Properties

Label 196.2.p.a.103.26
Level $196$
Weight $2$
Character 196.103
Analytic conductor $1.565$
Analytic rank $0$
Dimension $312$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(3,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.p (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(312\)
Relative dimension: \(26\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 103.26
Character \(\chi\) \(=\) 196.103
Dual form 196.2.p.a.59.26

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41415 - 0.0137562i) q^{2} +(-1.25831 - 0.857901i) q^{3} +(1.99962 - 0.0389066i) q^{4} +(-0.263482 - 0.0197452i) q^{5} +(-1.79123 - 1.19589i) q^{6} +(2.03749 - 1.68779i) q^{7} +(2.82722 - 0.0825269i) q^{8} +(-0.248675 - 0.633613i) q^{9} +O(q^{10})\) \(q+(1.41415 - 0.0137562i) q^{2} +(-1.25831 - 0.857901i) q^{3} +(1.99962 - 0.0389066i) q^{4} +(-0.263482 - 0.0197452i) q^{5} +(-1.79123 - 1.19589i) q^{6} +(2.03749 - 1.68779i) q^{7} +(2.82722 - 0.0825269i) q^{8} +(-0.248675 - 0.633613i) q^{9} +(-0.372873 - 0.0242981i) q^{10} +(1.57812 + 0.619368i) q^{11} +(-2.54952 - 1.66652i) q^{12} +(-2.83949 + 2.26441i) q^{13} +(2.85809 - 2.41481i) q^{14} +(0.314602 + 0.250887i) q^{15} +(3.99697 - 0.155597i) q^{16} +(0.766969 + 0.826596i) q^{17} +(-0.360379 - 0.892601i) q^{18} +(-0.734495 + 1.27218i) q^{19} +(-0.527632 - 0.0292318i) q^{20} +(-4.01175 + 0.375802i) q^{21} +(2.24022 + 0.854168i) q^{22} +(-2.17000 + 2.33870i) q^{23} +(-3.62832 - 2.32163i) q^{24} +(-4.87512 - 0.734806i) q^{25} +(-3.98430 + 3.24127i) q^{26} +(-1.24732 + 5.46488i) q^{27} +(4.00854 - 3.45422i) q^{28} +(1.25645 + 5.50485i) q^{29} +(0.448345 + 0.350463i) q^{30} +(-2.89828 - 5.01997i) q^{31} +(5.65016 - 0.275020i) q^{32} +(-1.45441 - 2.13323i) q^{33} +(1.09598 + 1.15838i) q^{34} +(-0.570167 + 0.404472i) q^{35} +(-0.521908 - 1.25731i) q^{36} +(-2.55647 - 0.788567i) q^{37} +(-1.02118 + 1.80916i) q^{38} +(5.51559 - 0.413337i) q^{39} +(-0.746551 - 0.0340798i) q^{40} +(2.59789 + 5.39457i) q^{41} +(-5.66803 + 0.586626i) q^{42} +(-4.36671 + 9.06756i) q^{43} +(3.17975 + 1.17710i) q^{44} +(0.0530105 + 0.171856i) q^{45} +(-3.03652 + 3.33711i) q^{46} +(5.64667 - 0.851098i) q^{47} +(-5.16291 - 3.23322i) q^{48} +(1.30271 - 6.87771i) q^{49} +(-6.90424 - 0.972061i) q^{50} +(-0.255947 - 1.69810i) q^{51} +(-5.58980 + 4.63845i) q^{52} +(-0.0663065 + 0.0204529i) q^{53} +(-1.68872 + 7.74530i) q^{54} +(-0.403577 - 0.194353i) q^{55} +(5.62114 - 4.93991i) q^{56} +(2.01563 - 0.970675i) q^{57} +(1.85253 + 7.76738i) q^{58} +(-0.838464 - 11.1885i) q^{59} +(0.638846 + 0.489438i) q^{60} +(0.0587480 - 0.190456i) q^{61} +(-4.16765 - 7.05911i) q^{62} +(-1.57608 - 0.871268i) q^{63} +(7.98638 - 0.466644i) q^{64} +(0.792864 - 0.540566i) q^{65} +(-2.08610 - 2.99669i) q^{66} +(12.8699 - 7.43043i) q^{67} +(1.56581 + 1.62304i) q^{68} +(4.73690 - 1.08117i) q^{69} +(-0.800735 + 0.579826i) q^{70} +(-3.45509 - 0.788602i) q^{71} +(-0.755350 - 1.77084i) q^{72} +(0.419429 - 2.78273i) q^{73} +(-3.62608 - 1.07998i) q^{74} +(5.50402 + 5.10698i) q^{75} +(-1.41922 + 2.57246i) q^{76} +(4.26077 - 1.40159i) q^{77} +(7.79417 - 0.660392i) q^{78} +(-13.0282 - 7.52182i) q^{79} +(-1.05620 - 0.0379242i) q^{80} +(4.76095 - 4.41752i) q^{81} +(3.74800 + 7.59297i) q^{82} +(-3.20201 + 4.01519i) q^{83} +(-8.00735 + 0.907546i) q^{84} +(-0.185761 - 0.232937i) q^{85} +(-6.05043 + 12.8829i) q^{86} +(3.14162 - 8.00471i) q^{87} +(4.51282 + 1.62085i) q^{88} +(16.7269 - 6.56481i) q^{89} +(0.0773287 + 0.242300i) q^{90} +(-1.96356 + 9.40618i) q^{91} +(-4.24818 + 4.76094i) q^{92} +(-0.659702 + 8.80311i) q^{93} +(7.97351 - 1.28125i) q^{94} +(0.218646 - 0.320694i) q^{95} +(-7.34559 - 4.50122i) q^{96} -7.85046i q^{97} +(1.74762 - 9.74402i) q^{98} -1.15394i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9} - 20 q^{10} + 9 q^{12} - 28 q^{13} - 51 q^{14} - 17 q^{16} - 22 q^{17} - 12 q^{18} - 14 q^{20} - 34 q^{21} - 18 q^{22} - 44 q^{24} - 48 q^{25} - 2 q^{26} - 36 q^{28} - 11 q^{30} - 13 q^{32} - 34 q^{33} - 98 q^{34} - 4 q^{36} - 58 q^{37} - 18 q^{38} + 30 q^{40} - 28 q^{41} - 26 q^{42} + 16 q^{44} - 28 q^{45} - 14 q^{46} - 24 q^{49} + 96 q^{50} - 14 q^{52} - 22 q^{53} - 17 q^{54} + 40 q^{56} + 34 q^{57} - 12 q^{58} + 98 q^{60} - 38 q^{61} - 4 q^{64} - 32 q^{65} - 176 q^{66} - 21 q^{68} + 28 q^{69} + 50 q^{70} - 120 q^{72} - 58 q^{73} - 14 q^{74} - 91 q^{76} - 18 q^{77} - 112 q^{78} + 66 q^{80} - 170 q^{81} + 114 q^{82} + 140 q^{84} - 24 q^{85} + 97 q^{86} + 127 q^{88} - 82 q^{89} + 266 q^{90} + 34 q^{92} + 226 q^{94} + 122 q^{96} + 183 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41415 0.0137562i 0.999953 0.00972712i
\(3\) −1.25831 0.857901i −0.726485 0.495309i 0.142719 0.989763i \(-0.454416\pi\)
−0.869204 + 0.494454i \(0.835368\pi\)
\(4\) 1.99962 0.0389066i 0.999811 0.0194533i
\(5\) −0.263482 0.0197452i −0.117833 0.00883034i 0.0156832 0.999877i \(-0.495008\pi\)
−0.133516 + 0.991047i \(0.542627\pi\)
\(6\) −1.79123 1.19589i −0.731269 0.488219i
\(7\) 2.03749 1.68779i 0.770098 0.637926i
\(8\) 2.82722 0.0825269i 0.999574 0.0291777i
\(9\) −0.248675 0.633613i −0.0828916 0.211204i
\(10\) −0.372873 0.0242981i −0.117913 0.00768375i
\(11\) 1.57812 + 0.619368i 0.475822 + 0.186747i 0.591119 0.806585i \(-0.298686\pi\)
−0.115296 + 0.993331i \(0.536782\pi\)
\(12\) −2.54952 1.66652i −0.735983 0.481083i
\(13\) −2.83949 + 2.26441i −0.787532 + 0.628036i −0.932405 0.361415i \(-0.882294\pi\)
0.144874 + 0.989450i \(0.453722\pi\)
\(14\) 2.85809 2.41481i 0.763856 0.645386i
\(15\) 0.314602 + 0.250887i 0.0812299 + 0.0647787i
\(16\) 3.99697 0.155597i 0.999243 0.0388993i
\(17\) 0.766969 + 0.826596i 0.186017 + 0.200479i 0.819175 0.573544i \(-0.194432\pi\)
−0.633157 + 0.774023i \(0.718241\pi\)
\(18\) −0.360379 0.892601i −0.0849421 0.210388i
\(19\) −0.734495 + 1.27218i −0.168505 + 0.291859i −0.937894 0.346921i \(-0.887227\pi\)
0.769390 + 0.638780i \(0.220561\pi\)
\(20\) −0.527632 0.0292318i −0.117982 0.00653643i
\(21\) −4.01175 + 0.375802i −0.875435 + 0.0820068i
\(22\) 2.24022 + 0.854168i 0.477616 + 0.182109i
\(23\) −2.17000 + 2.33870i −0.452475 + 0.487652i −0.917551 0.397619i \(-0.869837\pi\)
0.465075 + 0.885271i \(0.346027\pi\)
\(24\) −3.62832 2.32163i −0.740628 0.473901i
\(25\) −4.87512 0.734806i −0.975024 0.146961i
\(26\) −3.98430 + 3.24127i −0.781385 + 0.635666i
\(27\) −1.24732 + 5.46488i −0.240047 + 1.05172i
\(28\) 4.00854 3.45422i 0.757543 0.652786i
