424i −2.40095 0.0837419i
\(529\) −0.0961143 1.28256i −0.00417888 0.0557633i
\(530\) 0.123397 + 0.0418003i 0.00536000 + 0.00181569i
\(531\) 1.55117 0.747005i 0.0673152 0.0324173i
\(532\) 0.527437 32.4111i 0.0228673 1.40520i
\(533\) 47.8981 + 23.0665i 2.07470 + 0.999121i
\(534\) 22.3149 + 21.8737i 0.965659 + 0.946568i
\(535\) 0.903606 0.278726i 0.0390663 0.0120504i
\(536\) 13.9654 + 29.5608i 0.603216 + 1.27683i
\(537\) 0.561140 + 3.72292i 0.0242150 + 0.160656i
\(538\) −12.6878 + 15.0448i −0.547011 + 0.648625i
\(539\) −40.2265 12.3061i −1.73268 0.530060i
\(540\) 1.51352 0.259133i 0.0651317 0.0111513i
\(541\) −27.1615 + 4.09393i −1.16776 + 0.176012i −0.704167 0.710035i \(-0.748679\pi\)
−0.463596 + 0.886047i \(0.653441\pi\)
\(542\) 3.51038 + 12.5965i 0.150784 + 0.541066i
\(543\) 8.48069 + 27.4937i 0.363941 + 1.17987i
\(544\) 15.9268 + 7.42576i 0.682855 + 0.318377i
\(545\) 0.248862 0.516767i 0.0106601 0.0221359i
\(546\) 20.1884 43.1452i 0.863986 1.84644i
\(547\) −9.19796 19.0998i −0.393276 0.816647i −0.999768 0.0215568i \(-0.993138\pi\)
0.606491 0.795090i \(-0.292577\pi\)
\(548\) −35.1453 + 21.2379i −1.50133 + 0.907238i
\(549\) 7.34030 0.550079i 0.313276 0.0234768i
\(550\) 19.3725 + 35.7852i 0.826048 + 1.52589i
\(551\) 10.4138 + 3.21224i 0.443644 + 0.136846i
\(552\) 4.53497 + 31.6872i 0.193021 + 1.34870i
\(553\) −4.35712 + 8.26729i −0.185284 + 0.351561i
\(554\) 43.7926 8.73975i 1.86057 0.371316i
\(555\) −1.73683 2.54747i −0.0737245 0.108134i
\(556\) 9.90241 + 7.57846i 0.419956 + 0.321398i
\(557\) −8.93942 15.4835i −0.378776 0.656059i 0.612109 0.790774i \(-0.290321\pi\)
−0.990884 + 0.134715i \(0.956988\pi\)
\(558\) −11.6461 + 4.20613i −0.493020 + 0.178060i
\(559\) −0.381898 1.67320i −0.0161526 0.0707690i
\(560\) 3.82055 + 3.02376i 0.161448 + 0.127777i
\(561\) −9.53984 + 41.7968i −0.402772 + 1.76466i
\(562\) −1.80079 14.6650i −0.0759617 0.618604i
\(563\) 37.3263 + 5.62603i 1.57312 + 0.237109i 0.876882 0.480706i \(-0.159620\pi\)
0.696234 + 0.717815i \(0.254858\pi\)
\(564\) −0.321577 16.1028i −0.0135409 0.678049i
\(565\) −2.16773 + 2.33626i −0.0911973 + 0.0982873i
\(566\) 15.5341 11.7061i 0.652949 0.492043i
\(567\) −19.9497 19.9034i −0.837807 0.835865i
\(568\) 9.02890 28.5152i 0.378844 1.19647i
\(569\) −8.71952 + 15.1027i −0.365541 + 0.633136i −0.988863 0.148829i \(-0.952449\pi\)
0.623322 + 0.781966i \(0.285783\pi\)
\(570\) −9.01652 1.61295i −0.377661 0.0675590i
\(571\) 5.42913 + 5.85121i 0.227202 + 0.244865i 0.836356 0.548186i \(-0.184681\pi\)
−0.609154 + 0.793052i \(0.708491\pi\)
\(572\) −46.2860 47.9286i −1.93532 2.00399i
\(573\) 35.2891 + 28.1421i 1.47422 + 1.17565i
\(574\) 35.8091 + 2.28254i 1.49464 + 0.0952712i
\(575\) 18.4480 14.7118i 0.769336 0.613525i
\(576\) −3.78316 17.7928i −0.157632 0.741369i