\(29\) 1.25645 + 5.50485i 0.233316 + 1.02223i 0.946868 + 0.321623i \(0.104228\pi\)
−0.713552 + 0.700603i \(0.752915\pi\)
\(30\) 0.448345 + 0.350463i 0.0818562 + 0.0639855i
\(31\) −2.89828 5.01997i −0.520547 0.901614i −0.999715 0.0238903i \(-0.992395\pi\)
0.479168 0.877723i \(-0.340939\pi\)
\(32\) 5.65016 0.275020i 0.998817 0.0486172i
\(33\) −1.45441 2.13323i −0.253181 0.371348i
\(34\) 1.09598 + 1.15838i 0.187959 + 0.198660i
\(35\) −0.570167 + 0.404472i −0.0963758 + 0.0683682i
\(36\) −0.521908 1.25731i −0.0869846 0.209552i
\(37\) −2.55647 0.788567i −0.420282 0.129640i 0.0773988 0.997000i \(-0.475339\pi\)
−0.497680 + 0.867361i \(0.665815\pi\)
\(38\) −1.02118 + 1.80916i −0.165658 + 0.293484i
\(39\) 5.51559 0.413337i 0.883202 0.0661868i
\(40\) −0.746551 0.0340798i −0.118040 0.00538849i
\(41\) 2.59789 + 5.39457i 0.405722 + 0.842490i 0.999289 + 0.0377054i \(0.0120049\pi\)
−0.593567 + 0.804784i \(0.702281\pi\)
\(42\) −5.66803 + 0.586626i −0.874596 + 0.0905183i
\(43\) −4.36671 + 9.06756i −0.665917 + 1.38279i 0.244724 + 0.969593i \(0.421302\pi\)
−0.910641 + 0.413198i \(0.864412\pi\)
\(44\) 3.17975 + 1.17710i 0.479365 + 0.177455i
\(45\) 0.0530105 + 0.171856i 0.00790233 + 0.0256187i
\(46\) −3.03652 + 3.33711i −0.447710 + 0.492031i
\(47\) 5.64667 0.851098i 0.823651 0.124145i 0.276324 0.961064i \(-0.410884\pi\)
0.547327 + 0.836919i \(0.315646\pi\)
\(48\) −5.16291 3.23322i −0.745202 0.466674i
\(49\) 1.30271 6.87771i 0.186102 0.982530i
\(50\) −6.90424 0.972061i −0.976408 0.137470i
\(51\) −0.255947 1.69810i −0.0358397 0.237781i
\(52\) −5.58980 + 4.63845i −0.775165 + 0.643237i
\(53\) −0.0663065 + 0.0204529i −0.00910790 + 0.00280942i −0.299306 0.954157i \(-0.596755\pi\)
0.290198 + 0.956967i \(0.406279\pi\)
\(54\) −1.68872 + 7.74530i −0.229806 + 1.05400i
\(55\) −0.403577 0.194353i −0.0544184 0.0262065i
\(56\) 5.62114 4.93991i 0.751157 0.660124i
\(57\) 2.01563 0.970675i 0.266976 0.128569i
\(58\) 1.85253 + 7.76738i 0.243249 + 1.01991i
\(59\) −0.838464 11.1885i −0.109159 1.45662i −0.735739 0.677265i \(-0.763165\pi\)
0.626580 0.779357i \(-0.284454\pi\)
\(60\) 0.638846 + 0.489438i 0.0824747 + 0.0631862i
\(61\) 0.0587480 0.190456i 0.00752192 0.0243855i −0.951734 0.306924i \(-0.900700\pi\)
0.959256 + 0.282538i \(0.0911765\pi\)
\(62\) −4.16765 7.05911i −0.529292 0.896508i
\(63\) −1.57608 0.871268i −0.198567 0.109769i
\(64\) 7.98638 0.466644i 0.998297 0.0583305i
\(65\) 0.792864 0.540566i 0.0983427 0.0670489i
\(66\) −2.08610 2.99669i −0.256781 0.368867i
\(67\) 12.8699 7.43043i 1.57231 0.907772i 0.576421 0.817153i \(-0.304449\pi\)
0.995886 0.0906187i \(-0.0288844\pi\)
\(68\) 1.56581 + 1.62304i 0.189882 + 0.196822i
\(69\) 4.73690 1.08117i 0.570255 0.130157i
\(70\) −0.800735 + 0.579826i −0.0957062 + 0.0693024i
\(71\) −3.45509 0.788602i −0.410044 0.0935898i 0.0125231 0.999922i \(-0.496014\pi\)
−0.422567 + 0.906332i \(0.638871\pi\)
\(72\) −0.755350 1.77084i −0.0890188 0.208696i
\(73\) 0.419429 2.78273i 0.0490904 0.325694i −0.950784 0.309854i \(-0.899720\pi\)
0.999875 0.0158397i \(-0.00504213\pi\)
\(74\) −3.62608 1.07998i −0.421523 0.125545i
\(75\) 5.50402 + 5.10698i 0.635549 + 0.589704i
\(76\) −1.41922 + 2.57246i −0.162795 + 0.295082i
\(77\) 4.26077 1.40159i 0.485560 0.159726i
\(78\) 7.79417 0.660392i 0.882516 0.0747747i
\(79\) −13.0282 7.52182i −1.46578 0.846271i −0.466516 0.884513i \(-0.654491\pi\)
−0.999269 + 0.0382418i \(0.987824\pi\)
\(80\) −1.05620 0.0379242i −0.118087 0.00424005i
\(81\) 4.76095 4.41752i 0.528995 0.490835i
\(82\) 3.74800 + 7.59297i 0.413898 + 0.838504i
\(83\) −3.20201 + 4.01519i −0.351466 + 0.440725i −0.925867 0.377850i \(-0.876664\pi\)
0.574401 + 0.818574i \(0.305235\pi\)
\(84\) −8.00735 + 0.907546i −0.873674 + 0.0990213i
\(85\) −0.185761 0.232937i −0.0201486 0.0252656i
\(86\) −6.05043 + 12.8829i −0.652435 + 1.38920i
\(87\) 3.14162 8.00471i 0.336817 0.858195i
\(88\) 4.51282 + 1.62085i 0.481069 + 0.172784i
\(89\) 16.7269 6.56481i 1.77304 0.695868i 0.775094 0.631846i \(-0.217702\pi\)
0.997948 0.0640224i \(-0.0203929\pi\)
\(90\) 0.0773287 + 0.242300i 0.00815116 + 0.0255407i
\(91\) −1.96356 + 9.40618i −0.205837 + 0.986036i
\(92\) −4.24818 + 4.76094i −0.442903 + 0.496362i
\(93\) −0.659702 + 8.80311i −0.0684079 + 0.912840i
\(94\) 7.97351 1.28125i 0.822404 0.132151i
\(95\) 0.218646 0.320694i 0.0224326 0.0329025i
\(96\) −7.34559 4.50122i −0.749706 0.459404i
\(97\) 7.85046i 0.797093i −0.917148 0.398547i \(-0.869515\pi\)
0.917148 0.398547i \(-0.130485\pi\)
\(98\) 1.74762 9.74402i 0.176536 0.984294i
\(99\) 1.15394i 0.115976i
\(100\) −9.77699 1.27966i −0.977699 0.127966i
\(101\) −5.91976 + 8.68269i −0.589038 + 0.863960i −0.998837 0.0482161i \(-0.984646\pi\)
0.409799 + 0.912176i \(0.365599\pi\)
\(102\) −0.385306 2.39784i −0.0381510 0.237421i
\(103\) −1.09066 + 14.5538i −0.107465 + 1.43403i 0.639309 + 0.768950i \(0.279221\pi\)
−0.746774 + 0.665077i \(0.768399\pi\)
\(104\) −7.84098 + 6.63634i −0.768872 + 0.650747i
\(105\) 1.06444 0.0198041i 0.103879 0.00193269i
\(106\) −0.0934858 + 0.0298355i −0.00908014 + 0.00289788i
\(107\) −12.6495 + 4.96456i −1.22287 + 0.479942i −0.886914 0.461934i \(-0.847156\pi\)
−0.335959 + 0.941877i \(0.609060\pi\)
\(108\) −2.28155 + 10.9762i −0.219543 + 1.05619i
\(109\) 0.785682 2.00188i 0.0752547 0.191746i −0.888296 0.459271i \(-0.848111\pi\)
0.963551 + 0.267525i \(0.0862059\pi\)
\(110\) −0.573391 0.269291i −0.0546707 0.0256759i
\(111\) 2.54032 + 3.18546i 0.241117 + 0.302351i
\(112\) 7.88117 7.06309i 0.744700 0.667399i
\(113\) 5.55898 6.97074i 0.522945 0.655752i −0.448287 0.893890i \(-0.647966\pi\)
0.971231 + 0.238138i \(0.0765370\pi\)
\(114\) 2.83704 1.40040i 0.265713 0.131160i
\(115\) 0.617932 0.573357i 0.0576225 0.0534659i
\(116\) 2.72659 + 10.9587i 0.253158 + 1.01749i
\(117\) 2.14087 + 1.23603i 0.197924 + 0.114271i
\(118\) −1.33962 15.8107i −0.123322 1.45549i
\(119\) 2.95781 + 0.389695i 0.271142 + 0.0357233i
\(120\) 0.910155 + 0.683350i 0.0830854 + 0.0623810i
\(121\) −5.95671 5.52702i −0.541519 0.502456i
\(122\) 0.0804584 0.270142i 0.00728436 0.0244575i
\(123\) 1.35906 9.01676i 0.122542 0.813014i
\(124\) −5.99078 9.92528i −0.537988 0.891317i
\(125\) 2.55798 + 0.583842i 0.228792 + 0.0522204i
\(126\) −2.24079 1.21042i −0.199626 0.107833i
\(127\) −2.54858 + 0.581696i −0.226150 + 0.0516172i −0.334094 0.942540i \(-0.608430\pi\)
0.107944 + 0.994157i \(0.465573\pi\)
\(128\) 11.2875 0.769765i 0.997683 0.0680383i
\(129\) 13.2737 7.66360i 1.16869 0.674742i
\(130\) 1.11379 0.775346i 0.0976859 0.0680023i
\(131\) 13.9469 9.50885i 1.21855 0.830792i 0.228780 0.973478i \(-0.426526\pi\)
0.989768 + 0.142686i \(0.0455741\pi\)
\(132\) −2.99127 4.20907i −0.260357 0.366352i
\(133\) 0.650655 + 3.83173i 0.0564190 + 0.332253i
\(134\) 18.0977 10.6848i 1.56340 0.923023i
\(135\) 0.436552 1.41527i 0.0375724 0.121807i
\(136\) 2.23661 + 2.27368i 0.191788 + 0.194966i
\(137\) 0.792228 + 10.5716i 0.0676846 + 0.903189i 0.922931 + 0.384966i \(0.125787\pi\)
−0.855246 + 0.518222i \(0.826594\pi\)
\(138\) 6.68379 1.59409i 0.568962 0.135698i
\(139\) 8.84674 4.26036i 0.750370 0.361359i −0.0192890 0.999814i \(-0.506140\pi\)
0.769660 + 0.638455i \(0.220426\pi\)
\(140\) −1.12438 + 0.830974i −0.0950276 + 0.0702301i
\(141\) −7.83541 3.77333i −0.659860 0.317772i
\(142\) −4.89685 1.06767i −0.410935 0.0895968i
\(143\) −5.88357 + 1.81484i −0.492009 + 0.151765i
\(144\) −1.09254 2.49384i −0.0910446 0.207820i
\(145\) −0.222356 1.47524i −0.0184657 0.122512i
\(146\) 0.554854 3.94096i 0.0459201 0.326156i
\(147\) −7.53961 + 7.53669i −0.621857 + 0.621616i
\(148\) −5.14266 1.47737i −0.422724 0.121439i
\(149\) 14.8661 2.24071i 1.21788 0.183566i 0.491511 0.870871i \(-0.336445\pi\)
0.726368 + 0.687306i \(0.241207\pi\)
\(150\) 7.85374 + 7.14631i 0.641255 + 0.583494i
\(151\) 0.285261 + 0.924792i 0.0232142 + 0.0752585i 0.966439 0.256897i \(-0.0827002\pi\)
−0.943225 + 0.332156i \(0.892224\pi\)
\(152\) −1.97159 + 3.65736i −0.159917 + 0.296651i
\(153\) 0.333016 0.691516i 0.0269228 0.0559057i
\(154\) 6.00608 2.04067i 0.483984 0.164442i
\(155\) 0.664524 + 1.37990i 0.0533759 + 0.110836i
\(156\) 11.0130 1.04111i 0.881747 0.0833555i
\(157\) −21.4307 + 1.60601i −1.71036 + 0.128173i −0.893616 0.448833i \(-0.851840\pi\)
−0.816740 + 0.577006i \(0.804221\pi\)
\(158\) −18.5272 10.4577i −1.47395 0.831973i
\(159\) 0.100981 + 0.0311484i 0.00800828 + 0.00247023i
\(160\) −1.49415 0.0391010i −0.118123 0.00309120i
\(161\) −0.474102 + 8.42757i −0.0373644 + 0.664186i
\(162\) 6.67192 6.31251i 0.524195 0.495958i
\(163\) −5.94541 8.72031i −0.465680 0.683028i 0.519515 0.854461i \(-0.326113\pi\)
−0.985196 + 0.171433i \(0.945160\pi\)
\(164\) 5.40467 + 10.6860i 0.422034 + 0.834438i
\(165\) 0.341090 + 0.590785i 0.0265538 + 0.0459926i
\(166\) −4.47288 + 5.72212i −0.347163 + 0.444123i
\(167\) 1.02069 + 4.47192i 0.0789830 + 0.346047i 0.998943 0.0459649i \(-0.0146362\pi\)
−0.919960 + 0.392012i \(0.871779\pi\)
\(168\) −11.3111 + 1.39355i −0.872670 + 0.107515i
\(169\) 0.0423353 0.185483i 0.00325656 0.0142679i
\(170\) −0.265898 0.326852i −0.0203934 0.0250684i
\(171\) 0.988723 + 0.149026i 0.0756095 + 0.0113963i
\(172\) −8.37898 + 18.3016i −0.638891 + 1.39548i
\(173\) −17.0843 + 18.4125i −1.29890 + 1.39988i −0.431620 + 0.902056i \(0.642058\pi\)
−0.867278 + 0.497824i \(0.834133\pi\)
\(174\) 4.33259 11.3631i 0.328453 0.861431i
\(175\) −11.1732 + 6.73103i −0.844615 + 0.508818i
\(176\) 6.40409 + 2.23005i 0.482727 + 0.168096i
\(177\) −8.54359 + 14.7979i −0.642176 + 1.11228i
\(178\) 23.5639 9.51370i 1.76619 0.713082i
\(179\) −10.0609 10.8431i −0.751987 0.810450i 0.234873 0.972026i \(-0.424533\pi\)
−0.986860 + 0.161577i \(0.948342\pi\)
\(180\) 0.112687 + 0.341584i 0.00839921 + 0.0254602i
\(181\) −17.7841 14.1823i −1.32188 1.05416i −0.993993 0.109446i \(-0.965092\pi\)
−0.327886 0.944717i \(-0.606336\pi\)
\(182\) −2.64736 + 13.3287i −0.196236 + 0.987991i
\(183\) −0.237316 + 0.189253i −0.0175429 + 0.0139900i
\(184\) −5.94205 + 6.79111i −0.438054 + 0.500647i
\(185\) 0.658014 + 0.258251i 0.0483781 + 0.0189870i
\(186\) −0.811818 + 12.4580i −0.0595254 + 0.913463i
\(187\) 0.698405 + 1.77951i 0.0510724 + 0.130130i
\(188\) 11.2581 1.92157i 0.821080 0.140145i
\(189\) 6.68217 + 13.2398i 0.486057 + 0.963057i
\(190\) 0.304785 0.456516i 0.0221115 0.0331192i
\(191\) 16.7906 + 1.25828i 1.21492 + 0.0910458i 0.666725 0.745304i \(-0.267696\pi\)
0.548197 + 0.836350i \(0.315315\pi\)
\(192\) −10.4497 6.26434i −0.754140 0.452090i
\(193\) −8.47699 5.77951i −0.610187 0.416019i 0.218415 0.975856i \(-0.429911\pi\)
−0.828603 + 0.559837i \(0.810864\pi\)
\(194\) −0.107993 11.1017i −0.00775342 0.797056i
\(195\) −1.46142 −0.104654
\(196\) 2.33735 13.8035i 0.166953 0.985965i
\(197\) −17.3198 −1.23398 −0.616992 0.786969i \(-0.711649\pi\)
−0.616992 + 0.786969i \(0.711649\pi\)
\(198\) −0.0158739 1.63184i −0.00112811 0.115970i
\(199\) 18.5474 + 12.6454i 1.31479 + 0.896411i 0.998632 0.0522945i \(-0.0166534\pi\)
0.316162 + 0.948705i \(0.397606\pi\)
\(200\) −13.8437 1.67513i −0.978897 0.118450i
\(201\) −22.5689 1.69130i −1.59188 0.119295i
\(202\) −8.25196 + 12.3600i −0.580606 + 0.869648i
\(203\) 11.8510 + 9.09545i 0.831780 + 0.638375i
\(204\) −0.577864 3.38559i −0.0404586 0.237039i
\(205\) −0.577979 1.47267i −0.0403678 0.102855i
\(206\) −1.34214 + 20.5962i −0.0935115 + 1.43500i
\(207\) 2.02145 + 0.793362i 0.140501 + 0.0551425i
\(208\) −10.9970 + 9.49262i −0.762506 + 0.658195i
\(209\) −1.94707 + 1.55274i −0.134682 + 0.107405i
\(210\) 1.50501 0.0426487i 0.103855 0.00294304i
\(211\) −2.24783 1.79259i −0.154747 0.123407i 0.543055 0.839697i \(-0.317267\pi\)
−0.697803 + 0.716290i \(0.745839\pi\)
\(212\) −0.131792 + 0.0434777i −0.00905153 + 0.00298606i
\(213\) 3.67103 + 3.95643i 0.251535 + 0.271090i
\(214\) −17.8200 + 7.19463i −1.21815 + 0.491815i
\(215\) 1.32959 2.30292i 0.0906772 0.157058i
\(216\) −3.07546 + 15.5534i −0.209259 + 1.05827i
\(217\) −14.3779 5.33643i −0.976034 0.362261i
\(218\) 1.08353 2.84177i 0.0733860 0.192469i
\(219\) −2.91508 + 3.14170i −0.196983 + 0.212297i
\(220\) −0.814564 0.372930i −0.0549179 0.0251429i
\(221\) −4.04955 0.610372i −0.272402 0.0410581i
\(222\) 3.63621 + 4.46976i 0.244046 + 0.299991i
\(223\) 1.04391 4.57365i 0.0699051 0.306274i −0.927873 0.372896i \(-0.878365\pi\)
0.997778 + 0.0666216i \(0.0212220\pi\)
\(224\) 11.0480 10.0967i 0.738173 0.674611i
\(225\) 0.746737 + 3.27167i 0.0497825 + 0.218111i
\(226\) 7.76532 9.93412i 0.516541 0.660808i
\(227\) −5.34275 9.25391i −0.354611 0.614204i 0.632441 0.774609i \(-0.282053\pi\)
−0.987051 + 0.160405i \(0.948720\pi\)
\(228\) 3.99273 2.01940i 0.264425 0.133738i
\(229\) 4.02135 + 5.89824i 0.265739 + 0.389767i 0.935796 0.352543i \(-0.114683\pi\)
−0.670057 + 0.742309i \(0.733730\pi\)
\(230\) 0.865960 0.819312i 0.0570997 0.0540238i
\(231\) −6.56380 1.89169i −0.431866 0.124464i
\(232\) 4.00655 + 15.4598i 0.263043 + 1.01498i