\(577\) −30.8394 12.1036i −1.28386 0.503879i −0.377354 0.926069i \(-0.623166\pi\)
−0.906507 + 0.422190i \(0.861261\pi\)
\(578\) −6.08854 + 8.42444i −0.253250 + 0.350410i
\(579\) 15.2519 + 38.8611i 0.633845 + 1.61501i
\(580\) −1.33475 + 0.949598i −0.0554223 + 0.0394299i
\(581\) −10.5982 7.80286i −0.439688 0.323717i
\(582\) 11.9790 5.36936i 0.496544 0.222567i
\(583\) −1.19915 0.0898638i −0.0496637 0.00372178i
\(584\) 0.545902 + 0.128884i 0.0225896 + 0.00533325i
\(585\) −4.79501 3.26918i −0.198249 0.135164i
\(586\) −3.14184 + 5.11281i −0.129788 + 0.211208i
\(587\) 20.0265 0.826583 0.413292 0.910599i \(-0.364379\pi\)
0.413292 + 0.910599i \(0.364379\pi\)
\(588\) 1.68751 32.1064i 0.0695916 1.32405i
\(589\) −23.5888 −0.971959
\(590\) −0.258105 + 0.420023i −0.0106260 + 0.0172921i
\(591\) 35.5394 + 24.2304i 1.46190 + 0.996704i
\(592\) 9.36776 6.95048i 0.385013 0.285663i
\(593\) 11.7343 + 0.879368i 0.481872 + 0.0361113i 0.313452 0.949604i \(-0.398515\pi\)
0.168420 + 0.985715i \(0.446134\pi\)
\(594\) −12.9332 + 5.79706i −0.530654 + 0.237856i
\(595\) 2.86525 2.47154i 0.117464 0.101323i
\(596\) 11.8503 + 16.6566i 0.485405 + 0.682280i
\(597\) 17.2462 + 43.9426i 0.705840 + 1.79845i
\(598\) −22.6314 + 31.3140i −0.925465 + 1.28052i
\(599\) 12.5049 + 4.90783i 0.510938 + 0.200528i 0.606783 0.794868i \(-0.292460\pi\)
−0.0958444 + 0.995396i \(0.530555\pi\)
\(600\) −22.9551 + 20.9832i −0.937138 + 0.856636i
\(601\) −12.6546 + 10.0917i −0.516193 + 0.411650i −0.846633 0.532177i \(-0.821374\pi\)
0.330440 + 0.943827i \(0.392803\pi\)
\(602\) −0.663151 0.949748i −0.0270280 0.0387088i
\(603\) −20.5489 16.3872i −0.836816 0.667338i
\(604\) −12.2681 + 11.8477i −0.499182 + 0.482075i
\(605\) 7.86454 + 8.47596i 0.319739 + 0.344597i
\(606\) −8.67474 1.55181i −0.352387 0.0630379i
\(607\) 10.6147 18.3852i 0.430837 0.746231i −0.566109 0.824331i \(-0.691552\pi\)
0.996946 + 0.0780992i \(0.0248851\pi\)
\(608\) 4.73546 34.3285i 0.192048 1.39220i
\(609\) 10.2066 + 3.55815i 0.413592 + 0.144184i
\(610\) −1.68330 + 1.26849i −0.0681548 + 0.0513595i
\(611\) 13.2224 14.2504i 0.534923 0.576510i
\(612\) −14.1243 + 0.282067i −0.570941 + 0.0114019i
\(613\) 25.9946 + 3.91805i 1.04991 + 0.158249i 0.651260 0.758854i \(-0.274241\pi\)
0.398650 + 0.917103i \(0.369479\pi\)
\(614\) 4.81673 + 39.2257i 0.194388 + 1.58302i
\(615\) 2.25617 9.88494i 0.0909777 0.398599i
\(616\) −41.1051 18.2425i −1.65617 0.735011i
\(617\) 0.594655 + 2.60535i 0.0239399 + 0.104888i 0.985486 0.169755i \(-0.0542976\pi\)
−0.961546 + 0.274643i \(0.911440\pi\)
\(618\) −17.1627 + 6.19851i −0.690387 + 0.249341i
\(619\) −6.06911 10.5120i −0.243938 0.422513i 0.717895 0.696152i \(-0.245106\pi\)
−0.961832 + 0.273639i \(0.911773\pi\)
\(620\) 2.15487 2.81566i 0.0865415 0.113080i
\(621\) 4.62955 + 6.79031i 0.185778 + 0.272486i
\(622\) −8.30099 + 1.65664i −0.332839 + 0.0664252i