\(233\) 13.5728 + 4.18664i 0.889181 + 0.274276i 0.705500 0.708710i \(-0.250722\pi\)
0.183681 + 0.982986i \(0.441199\pi\)
\(234\) 3.04451 + 1.71848i 0.199026 + 0.112341i
\(235\) −1.50460 + 0.112754i −0.0981492 + 0.00735527i
\(236\) −2.11192 22.3402i −0.137474 1.45422i
\(237\) 9.94050 + 20.6417i 0.645705 + 1.34082i
\(238\) 4.18814 + 0.510398i 0.271477 + 0.0330842i
\(239\) 0.477666 0.991884i 0.0308977 0.0641597i −0.884949 0.465688i \(-0.845807\pi\)
0.915846 + 0.401529i \(0.131521\pi\)
\(240\) 1.29649 + 0.953836i 0.0836883 + 0.0615699i
\(241\) −4.68170 15.1777i −0.301575 0.977683i −0.971856 0.235575i \(-0.924303\pi\)
0.670281 0.742107i \(-0.266174\pi\)
\(242\) −8.49969 7.73407i −0.546381 0.497165i
\(243\) 6.84789 1.03215i 0.439293 0.0662127i
\(244\) 0.110064 0.383127i 0.00704612 0.0245272i
\(245\) −0.479044 + 1.78643i −0.0306050 + 0.114131i
\(246\) 1.79787 12.7697i 0.114628 0.814167i
\(247\) −0.795161 5.27555i −0.0505949 0.335675i
\(248\) −8.60837 13.9534i −0.546632 0.886041i
\(249\) 7.47375 2.30535i 0.473630 0.146095i
\(250\) 3.62539 + 0.790449i 0.229290 + 0.0499924i
\(251\) 17.3367 + 8.34890i 1.09428 + 0.526978i 0.891856 0.452320i \(-0.149403\pi\)
0.202425 + 0.979298i \(0.435118\pi\)
\(252\) −3.18546 1.68089i −0.200665 0.105886i
\(253\) −4.87304 + 2.34673i −0.306365 + 0.147538i
\(254\) −3.59606 + 0.857662i −0.225637 + 0.0538145i
\(255\) 0.0339080 + 0.452471i 0.00212340 + 0.0283348i
\(256\) 15.9516 1.24383i 0.996974 0.0777396i
\(257\) 3.75030 12.1582i 0.233937 0.758406i −0.760143 0.649756i \(-0.774871\pi\)
0.994080 0.108650i \(-0.0346528\pi\)
\(258\) 18.6656 11.0200i 1.16207 0.686078i
\(259\) −6.53972 + 2.70810i −0.406358 + 0.168273i
\(260\) 1.56440 1.11177i 0.0970198 0.0689493i
\(261\) 3.17550 2.16502i 0.196559 0.134011i
\(262\) 19.5922 13.6388i 1.21041 0.842605i
\(263\) −5.30249 + 3.06139i −0.326965 + 0.188774i −0.654493 0.756068i \(-0.727118\pi\)
0.327528 + 0.944842i \(0.393785\pi\)
\(264\) −4.28800 5.91109i −0.263908 0.363802i
\(265\) 0.0178744 0.00407972i 0.00109802 0.000250615i
\(266\) 0.972832 + 5.40968i 0.0596482 + 0.331689i
\(267\) −26.6795 6.08942i −1.63276 0.372667i
\(268\) 25.4458 15.3588i 1.55435 0.938186i
\(269\) −0.267378 + 1.77394i −0.0163023 + 0.108159i −0.995502 0.0947398i \(-0.969798\pi\)
0.979200 + 0.202899i \(0.0650362\pi\)
\(270\) 0.597880 2.00740i 0.0363858 0.122167i
\(271\) −8.08714 7.50377i −0.491259 0.455821i 0.395223 0.918585i \(-0.370667\pi\)
−0.886482 + 0.462764i \(0.846858\pi\)
\(272\) 3.19417 + 3.18454i 0.193675 + 0.193091i
\(273\) 10.5403 10.1513i 0.637930 0.614387i
\(274\) 1.26575 + 14.9388i 0.0764669 + 0.902488i
\(275\) −7.23843 4.17911i −0.436494 0.252010i
\(276\) 9.42993 2.34622i 0.567615 0.141226i
\(277\) 10.4875 9.73095i 0.630131 0.584676i −0.299079 0.954228i \(-0.596679\pi\)
0.929210 + 0.369552i \(0.120489\pi\)
\(278\) 12.4520 6.14648i 0.746820 0.368641i
\(279\) −2.45999 + 3.08473i −0.147276 + 0.184678i
\(280\) −1.57861 + 1.19059i −0.0943399 + 0.0711511i
\(281\) 14.6964 + 18.4288i 0.876716 + 1.09937i 0.994333 + 0.106309i \(0.0339031\pi\)
−0.117617 + 0.993059i \(0.537525\pi\)
\(282\) −11.1323 5.22826i −0.662920 0.311338i
\(283\) 1.17291 2.98854i 0.0697226 0.177650i −0.891765 0.452499i \(-0.850533\pi\)
0.961487 + 0.274849i \(0.0886278\pi\)
\(284\) −6.93955 1.44248i −0.411787 0.0855954i
\(285\) −0.550248 + 0.215956i −0.0325939 + 0.0127921i
\(286\) −8.29526 + 2.64739i −0.490509 + 0.156543i
\(287\) 14.3981 + 6.60667i 0.849891 + 0.389980i
\(288\) −1.57931 3.51163i −0.0930618 0.206925i
\(289\) 1.17539 15.6845i 0.0691407 0.922619i
\(290\) −0.334738 2.08314i −0.0196565 0.122326i
\(291\) −6.73491 + 9.87830i −0.394808 + 0.579076i
\(292\) 0.730433 5.58072i 0.0427453 0.326587i
\(293\) 19.4225i 1.13467i −0.823486 0.567336i \(-0.807974\pi\)
0.823486 0.567336i \(-0.192026\pi\)
\(294\) −10.5584 + 10.7617i −0.615781 + 0.627635i
\(295\) 2.96453i 0.172602i
\(296\) −7.29280 2.01848i −0.423885 0.117322i
\(297\) −5.35320 + 7.85171i −0.310624 + 0.455602i
\(298\) 20.9920 3.37319i 1.21604 0.195403i
\(299\) 0.865888 11.5545i 0.0500756 0.668212i
\(300\) 11.2046 + 9.99789i 0.646901 + 0.577228i
\(301\) 6.40705 + 25.8451i 0.369296 + 1.48969i
\(302\) 0.416122 + 1.30387i 0.0239451 + 0.0750291i
\(303\) 14.8978 5.84694i 0.855854 0.335898i
\(304\) −2.73781 + 5.19917i −0.157024 + 0.298193i
\(305\) −0.0192396 + 0.0490218i −0.00110166 + 0.00280698i
\(306\) 0.461421 0.982485i 0.0263777 0.0561650i
\(307\) 9.70679 + 12.1719i 0.553996 + 0.694689i 0.977435 0.211235i \(-0.0677487\pi\)
−0.423439 + 0.905925i \(0.639177\pi\)
\(308\) 8.46541 2.96842i 0.482361 0.169142i
\(309\) 13.8581 17.3775i 0.788359 0.988571i
\(310\) 0.958717 + 1.94224i 0.0544514 + 0.110312i
\(311\) −15.6099 + 14.4838i −0.885154 + 0.821303i −0.984795 0.173720i \(-0.944421\pi\)
0.0996406 + 0.995023i \(0.468231\pi\)
\(312\) 15.5597 1.62378i 0.880895 0.0919284i
\(313\) 8.32645 + 4.80728i 0.470639 + 0.271723i 0.716507 0.697580i \(-0.245740\pi\)
−0.245868 + 0.969303i \(0.579073\pi\)
\(314\) −30.2841 + 2.56594i −1.70903 + 0.144804i
\(315\) 0.398065 + 0.260683i 0.0224284 + 0.0146878i
\(316\) −26.3441 14.5339i −1.48197 0.817597i
\(317\) −6.32362 5.86746i −0.355170 0.329550i 0.482327 0.875991i \(-0.339792\pi\)
−0.837497 + 0.546441i \(0.815982\pi\)
\(318\) 0.143230 + 0.0426593i 0.00803193 + 0.00239221i
\(319\) −1.42670 + 9.46555i −0.0798799 + 0.529969i
\(320\) −2.11348 0.0347407i −0.118147 0.00194206i
\(321\) 20.1761 + 4.60506i 1.12612 + 0.257029i
\(322\) −0.554518 + 11.9243i −0.0309021 + 0.664518i
\(323\) −1.61492 + 0.368594i −0.0898563 + 0.0205091i
\(324\) 9.34823 9.01860i 0.519346 0.501033i
\(325\) 15.5067 8.95282i 0.860159 0.496613i
\(326\) −8.52764 12.2500i −0.472302 0.678466i
\(327\) −2.70605 + 1.84495i −0.149645 + 0.102026i
\(328\) 7.79000 + 15.0372i 0.430131 + 0.830293i
\(329\) 10.0685 11.2645i 0.555096 0.621032i
\(330\) 0.490478 + 0.830765i 0.0269999 + 0.0457321i
\(331\) 9.35325 30.3225i 0.514101 1.66667i −0.210569 0.977579i \(-0.567532\pi\)
0.724670 0.689096i \(-0.241992\pi\)
\(332\) −6.24659 + 8.15344i −0.342826 + 0.447478i
\(333\) 0.136084 + 1.81591i 0.00745735 + 0.0995114i
\(334\) 1.50492 + 6.30990i 0.0823453 + 0.345263i
\(335\) −3.53770 + 1.70366i −0.193285 + 0.0930811i
\(336\) −15.9764 + 2.12629i −0.871582 + 0.115998i
\(337\) 3.27627 + 1.57777i 0.178470 + 0.0859465i 0.520985 0.853566i \(-0.325565\pi\)
−0.342516 + 0.939512i \(0.611279\pi\)
\(338\) 0.0573168 0.262883i 0.00311762 0.0142989i
\(339\) −12.9751 + 4.00229i −0.704711 + 0.217375i
\(340\) −0.380515 0.458558i −0.0206363 0.0248688i
\(341\) −1.46464 9.71724i −0.0793146 0.526218i
\(342\) 1.40025 + 0.197143i 0.0757168 + 0.0106603i
\(343\) −8.95389 16.2120i −0.483464 0.875364i
\(344\) −11.5973 + 25.9964i −0.625287 + 1.40163i
\(345\) −1.26943 + 0.191336i −0.0683440 + 0.0103012i
\(346\) −23.9065 + 26.2730i −1.28522 + 1.41245i
\(347\) 0.409643 + 1.32803i 0.0219908 + 0.0712924i 0.965903 0.258904i \(-0.0833613\pi\)
−0.943912 + 0.330196i \(0.892885\pi\)
\(348\) 5.97061 16.1286i 0.320058 0.864585i
\(349\) 5.31392 11.0345i 0.284448 0.590662i −0.708966 0.705242i \(-0.750838\pi\)
0.993414 + 0.114581i \(0.0365525\pi\)
\(350\) −15.7080 + 9.67237i −0.839625 + 0.517010i
\(351\) −8.83299 18.3419i −0.471470 0.979018i
\(352\) 9.08700 + 3.06552i 0.484339 + 0.163393i
\(353\) −3.11273 + 0.233267i −0.165674 + 0.0124155i −0.157309 0.987549i \(-0.550282\pi\)
−0.00836506 + 0.999965i \(0.502663\pi\)
\(354\) −11.8783 + 21.0440i −0.631326 + 1.11848i
\(355\) 0.894782 + 0.276004i 0.0474901 + 0.0146488i
\(356\) 33.1920 13.7779i 1.75917 0.730228i
\(357\) −3.38752 3.02787i −0.179287 0.160252i
\(358\) −14.3768 15.1953i −0.759835 0.803097i
\(359\) 16.6231 + 24.3816i 0.877334 + 1.28681i 0.957029 + 0.289993i \(0.0936531\pi\)
−0.0796946 + 0.996819i \(0.525395\pi\)
\(360\) 0.164055 + 0.481500i 0.00864647 + 0.0253773i
\(361\) 8.42103 + 14.5857i 0.443212 + 0.767666i
\(362\) −25.3444 19.8112i −1.33207 1.04126i
\(363\) 2.75375 + 12.0650i 0.144534 + 0.633246i
\(364\) −3.56041 + 18.8852i −0.186616 + 0.989853i
\(365\) −0.165458 + 0.724917i −0.00866044 + 0.0379439i
\(366\) −0.332996 + 0.270896i −0.0174060 + 0.0141600i
\(367\) 25.5823 + 3.85591i 1.33539 + 0.201277i 0.777627 0.628726i \(-0.216423\pi\)
0.557759 + 0.830003i \(0.311661\pi\)
\(368\) −8.30952 + 9.68536i −0.433164 + 0.504884i
\(369\) 2.77204 2.98755i 0.144307 0.155526i
\(370\) 0.934080 + 0.356153i 0.0485605 + 0.0185155i
\(371\) −0.100579 + 0.153584i −0.00522178 + 0.00797369i
\(372\) −0.976655 + 17.6286i −0.0506372 + 0.913998i
\(373\) −8.63010 + 14.9478i −0.446850 + 0.773967i −0.998179 0.0603212i \(-0.980788\pi\)
0.551329 + 0.834288i \(0.314121\pi\)
\(374\) 1.01213 + 2.50688i 0.0523358 + 0.129628i
\(375\) −2.71785 2.92914i −0.140349 0.151260i
\(376\) 15.8941 2.87225i 0.819678 0.148125i
\(377\) −16.0329 12.7858i −0.825738 0.658504i
\(378\) 9.63171 + 18.6312i 0.495401 + 0.958284i
\(379\) 4.60730 3.67420i 0.236661 0.188731i −0.497977 0.867190i \(-0.665924\pi\)
0.734638 + 0.678460i \(0.237352\pi\)
\(380\) 0.424731 0.649774i 0.0217883 0.0333327i
\(381\) 3.70593 + 1.45447i 0.189861 + 0.0745148i
\(382\) 23.7616 + 1.54841i 1.21575 + 0.0792238i
\(383\) −9.56634 24.3746i −0.488817 1.24549i −0.936302 0.351195i \(-0.885776\pi\)
0.447485 0.894291i \(-0.352320\pi\)
\(384\) −14.8635 8.71494i −0.758502 0.444733i
\(385\) −1.15031 + 0.285164i −0.0586253 + 0.0145333i
\(386\) −12.0672 8.05647i −0.614205 0.410063i
\(387\) 6.83122 + 0.511929i 0.347250 + 0.0260228i
\(388\) −0.305435 15.6979i −0.0155061 0.796942i
\(389\) 5.33873 + 3.63988i 0.270684 + 0.184549i 0.691053 0.722804i \(-0.257147\pi\)
−0.420369 + 0.907353i \(0.638099\pi\)
\(390\) −2.06666 + 0.0201036i −0.104649 + 0.00101799i
\(391\) −3.59748 −0.181932
\(392\) 3.11547 19.5523i 0.157355 0.987542i
\(393\) −25.7072 −1.29676
\(394\) −24.4927 + 0.238255i −1.23393 + 0.0120031i
\(395\) 3.28417 + 2.23911i 0.165244 + 0.112662i
\(396\) −0.0448960 2.30745i −0.00225611 0.115954i
\(397\) 7.25469 + 0.543664i 0.364102 + 0.0272857i 0.255525 0.966802i \(-0.417752\pi\)
0.108577 + 0.994088i \(0.465371\pi\)
\(398\) 26.4028 + 17.6274i 1.32345 + 0.883579i
\(399\) 2.46852 5.37970i 0.123581 0.269322i
\(400\) −19.6001 2.17845i −0.980003 0.108922i
\(401\) −13.3656 34.0551i −0.667449 1.70063i −0.712524 0.701648i \(-0.752448\pi\)
0.0450757 0.998984i \(-0.485647\pi\)
\(402\) −31.9389 2.08129i −1.59297 0.103805i
\(403\) 19.5969 + 7.69123i 0.976193 + 0.383127i
\(404\) −11.4995 + 17.5924i −0.572119 + 0.875255i
\(405\) −1.34165 + 1.06993i −0.0666671 + 0.0531652i
\(406\) 16.8842 + 12.6993i 0.837950 + 0.630254i
\(407\) −3.54602 2.82786i −0.175770 0.140172i
\(408\) −0.863757 4.77977i −0.0427624 0.236634i
\(409\) 20.8393 + 22.4594i 1.03044 + 1.11055i 0.993796 + 0.111219i \(0.0354755\pi\)
0.0366415 + 0.999328i \(0.488334\pi\)
\(410\) −0.837605 2.07462i −0.0413664 0.102458i
\(411\) 8.07247 13.9819i 0.398186 0.689678i
\(412\) −1.61466 + 29.1445i −0.0795486 + 1.43585i
\(413\) −20.5923 21.3813i −1.01328 1.05211i
\(414\) 2.86955 + 1.09412i 0.141031 + 0.0537732i
\(415\) 0.922952 0.994706i 0.0453059 0.0488282i
\(416\) −15.4208 + 13.5752i −0.756067 + 0.665580i
\(417\) −14.7869 2.22877i −0.724118 0.109143i
\(418\) −2.73209 + 2.22259i −0.133631 + 0.108710i
\(419\) 4.50328 19.7301i 0.219999 0.963880i −0.737478 0.675371i \(-0.763983\pi\)
0.957477 0.288509i \(-0.0931595\pi\)
\(420\) 2.12771 0.0810147i 0.103822 0.00395311i
\(421\) 3.98667 + 17.4667i 0.194298 + 0.851277i 0.974256 + 0.225444i \(0.0723834\pi\)
−0.779958 + 0.625832i \(0.784759\pi\)
\(422\) −3.20343 2.50406i −0.155940 0.121896i
\(423\) −1.94345 3.36616i −0.0944938 0.163668i
\(424\) −0.185775 + 0.0632969i −0.00902205 + 0.00307397i
\(425\) −3.13168 4.59333i −0.151909 0.222809i
\(426\) 5.24580 + 5.54447i 0.254160 + 0.268630i
\(427\) −0.201753 0.487207i −0.00976349 0.0235776i
\(428\) −25.1011 + 10.4194i −1.21331 + 0.503641i
\(429\) 8.96030 + 2.76389i 0.432607 + 0.133442i
\(430\) 1.84855 3.27495i 0.0891452 0.157932i
\(431\) −30.6869 + 2.29967i −1.47814 + 0.110771i −0.789239 0.614086i \(-0.789525\pi\)
−0.688899 + 0.724857i \(0.741906\pi\)
\(432\) −4.13520 + 22.0371i −0.198955 + 1.06026i
\(433\) 14.5644 + 30.2432i 0.699918 + 1.45340i 0.882552 + 0.470214i \(0.155823\pi\)
−0.182634 + 0.983181i \(0.558462\pi\)
\(434\) −20.4058 7.34872i −0.979512 0.352750i
\(435\) −0.985814 + 2.04706i −0.0472662 + 0.0981492i
\(436\) 1.49318 4.03358i 0.0715103 0.193173i
\(437\) −1.38140 4.47839i −0.0660814 0.214231i
\(438\) −4.07913 + 4.48293i −0.194908 + 0.214203i
\(439\) −30.6661 + 4.62217i −1.46361 + 0.220604i −0.832041 0.554714i \(-0.812828\pi\)
−0.631571 + 0.775318i \(0.717590\pi\)
\(440\) −1.15704 0.516172i −0.0551599 0.0246076i
\(441\) −4.68176 + 0.884897i −0.222941 + 0.0421380i
\(442\) −5.73506 0.807449i −0.272789 0.0384064i
\(443\) 4.34114 + 28.8016i 0.206254 + 1.36840i 0.817028 + 0.576599i \(0.195620\pi\)