\(623\) 10.2067 + 23.3201i 0.408921 + 0.934298i
\(624\) 26.9837 43.1870i 1.08021 1.72886i
\(625\) 20.8941 + 6.44497i 0.835763 + 0.257799i
\(626\) 9.33619 + 17.2459i 0.373149 + 0.689286i
\(627\) 84.3064 6.31789i 3.36687 0.252312i
\(628\) −16.0806 26.6108i −0.641686 1.06189i
\(629\) −3.93053 8.16184i −0.156721 0.325434i
\(630\) −3.82823 0.828996i −0.152520 0.0330280i
\(631\) −3.94442 + 8.19068i −0.157025 + 0.326066i −0.964608 0.263688i \(-0.915061\pi\)
0.807583 + 0.589754i \(0.200775\pi\)
\(632\) −5.68913 + 8.21233i −0.226302 + 0.326669i
\(633\) −12.2527 39.7221i −0.486999 1.57881i
\(634\) −1.15724 4.15260i −0.0459599 0.164921i
\(635\) 4.66951 0.703815i 0.185304 0.0279300i
\(636\) −0.155096 0.905873i −0.00614995 0.0359202i
\(637\) 28.3853 26.4606i 1.12467 1.04841i
\(638\) 9.74720 11.5579i 0.385895 0.457580i
\(639\) 3.58380 + 23.7770i 0.141773 + 0.940603i
\(640\) 3.66500 + 3.70119i 0.144872 + 0.146303i
\(641\) 14.9372 4.60753i 0.589985 0.181986i 0.0146341 0.999893i \(-0.495342\pi\)
0.575351 + 0.817907i \(0.304865\pi\)
\(642\) −4.76368 4.66950i −0.188007 0.184290i
\(643\) 16.5381 + 7.96433i 0.652199 + 0.314082i 0.730566 0.682842i \(-0.239256\pi\)
−0.0783671 + 0.996925i \(0.524971\pi\)
\(644\) −6.21559 + 25.3255i −0.244928 + 0.997963i
\(645\) −0.294903 + 0.142018i −0.0116118 + 0.00559195i
\(646\) −25.4897 8.63458i −1.00288 0.339723i
\(647\) 3.52257 + 47.0055i 0.138487 + 1.84798i 0.444293 + 0.895882i \(0.353455\pi\)
−0.305806 + 0.952094i \(0.598926\pi\)
\(648\) −18.6074 23.6928i −0.730967 0.930741i
\(649\) 1.34121 4.34809i 0.0526470 0.170677i
\(650\) −37.5239 1.02902i −1.47181 0.0403613i
\(651\) −23.3808 0.847681i −0.916366 0.0332232i
\(652\) 1.16115 2.10724i 0.0454740 0.0825259i
\(653\) 4.26910 2.91063i 0.167063 0.113902i −0.476902 0.878956i \(-0.658240\pi\)
0.643965 + 0.765055i \(0.277288\pi\)
\(654\) −4.04153 + 0.191646i −0.158037 + 0.00749397i
\(655\) −4.64222 + 2.68019i −0.181387 + 0.104724i
\(656\) 37.7085 + 7.03585i 1.47227 + 0.274704i
\(657\) −0.439620 + 0.100340i −0.0171512 + 0.00391465i
\(658\) 4.65714 12.2664i 0.181554 0.478195i
\(659\) −16.2591 3.71103i −0.633364 0.144561i −0.106228 0.994342i \(-0.533877\pi\)
−0.527137 + 0.849781i \(0.676734\pi\)
\(660\) −6.94737 + 10.6403i −0.270426 + 0.414174i
\(661\) 2.61186 17.3286i 0.101590 0.674003i −0.878838 0.477121i \(-0.841680\pi\)
0.980427 0.196882i \(-0.0630815\pi\)
\(662\) −11.2231 + 9.85501i −0.436199 + 0.383026i
\(663\) −28.9909 26.8997i −1.12591 1.04470i
\(664\) −10.2421 9.64624i −0.397471 0.374347i
\(665\) −6.32279 3.96264i −0.245187 0.153665i
\(666\) −4.29879 + 8.33406i −0.166575 + 0.322938i
\(667\) −7.59249 4.38353i −0.293983 0.169731i
\(668\) 7.49085 6.22245i 0.289830 0.240754i
\(669\) 28.7942 26.7171i 1.11325 1.03294i
\(670\) 7.48668 + 0.767934i 0.289236 + 0.0296679i