−0.610774 + 0.791805i \(0.709142\pi\)
\(444\) 5.20361 + 6.27088i 0.246953 + 0.297603i
\(445\) −4.53684 + 1.39943i −0.215067 + 0.0663394i
\(446\) 1.41332 6.48217i 0.0669226 0.306940i
\(447\) −20.6285 9.93414i −0.975693 0.469869i
\(448\) 15.4846 14.4301i 0.731576 0.681760i
\(449\) 17.5297 8.44186i 0.827278 0.398396i 0.0281843 0.999603i \(-0.491027\pi\)
0.799093 + 0.601207i \(0.205313\pi\)
\(450\) 1.10100 + 4.61635i 0.0519017 + 0.217617i
\(451\) 0.758565 + 10.1223i 0.0357194 + 0.476643i
\(452\) 10.8446 14.1551i 0.510089 0.665801i
\(453\) 0.434434 1.40840i 0.0204115 0.0661724i
\(454\) −7.68273 13.0129i −0.360568 0.610725i
\(455\) 0.703089 2.43959i 0.0329613 0.114370i
\(456\) 5.61852 2.91066i 0.263111 0.136304i
\(457\) −19.0440 + 12.9840i −0.890840 + 0.607364i −0.919874 0.392214i \(-0.871709\pi\)
0.0290342 + 0.999578i \(0.490757\pi\)
\(458\) 5.76792 + 8.28566i 0.269517 + 0.387164i
\(459\) −5.47390 + 3.16036i −0.255500 + 0.147513i
\(460\) 1.21332 1.17054i 0.0565715 0.0545767i
\(461\) −12.3886 + 2.82762i −0.576995 + 0.131695i −0.501053 0.865417i \(-0.667054\pi\)
−0.0759425 + 0.997112i \(0.524197\pi\)
\(462\) −9.30819 2.58483i −0.433056 0.120257i
\(463\) 33.6271 + 7.67517i 1.56278 + 0.356695i 0.914462 0.404671i \(-0.132614\pi\)
0.648322 + 0.761366i \(0.275471\pi\)
\(464\) 5.87852 + 21.8072i 0.272904 + 1.01238i
\(465\) 0.347639 2.30643i 0.0161214 0.106958i
\(466\) 19.2515 + 5.73382i 0.891807 + 0.265614i
\(467\) −0.247445 0.229595i −0.0114504 0.0106244i 0.674427 0.738342i \(-0.264391\pi\)
−0.685877 + 0.727717i \(0.740581\pi\)
\(468\) 4.32902 + 2.38830i 0.200109 + 0.110399i
\(469\) 13.6812 36.8611i 0.631740 1.70209i
\(470\) −2.12617 + 0.180148i −0.0980730 + 0.00830963i
\(471\) 28.3442 + 16.3646i 1.30603 + 0.754039i
\(472\) −3.29388 31.5633i −0.151613 1.45282i
\(473\) −12.5074 + 11.6051i −0.575090 + 0.533605i
\(474\) 14.3413 + 29.0536i 0.658716 + 1.33448i
\(475\) 4.51556 5.66233i 0.207188 0.259806i
\(476\) 5.92967 + 0.664164i 0.271786 + 0.0304419i
\(477\) 0.0294480 + 0.0369266i 0.00134833 + 0.00169075i
\(478\) 0.661846 1.40924i 0.0302721 0.0644572i
\(479\) −9.13747 + 23.2819i −0.417501 + 1.06378i 0.555200 + 0.831717i \(0.312642\pi\)
−0.972702 + 0.232060i \(0.925454\pi\)
\(480\) 1.84655 + 1.33103i 0.0842832 + 0.0607529i
\(481\) 9.04471 3.54979i 0.412403 0.161856i
\(482\) −6.82941 21.3991i −0.311071 0.974703i
\(483\) 7.82658 10.1978i 0.356122 0.464014i
\(484\) −12.1262 10.8202i −0.551191 0.491827i
\(485\) −0.155009 + 2.06845i −0.00703860 + 0.0939236i
\(486\) 9.66973 1.55382i 0.438628 0.0704826i
\(487\) −3.89188 + 5.70833i −0.176358 + 0.258669i −0.904232 0.427041i \(-0.859556\pi\)
0.727875 + 0.685710i \(0.240508\pi\)
\(488\) 0.150376 0.543311i 0.00680720 0.0245945i
\(489\) 16.0734i 0.726865i
\(490\) −0.652863 + 2.53286i −0.0294934 + 0.114423i
\(491\) 16.2303i 0.732462i 0.930524 + 0.366231i \(0.119352\pi\)
−0.930524 + 0.366231i \(0.880648\pi\)
\(492\) 2.36679 18.0830i 0.106703 0.815244i
\(493\) −3.58663 + 5.26062i −0.161534 + 0.236927i
\(494\) −1.19705 7.44946i −0.0538576 0.335167i
\(495\) −0.0227849 + 0.304043i −0.00102410 + 0.0136657i
\(496\) −12.3654 19.6137i −0.555225 0.880682i
\(497\) −8.37070 + 4.22471i −0.375477 + 0.189504i
\(498\) 10.5373 3.36291i 0.472186 0.150696i
\(499\) −16.6354 + 6.52892i −0.744703 + 0.292274i −0.707192 0.707022i \(-0.750038\pi\)
−0.0375113 + 0.999296i \(0.511943\pi\)
\(500\) 5.13770 + 1.06794i 0.229765 + 0.0477597i
\(501\) 2.55212 6.50270i 0.114020 0.290519i
\(502\) 24.6314 + 11.5681i 1.09935 + 0.516309i
\(503\) −20.3569 25.5267i −0.907667 1.13818i −0.989929 0.141568i \(-0.954786\pi\)
0.0822611 0.996611i \(-0.473786\pi\)
\(504\) −4.52783 2.33320i −0.201686 0.103929i
\(505\) 1.73119 2.17084i 0.0770369 0.0966012i
\(506\) −6.85891 + 3.38566i −0.304916 + 0.150511i
\(507\) −0.212397 + 0.197076i −0.00943288 + 0.00875244i
\(508\) −5.07356 + 1.26233i −0.225103 + 0.0560068i
\(509\) 9.51075 + 5.49103i 0.421557 + 0.243386i 0.695743 0.718291i \(-0.255075\pi\)
−0.274186 + 0.961677i \(0.588409\pi\)
\(510\) 0.0541752 + 0.639394i 0.00239892 + 0.0283128i
\(511\) −3.84209 6.37769i −0.169964 0.282132i
\(512\) 22.5408 1.97840i 0.996170 0.0874336i
\(513\) −6.03617 5.60075i −0.266504 0.247279i
\(514\) 5.13623 17.2450i 0.226549 0.760646i
\(515\) 0.574736 3.81312i 0.0253259 0.168026i
\(516\) 26.2443 15.8407i 1.15534 0.697349i
\(517\) 9.43828 + 2.15423i 0.415095 + 0.0947428i
\(518\) −9.21087 + 3.91961i −0.404702 + 0.172218i
\(519\) 37.2935 8.51200i 1.63700 0.373635i
\(520\) 2.19699 1.59373i 0.0963445 0.0698898i
\(521\) 13.9034 8.02712i 0.609118 0.351675i −0.163502 0.986543i \(-0.552279\pi\)
0.772620 + 0.634868i \(0.218946\pi\)
\(522\) 4.46084 3.10534i 0.195246 0.135917i
\(523\) −20.9806 + 14.3043i −0.917416 + 0.625484i −0.927240 0.374468i \(-0.877825\pi\)
0.00982360 + 0.999952i \(0.496873\pi\)
\(524\) 27.5186 19.5567i 1.20216 0.854339i
\(525\) 19.8339 + 1.11578i 0.865622 + 0.0486965i
\(526\) −7.45638 + 4.40220i −0.325114 + 0.191945i
\(527\) 1.92660 6.24587i 0.0839238 0.272074i
\(528\) −6.14517 8.30016i −0.267434 0.361218i
\(529\) 0.958160 + 12.7858i 0.0416591 + 0.555902i
\(530\) 0.0252209 0.00601520i 0.00109553 0.000261284i
\(531\) −6.88069 + 3.31357i −0.298597 + 0.143797i
\(532\) 1.45014 + 7.63670i 0.0628717 + 0.331093i
\(533\) −19.5922 9.43511i −0.848632 0.408680i
\(534\) −37.8125 8.24433i −1.63631 0.356767i
\(535\) 3.43094 1.05830i 0.148332 0.0457545i
\(536\) 35.7728 22.0696i 1.54515 0.953261i
\(537\) 3.35745 + 22.2752i 0.144884 + 0.961246i
\(538\) −0.353709 + 2.51228i −0.0152495 + 0.108312i
\(539\) 6.31568 10.0470i 0.272036 0.432756i
\(540\) 0.817876 2.84698i 0.0351958 0.122515i
\(541\) 36.7348 5.53688i 1.57935 0.238049i 0.699972 0.714170i \(-0.253196\pi\)
0.879379 + 0.476122i \(0.157958\pi\)
\(542\) −11.5396 10.5002i −0.495669 0.451021i
\(543\) 10.2108 + 33.1027i 0.438189 + 1.42057i
\(544\) 4.56083 + 4.45947i 0.195544 + 0.191198i
\(545\) −0.246541 + 0.511947i −0.0105606 + 0.0219294i
\(546\) 14.7659 14.5005i 0.631923 0.620563i
\(547\) 8.17165 + 16.9686i 0.349394 + 0.725525i 0.999408 0.0343973i \(-0.0109512\pi\)
−0.650014 + 0.759922i \(0.725237\pi\)
\(548\) 1.99546 + 21.1083i 0.0852418 + 0.901701i
\(549\) −0.135285 + 0.0101382i −0.00577382 + 0.000432688i
\(550\) −10.2937 5.81030i −0.438925 0.247752i
\(551\) −7.92603 2.44486i −0.337660 0.104154i
\(552\) 13.3030 3.44762i 0.566215 0.146740i
\(553\) −39.2400 + 6.66324i −1.66866 + 0.283350i