\(671\) 12.1295 15.2099i 0.468255 0.587173i
\(672\) 5.92733 33.8556i 0.228652 1.30601i
\(673\) −6.06793 7.60895i −0.233902 0.293303i 0.651003 0.759075i \(-0.274348\pi\)
−0.884905 + 0.465771i \(0.845777\pi\)
\(674\) 22.2830 + 34.6895i 0.858308 + 1.33619i
\(675\) −2.91716 + 7.43281i −0.112282 + 0.286089i
\(676\) 34.4112 8.58044i 1.32351 0.330017i
\(677\) −26.8971 + 10.5563i −1.03374 + 0.405712i −0.820717 0.571335i \(-0.806426\pi\)
−0.213021 + 0.977048i \(0.568330\pi\)
\(678\) 21.7730 + 5.60169i 0.836187 + 0.215132i
\(679\) 10.6862 0.412267i 0.410099 0.0158214i
\(680\) 3.35918 2.25378i 0.128819 0.0864287i
\(681\) 2.49827 33.3371i 0.0957338 1.27748i
\(682\) −12.7866 + 30.1243i −0.489626 + 1.15352i
\(683\) 5.42755 7.96075i 0.207679 0.304610i −0.708240 0.705972i \(-0.750511\pi\)
0.915920 + 0.401362i \(0.131463\pi\)
\(684\) 8.74136 + 26.4517i 0.334234 + 1.01141i
\(685\) 9.45277i 0.361172i
\(686\) 11.0453 23.7487i 0.421713 0.906729i
\(687\) 17.4820i 0.666980i
\(688\) −0.581409 1.09336i −0.0221660 0.0416840i
\(689\) 0.624887 0.916541i 0.0238063 0.0349174i
\(690\) 6.78288 + 2.87908i 0.258220 + 0.109605i
\(691\) −0.839293 + 11.1996i −0.0319282 + 0.426052i 0.958220 + 0.286031i \(0.0923361\pi\)
−0.990149 + 0.140021i \(0.955283\pi\)
\(692\) 8.84382 + 2.53572i 0.336192 + 0.0963937i
\(693\) 36.1264 1.39373i 1.37233 0.0529435i
\(694\) 0.358579 1.39375i 0.0136115 0.0529059i
\(695\) 2.67203 1.04870i 0.101356 0.0397793i
\(696\) 10.3734 + 5.09107i 0.393201 + 0.192977i
\(697\) 10.8837 27.7311i 0.412248 1.05039i
\(698\) 2.83905 1.82368i 0.107460 0.0690273i
\(699\) −8.47308 10.6249i −0.320481 0.401871i
\(700\) −23.7320 + 8.87128i −0.896986 + 0.335303i
\(701\) −3.18350 + 3.99198i −0.120239 + 0.150775i −0.838308 0.545197i \(-0.816455\pi\)
0.718069 + 0.695972i \(0.245026\pi\)
\(702\) 1.33407 13.0060i 0.0503513 0.490881i
\(703\) −13.0954 + 12.1508i −0.493903 + 0.458275i
\(704\) −41.2726 24.6557i −1.55552 0.929247i
\(705\) −3.21082 1.85377i −0.120927 0.0698170i
\(706\) 21.1438 + 10.9062i 0.795758 + 0.410460i
\(707\) −6.08311 3.81243i −0.228779 0.143381i
\(708\) 3.47243 + 0.190592i 0.130502 + 0.00716287i
\(709\) 0.608331 + 0.564449i 0.0228464 + 0.0211983i 0.691513 0.722364i \(-0.256944\pi\)
−0.668667 + 0.743562i \(0.733135\pi\)
\(710\) −4.54306 5.17375i −0.170498 0.194167i
\(711\) 1.19703 7.94178i 0.0448922 0.297840i
\(712\) 7.82740 + 26.0635i 0.293344 + 0.976770i
\(713\) 18.5006 + 4.22263i 0.692851 + 0.158139i
\(714\) −24.9547 9.47445i −0.933906 0.354572i
\(715\) −14.9534 + 3.41302i −0.559226 + 0.127640i
\(716\) −1.13674 + 3.07556i −0.0424819 + 0.114939i
\(717\) −34.2846 + 19.7942i −1.28038 + 0.739229i
\(718\) −0.759273 16.0119i −0.0283358 0.597560i
\(719\) 4.16525 2.83982i 0.155338 0.105907i −0.483157 0.875534i \(-0.660510\pi\)
0.638494 + 0.769626i \(0.279558\pi\)