\(554\) 14.6970 13.9053i 0.624414 0.590778i
\(555\) −0.606430 0.889470i −0.0257415 0.0377559i
\(556\) 17.5244 8.86331i 0.743199 0.375888i
\(557\) −3.41050 5.90716i −0.144508 0.250295i 0.784682 0.619899i \(-0.212826\pi\)
−0.929189 + 0.369605i \(0.879493\pi\)
\(558\) −3.43635 + 4.39610i −0.145472 + 0.186102i
\(559\) −8.13352 35.6353i −0.344011 1.50721i
\(560\) −2.21601 + 1.70538i −0.0936434 + 0.0720654i
\(561\) 0.647831 2.83833i 0.0273514 0.119834i
\(562\) 21.0364 + 25.8588i 0.887369 + 1.09079i
\(563\) −25.5068 3.84453i −1.07498 0.162028i −0.412390 0.911007i \(-0.635306\pi\)
−0.662593 + 0.748979i \(0.730544\pi\)
\(564\) −15.8147 7.24039i −0.665917 0.304875i
\(565\) −1.60233 + 1.72690i −0.0674105 + 0.0726512i
\(566\) 1.61756 4.24237i 0.0679912 0.178320i
\(567\) 2.24453 17.0361i 0.0942614 0.715450i
\(568\) −9.83339 1.94441i −0.412600 0.0815858i
\(569\) −18.2427 + 31.5972i −0.764773 + 1.32462i 0.175594 + 0.984463i \(0.443815\pi\)
−0.940367 + 0.340162i \(0.889518\pi\)
\(570\) −0.775160 + 0.312963i −0.0324679 + 0.0131086i
\(571\) −6.06637 6.53799i −0.253870 0.273606i 0.593239 0.805027i \(-0.297849\pi\)
−0.847108 + 0.531420i \(0.821659\pi\)
\(572\) −11.6943 + 3.85790i −0.488963 + 0.161307i
\(573\) −20.0482 15.9879i −0.837527 0.667905i
\(574\) 20.4519 + 9.14474i 0.853644 + 0.381694i
\(575\) 12.2975 9.80691i 0.512840 0.408977i
\(576\) −2.28168 4.94423i −0.0950702 0.206010i
\(577\) −12.3632 4.85218i −0.514685 0.201999i 0.0937602 0.995595i \(-0.470111\pi\)
−0.608445 + 0.793596i \(0.708207\pi\)
\(578\) 1.44642 22.1964i 0.0601630 0.923248i
\(579\) 5.70842 + 14.5448i 0.237234 + 0.604462i
\(580\) −0.502025 2.94126i −0.0208454 0.122129i
\(581\) 0.252756 + 13.5852i 0.0104861 + 0.563610i
\(582\) −9.38827 + 14.0620i −0.389156 + 0.582889i
\(583\) −0.117308 0.00879100i −0.00485839 0.000364086i
\(584\) 0.956169 7.90201i 0.0395666 0.326987i
\(585\) −0.539675 0.367944i −0.0223128 0.0152126i
\(586\) −0.267180 27.4662i −0.0110371 1.13462i
\(587\) 5.02774 0.207517 0.103759 0.994603i \(-0.466913\pi\)
0.103759 + 0.994603i \(0.466913\pi\)
\(588\) −14.7831 + 15.3639i −0.609646 + 0.633595i
\(589\) 8.51510 0.350858
\(590\) 0.0407807 + 4.19228i 0.00167892 + 0.172593i
\(591\) 21.7936 + 14.8587i 0.896471 + 0.611203i
\(592\) −10.3409 2.75410i −0.425006 0.113193i
\(593\) −23.6004 1.76860i −0.969150 0.0726278i −0.419261 0.907866i \(-0.637711\pi\)
−0.549889 + 0.835238i \(0.685330\pi\)
\(594\) −7.46220 + 11.1771i −0.306178 + 0.458602i
\(595\) −0.771635 0.161080i −0.0316340 0.00660365i
\(596\) 29.6394 5.05895i 1.21408 0.207223i
\(597\) −12.4899 31.8237i −0.511177 1.30246i
\(598\) 1.06555 16.3516i 0.0435734 0.668668i
\(599\) −22.0537 8.65543i −0.901088 0.353651i −0.130846 0.991403i \(-0.541769\pi\)
−0.770242 + 0.637752i \(0.779865\pi\)
\(600\) 15.9825 + 13.9843i 0.652485 + 0.570909i
\(601\) −29.3205 + 23.3824i −1.19601 + 0.953786i −0.999642 0.0267443i \(-0.991486\pi\)
−0.196368 + 0.980530i \(0.562915\pi\)
\(602\) 9.41604 + 36.4607i 0.383769 + 1.48603i
\(603\) −7.90844 6.30677i −0.322057 0.256831i
\(604\) 0.606394 + 1.83814i 0.0246738 + 0.0747927i
\(605\) 1.46035 + 1.57389i 0.0593718 + 0.0639876i
\(606\) 20.9872 8.47337i 0.852546 0.344207i
\(607\) −16.7349 + 28.9857i −0.679249 + 1.17649i 0.295958 + 0.955201i \(0.404361\pi\)
−0.975207 + 0.221293i \(0.928972\pi\)
\(608\) −3.80014 + 7.39004i −0.154116 + 0.299706i
\(609\) −7.10928 21.6119i −0.288083 0.875758i
\(610\) −0.0265333 + 0.0695887i −0.00107430 + 0.00281756i
\(611\) −14.1064 + 15.2031i −0.570683 + 0.615050i
\(612\) 0.639002 1.39573i 0.0258301 0.0564189i
\(613\) 12.0968 + 1.82330i 0.488585 + 0.0736424i 0.388715 0.921358i \(-0.372919\pi\)
0.0998703 + 0.995000i \(0.468157\pi\)
\(614\) 13.8943 + 17.0794i 0.560727 + 0.689267i
\(615\) −0.536125 + 2.34892i −0.0216186 + 0.0947175i
\(616\) 11.9305 4.31424i 0.480693 0.173826i
\(617\) 4.56028 + 19.9799i 0.183590 + 0.804360i 0.979903 + 0.199475i \(0.0639237\pi\)
−0.796313 + 0.604885i \(0.793219\pi\)
\(618\) 19.3583 24.7650i 0.778706 0.996192i
\(619\) 10.0376 + 17.3856i 0.403444 + 0.698786i 0.994139 0.108109i \(-0.0344795\pi\)
−0.590695 + 0.806895i \(0.701146\pi\)
\(620\) 1.38248 + 2.73342i 0.0555219 + 0.109777i
\(621\) −10.0740 14.7759i −0.404257 0.592935i
\(622\) −21.8754 + 20.6970i −0.877124 + 0.829874i
\(623\) 23.0007 41.6072i 0.921505 1.66696i
\(624\) 21.9814 2.51030i 0.879959 0.100493i
\(625\) 22.8933 + 7.06165i 0.915733 + 0.282466i
\(626\) 11.8409 + 6.68365i 0.473259 + 0.267133i
\(627\) 3.78212 0.283431i 0.151043 0.0113191i
\(628\) −42.7908 + 4.04521i −1.70754 + 0.161421i
\(629\) −1.30891 2.71798i −0.0521896 0.108373i
\(630\) 0.566508 + 0.363169i 0.0225702 + 0.0144690i
\(631\) 16.0221 33.2703i 0.637830 1.32447i −0.291978 0.956425i \(-0.594313\pi\)
0.929809 0.368044i \(-0.119972\pi\)
\(632\) −37.4543 20.1907i −1.48985 0.803143i
\(633\) 1.29061 + 4.18405i 0.0512971 + 0.166301i
\(634\) −9.02324 8.21047i −0.358359 0.326079i
\(635\) 0.682989 0.102944i 0.0271036 0.00408521i
\(636\) 0.203135 + 0.0583562i 0.00805482 + 0.00231397i
\(637\) 11.8750 + 22.4791i 0.470503 + 0.890653i
\(638\) −1.88736 + 13.4053i −0.0747211 + 0.530721i
\(639\) 0.359526 + 2.38530i 0.0142226 + 0.0943609i
\(640\) −2.98925 0.0200550i −0.118160 0.000792742i
\(641\) −15.0682 + 4.64792i −0.595158 + 0.183582i −0.577677 0.816265i \(-0.696041\pi\)
−0.0174806 + 0.999847i \(0.505565\pi\)
\(642\) 28.5953 + 6.23468i 1.12857 + 0.246063i
\(643\) −7.44922 3.58735i −0.293768 0.141471i 0.281195 0.959651i \(-0.409269\pi\)
−0.574963 + 0.818179i \(0.694984\pi\)
\(644\) −0.620136 + 16.8704i −0.0244368 + 0.664787i
\(645\) −3.64871 + 1.75712i −0.143668 + 0.0691867i
\(646\) −2.27866 + 0.543461i −0.0896526 + 0.0213822i
\(647\) 0.442714 + 5.90761i 0.0174049 + 0.232252i 0.999122 + 0.0419043i \(0.0133425\pi\)
−0.981717 + 0.190348i \(0.939038\pi\)
\(648\) 13.0957 12.8822i 0.514448 0.506061i
\(649\) 5.60662 18.1762i 0.220079 0.713478i
\(650\) 21.8057 12.8739i 0.855288 0.504957i
\(651\) 13.5137 + 19.0497i 0.529643 + 0.746616i
\(652\) −12.2278 17.2060i −0.478879 0.673839i
\(653\) −7.87320 + 5.36785i −0.308102 + 0.210060i −0.707493 0.706720i \(-0.750174\pi\)
0.399391 + 0.916781i \(0.369222\pi\)
\(654\) −3.80137 + 2.64626i −0.148645 + 0.103477i
\(655\) −3.86251 + 2.23002i −0.150921 + 0.0871342i
\(656\) 11.2231 + 21.1577i 0.438187 + 0.826070i
\(657\) −1.86748 + 0.426239i −0.0728572 + 0.0166292i
\(658\) 14.0834 16.0682i 0.549029 0.626402i