\(720\) −3.95592 1.37299i −0.147428 0.0511683i
\(721\) −14.8558 0.538603i −0.553259 0.0200586i
\(722\) −0.718247 + 26.1915i −0.0267304 + 0.974745i
\(723\) −7.00278 + 22.7025i −0.260436 + 0.844314i
\(724\) −5.08693 + 24.5357i −0.189054 + 0.911860i
\(725\) −0.636543 8.49407i −0.0236406 0.315462i
\(726\) 26.1692 77.2529i 0.971231 2.86712i
\(727\) −37.8488 + 18.2270i −1.40373 + 0.676003i −0.973915 0.226912i \(-0.927137\pi\)
−0.429819 + 0.902915i \(0.641423\pi\)
\(728\) 33.5331 24.4243i 1.24282 0.905226i
\(729\) 11.4691 + 5.52325i 0.424783 + 0.204565i
\(730\) 0.0903852 0.0922083i 0.00334531 0.00341278i
\(731\) −0.918985 + 0.283469i −0.0339899 + 0.0104845i
\(732\) 13.5221 + 6.18242i 0.499793 + 0.228509i
\(733\) −5.88306 39.0316i −0.217296 1.44166i −0.785544 0.618806i \(-0.787617\pi\)
0.568248 0.822858i \(-0.307622\pi\)
\(734\) −13.0900 11.0394i −0.483162 0.407470i
\(735\) −6.12464 4.15492i −0.225911 0.153257i
\(736\) −9.85914 + 26.0759i −0.363413 + 0.961172i
\(737\) −68.6881 + 10.3531i −2.53016 + 0.381360i
\(738\) −29.7058 + 8.27837i −1.09348 + 0.304731i
\(739\) −12.1056 39.2455i −0.445313 1.44367i −0.848815 0.528690i \(-0.822683\pi\)
0.403502 0.914979i \(-0.367793\pi\)
\(740\) −0.254085 2.67311i −0.00934036 0.0982656i
\(741\) −33.8382 + 70.2657i −1.24308 + 2.58128i
\(742\) 0.158458 0.731747i 0.00581719 0.0268633i
\(743\) −2.78544 5.78402i −0.102188 0.212195i 0.843606 0.536962i \(-0.180428\pi\)
−0.945794 + 0.324767i \(0.894714\pi\)
\(744\) −24.7037 3.91189i −0.905683 0.143417i
\(745\) 4.69249 0.351654i 0.171920 0.0128836i
\(746\) −35.6904 + 19.3212i −1.30672 + 0.707399i
\(747\) 10.8082 + 3.33389i 0.395452 + 0.121981i
\(748\) −24.8440 + 27.8714i −0.908385 + 1.01908i
\(749\) −2.17887 4.97826i −0.0796142 0.181902i
\(750\) 2.86431 + 14.3523i 0.104590 + 0.524072i
\(751\) −24.2766 35.6072i −0.885864 1.29932i −0.953432 0.301609i \(-0.902476\pi\)
0.0675677 0.997715i \(-0.478476\pi\)
\(752\) 6.52276 12.4178i 0.237861 0.452829i
\(753\) 13.6880 + 23.7084i 0.498820 + 0.863981i
\(754\) 4.73768 + 13.1179i 0.172536 + 0.477726i
\(755\) 0.873618 + 3.82757i 0.0317942 + 0.139300i
\(756\) −2.46348 8.47353i −0.0895959 0.308179i
\(757\) −2.54703 + 11.1593i −0.0925735 + 0.405591i −0.999890 0.0148582i \(-0.995270\pi\)
0.907316 + 0.420449i \(0.138127\pi\)
\(758\) −21.2229 + 2.60607i −0.770849 + 0.0946566i
\(759\) −67.2520 10.1366i −2.44109 0.367936i
\(760\) −6.19955 5.01997i −0.224881 0.182093i
\(761\) −15.7495 + 16.9739i −0.570918 + 0.615303i −0.950828 0.309720i \(-0.899765\pi\)
0.379910 + 0.925024i \(0.375955\pi\)
\(762\) −20.0478 26.6038i −0.726256 0.963753i
\(763\) −3.11243 1.08503i −0.112678 0.0392809i
\(764\) 15.0890 + 36.2979i 0.545901 + 1.31321i
\(765\) −1.62601 + 2.81632i −0.0587883 + 0.101824i
\(766\) −4.38904 + 24.5351i −0.158582 + 0.886489i
\(767\) 2.85503