\(659\) 41.0401 + 9.36715i 1.59870 + 0.364892i 0.926742 0.375699i \(-0.122597\pi\)
0.671956 + 0.740591i \(0.265455\pi\)
\(660\) 0.705036 + 1.16808i 0.0274435 + 0.0454673i
\(661\) 1.64378 10.9058i 0.0639358 0.424186i −0.933849 0.357667i \(-0.883572\pi\)
0.997785 0.0665196i \(-0.0211895\pi\)
\(662\) 12.8097 43.0091i 0.497865 1.67160i
\(663\) 4.57195 + 4.24215i 0.177560 + 0.164751i
\(664\) −8.72143 + 11.6161i −0.338457 + 0.450792i
\(665\) −0.0957774 1.02244i −0.00371409 0.0396485i
\(666\) 0.217423 + 2.56609i 0.00842495 + 0.0994341i
\(667\) −15.6007 9.00705i −0.604061 0.348755i
\(668\) 2.21497 + 8.90243i 0.0856998 + 0.344445i
\(669\) −5.23729 + 4.85950i −0.202485 + 0.187879i
\(670\) −4.97938 + 2.45790i −0.192370 + 0.0949568i
\(671\) 0.210674 0.264177i 0.00813300 0.0101985i
\(672\) −22.5637 + 3.22666i −0.870413 + 0.124471i
\(673\) 8.21635 + 10.3030i 0.316717 + 0.397151i 0.914552 0.404469i \(-0.132544\pi\)
−0.597835 + 0.801619i \(0.703972\pi\)
\(674\) 4.65483 + 2.18613i 0.179297 + 0.0842064i
\(675\) 10.0965 25.7254i 0.388614 0.990171i
\(676\) 0.0774381 0.372543i 0.00297839 0.0143286i
\(677\) 16.9005 6.63295i 0.649539 0.254925i −0.0176155 0.999845i \(-0.505607\pi\)
0.667154 + 0.744920i \(0.267512\pi\)
\(678\) −18.2937 + 5.83832i −0.702564 + 0.224219i
\(679\) −13.2499 15.9952i −0.508486 0.613840i
\(680\) −0.544411 0.643234i −0.0208772 0.0246669i
\(681\) −1.21611 + 16.2278i −0.0466013 + 0.621852i
\(682\) −2.20489 13.7215i −0.0844295 0.525422i
\(683\) 2.20788 3.23836i 0.0844820 0.123912i −0.781672 0.623690i \(-0.785633\pi\)
0.866154 + 0.499778i \(0.166585\pi\)
\(684\) 1.98287 + 0.259528i 0.0758169 + 0.00992329i
\(685\) 2.80105i 0.107023i
\(686\) −12.8851 22.8029i −0.491956 0.870620i
\(687\) 10.8717i 0.414783i
\(688\) −16.0427 + 36.9223i −0.611623 + 1.40765i
\(689\) 0.141963 0.208221i 0.00540835 0.00793259i
\(690\) −1.79253 + 0.288040i −0.0682406 + 0.0109655i
\(691\) 0.0990365 1.32155i 0.00376752 0.0502741i −0.995003 0.0998434i \(-0.968166\pi\)
0.998771 + 0.0495693i \(0.0157849\pi\)
\(692\) −33.4458 + 37.4828i −1.27142 + 1.42488i
\(693\) −1.94761 2.35114i −0.0739838 0.0893126i
\(694\) 0.597564 + 1.87240i 0.0226832 + 0.0710752i
\(695\) −2.41508 + 0.947848i −0.0916091 + 0.0359539i
\(696\) 8.22145 22.8904i 0.311633 0.867657i
\(697\) −2.46663 + 6.28487i −0.0934302 + 0.238056i
\(698\) 7.36287 15.6775i 0.278689 0.593401i
\(699\) −13.4870 16.9122i −0.510125 0.639677i
\(700\) −22.0803 + 13.8942i −0.834557 + 0.525153i
\(701\) 16.8610 21.1430i 0.636832 0.798562i −0.353771 0.935332i \(-0.615101\pi\)
0.990603 + 0.136770i \(0.0436722\pi\)
\(702\) −12.7435 25.8166i −0.480971 0.974386i
\(703\) 2.88092 2.67310i 0.108656 0.100818i
\(704\) 12.8925 + 4.21009i 0.485905 + 0.158674i
\(705\) 1.98998 + 1.14892i 0.0749471 + 0.0432707i
\(706\) −4.39864 + 0.372693i −0.165545 + 0.0140265i
\(707\) 2.59314 + 27.6822i 0.0975251 + 1.04110i
\(708\) −16.5082 + 29.9227i −0.620417 + 1.12456i
\(709\) −7.92861 7.35667i −0.297765 0.276286i 0.517114 0.855917i \(-0.327006\pi\)
−0.814879 + 0.579631i \(0.803197\pi\)
\(710\) 1.26915 + 0.378001i 0.0476303 + 0.0141861i
\(711\) −1.52615 + 10.1253i −0.0572349 + 0.379729i
\(712\) 46.7488 19.9406i 1.75198 0.747305i
\(713\) 18.0295 + 4.11511i 0.675209 + 0.154112i
\(714\) −4.83211 4.23525i −0.180837 0.158500i
\(715\) 1.58605 0.362005i 0.0593148 0.0135382i
\(716\) −20.5399 21.2906i −0.767611 0.795668i
\(717\) −1.45199 + 0.838307i −0.0542256 + 0.0313071i
\(718\) 23.8429 + 34.2505i 0.889810 + 1.27822i
\(719\) −20.6067 + 14.0494i −0.768501 + 0.523955i −0.882946 0.469475i \(-0.844443\pi\)
0.114445 + 0.993430i \(0.463491\pi\)
\(720\) 0.238622 + 0.678654i 0.00889290 + 0.0252920i
\(721\) 22.3416 + 31.4940i 0.832044 + 1.17290i
\(722\) 12.1092 + 20.5104i 0.450659 + 0.763319i
\(723\) −7.12994 + 23.1147i −0.265165 + 0.859645i
\(724\) −36.1132 27.6673i −1.34214 1.02825i
\(725\) −2.08033 27.7601i −0.0772615 1.03098i
\(726\) 4.06017 + 17.0237i 0.150687 + 0.631811i
\(727\) 5.80239 2.79428i 0.215199 0.103634i −0.323179 0.946338i \(-0.604752\pi\)
0.538378 + 0.842704i \(0.319037\pi\)
\(728\) −4.77515 + 26.7554i −0.176979 + 0.991622i
\(729\) −27.0568 13.0299i −1.00210 0.482588i
\(730\) −0.224009 + 1.02741i −0.00829095 + 0.0380263i
\(731\) −10.8443 + 3.34504i −0.401092 + 0.123721i
\(732\) −0.467179 + 0.387668i −0.0172674 + 0.0143286i
\(733\) 4.96258 + 32.9246i 0.183297 + 1.21610i 0.871433 + 0.490515i \(0.163191\pi\)
−0.688135 + 0.725582i \(0.741571\pi\)
\(734\) 36.2302 + 5.10091i 1.33728 + 0.188278i
\(735\) 2.13536 1.83691i 0.0787641 0.0677554i
\(736\) −11.6176 + 13.8108i −0.428232 + 0.509074i
\(737\) 24.9125 3.75495i 0.917662 0.138315i
\(738\) 3.87897 4.26297i 0.142787 0.156922i
\(739\) −11.7170 37.9855i −0.431016 1.39732i −0.867423 0.497571i \(-0.834225\pi\)
0.436407 0.899749i \(-0.356251\pi\)
\(740\) 1.32583 + 0.490804i 0.0487383 + 0.0180423i
\(741\) −3.52534 + 7.32044i −0.129506 + 0.268923i
\(742\) −0.140120 + 0.218574i −0.00514397 + 0.00802410i
\(743\) 9.55016 + 19.8311i 0.350361 + 0.727533i 0.999449 0.0331805i \(-0.0105636\pi\)
−0.649088 + 0.760713i \(0.724849\pi\)
\(744\) −1.13863 + 24.9428i −0.0417442 + 0.914448i
\(745\) −3.96119 + 0.296850i −0.145127 + 0.0108758i
\(746\) −11.9986 + 21.2571i −0.439300 + 0.778277i
\(747\) 3.34034 + 1.03036i 0.122217 + 0.0376988i
\(748\) 1.46578 + 3.53117i 0.0535943 + 0.129112i
\(749\) −17.3941 + 31.4650i −0.635565 + 1.14970i
\(750\) −3.88373 4.10485i −0.141814 0.149888i
\(751\) −0.747435 1.09629i −0.0272743 0.0400040i 0.812359 0.583157i \(-0.198183\pi\)
−0.839634 + 0.543153i \(0.817230\pi\)
\(752\) 22.4371 4.28042i 0.818198 0.156091i
\(753\) −14.6524 25.3786i −0.533962 0.924849i
\(754\) −22.8488 17.8605i −0.832104 0.650441i
\(755\) −0.0569007 0.249298i −0.00207083 0.00907290i
\(756\) 13.8769 + 26.2147i 0.504699 + 0.953420i
\(757\) 7.47782 32.7625i 0.271786 1.19077i −0.636118 0.771592i \(-0.719461\pi\)
0.907903 0.419179i \(-0.137682\pi\)
\(758\) 6.46485 5.25923i 0.234814 0.191024i
\(759\) 8.14505 + 1.22767i 0.295647 + 0.0445616i
\(760\) 0.591694 0.924718i 0.0214630 0.0335431i
\(761\) −10.7488 + 11.5845i −0.389644 + 0.419936i −0.897160 0.441706i \(-0.854373\pi\)
0.507516 + 0.861642i \(0.330564\pi\)
\(762\) 5.26074 + 2.00586i 0.190577 + 0.0726645i
\(763\) −1.77795 5.40488i −0.0643661 0.195670i
\(764\) 33.6237 + 1.86282i 1.21646 + 0.0673943i
\(765\) −0.101398 + 0.175626i −0.00366605 + 0.00634978i
\(766\) −13.8635 34.3377i −0.500909 1.24067i