Properties

Label 196.2.p.a.103.23
Level $196$
Weight $2$
Character 196.103
Analytic conductor $1.565$
Analytic rank $0$
Dimension $312$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(3,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.p (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(312\)
Relative dimension: \(26\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 103.23
Character \(\chi\) \(=\) 196.103
Dual form 196.2.p.a.59.23

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14691 + 0.827407i) q^{2} +(0.330273 + 0.225176i) q^{3} +(0.630795 + 1.89792i) q^{4} +(-0.194137 - 0.0145486i) q^{5} +(0.192480 + 0.531527i) q^{6} +(1.62030 + 2.09156i) q^{7} +(-0.846889 + 2.69866i) q^{8} +(-1.03765 - 2.64388i) q^{9} +O(q^{10})\) \(q+(1.14691 + 0.827407i) q^{2} +(0.330273 + 0.225176i) q^{3} +(0.630795 + 1.89792i) q^{4} +(-0.194137 - 0.0145486i) q^{5} +(0.192480 + 0.531527i) q^{6} +(1.62030 + 2.09156i) q^{7} +(-0.846889 + 2.69866i) q^{8} +(-1.03765 - 2.64388i) q^{9} +(-0.210620 - 0.177316i) q^{10} +(-4.10220 - 1.61000i) q^{11} +(-0.219032 + 0.768872i) q^{12} +(2.89899 - 2.31187i) q^{13} +(0.127764 + 3.73948i) q^{14} +(-0.0608423 - 0.0485201i) q^{15} +(-3.20420 + 2.39439i) q^{16} +(4.17672 + 4.50144i) q^{17} +(0.997481 - 3.89085i) q^{18} +(2.69573 - 4.66913i) q^{19} +(-0.0948487 - 0.377634i) q^{20} +(0.0641719 + 1.05564i) q^{21} +(-3.37273 - 5.24071i) q^{22} +(-2.58949 + 2.79080i) q^{23} +(-0.887380 + 0.700596i) q^{24} +(-4.90668 - 0.739562i) q^{25} +(5.23773 - 0.252853i) q^{26} +(0.519478 - 2.27598i) q^{27} +(-2.94754 + 4.39455i) q^{28} +(-1.16681 - 5.11213i) q^{29} +(-0.0296346 - 0.105990i) q^{30} +(-4.63766 - 8.03266i) q^{31} +(-5.65606 + 0.0949747i) q^{32} +(-0.992315 - 1.45546i) q^{33} +(1.06579 + 8.61858i) q^{34} +(-0.284132 - 0.429623i) q^{35} +(4.36333 - 3.63712i) q^{36} +(10.0178 + 3.09008i) q^{37} +(6.95502 - 3.12460i) q^{38} +(1.47804 - 0.110764i) q^{39} +(0.203674 - 0.511590i) q^{40} +(-1.28140 - 2.66086i) q^{41} +(-0.799845 + 1.26382i) q^{42} +(-0.871772 + 1.81025i) q^{43} +(0.467995 - 8.80123i) q^{44} +(0.162981 + 0.528372i) q^{45} +(-5.27903 + 1.05823i) q^{46} +(-0.800046 + 0.120588i) q^{47} +(-1.59742 + 0.0692948i) q^{48} +(-1.74925 + 6.77791i) q^{49} +(-5.01559 - 4.90803i) q^{50} +(0.365842 + 2.42720i) q^{51} +(6.21641 + 4.04374i) q^{52} +(-5.82431 + 1.79656i) q^{53} +(2.47896 - 2.18052i) q^{54} +(0.772968 + 0.372242i) q^{55} +(-7.01663 + 2.60133i) q^{56} +(1.94170 - 0.935075i) q^{57} +(2.89159 - 6.82857i) q^{58} +(0.925691 + 12.3525i) q^{59} +(0.0537083 - 0.146080i) q^{60} +(2.27555 - 7.37716i) q^{61} +(1.32731 - 13.0500i) q^{62} +(3.84854 - 6.45419i) q^{63} +(-6.56556 - 4.57094i) q^{64} +(-0.596437 + 0.406644i) q^{65} +(0.0661633 - 2.49032i) q^{66} +(-1.40118 + 0.808972i) q^{67} +(-5.90871 + 10.7666i) q^{68} +(-1.48366 + 0.338636i) q^{69} +(0.0296004 - 0.727831i) q^{70} +(4.57108 + 1.04332i) q^{71} +(8.01372 - 0.561185i) q^{72} +(-2.28410 + 15.1540i) q^{73} +(8.93273 + 11.8328i) q^{74} +(-1.45401 - 1.34913i) q^{75} +(10.5621 + 2.17101i) q^{76} +(-3.27940 - 11.1887i) q^{77} +(1.78682 + 1.09590i) q^{78} +(2.58376 + 1.49174i) q^{79} +(0.656889 - 0.418225i) q^{80} +(-5.56201 + 5.16079i) q^{81} +(0.731965 - 4.11201i) q^{82} +(0.292327 - 0.366567i) q^{83} +(-1.96304 + 0.787685i) q^{84} +(-0.745368 - 0.934662i) q^{85} +(-2.49766 + 1.35488i) q^{86} +(0.765765 - 1.95114i) q^{87} +(7.81895 - 9.70698i) q^{88} +(-10.1900 + 3.99930i) q^{89} +(-0.250255 + 0.740846i) q^{90} +(9.53265 + 2.31749i) q^{91} +(-6.93015 - 3.15421i) q^{92} +(0.277072 - 3.69726i) q^{93} +(-1.01735 - 0.523661i) q^{94} +(-0.591270 + 0.867234i) q^{95} +(-1.88943 - 1.24224i) q^{96} +4.71195i q^{97} +(-7.61432 + 6.32630i) q^{98} +12.5164i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9} - 20 q^{10} + 9 q^{12} - 28 q^{13} - 51 q^{14} - 17 q^{16} - 22 q^{17} - 12 q^{18} - 14 q^{20} - 34 q^{21} - 18 q^{22} - 44 q^{24} - 48 q^{25} - 2 q^{26} - 36 q^{28} - 11 q^{30} - 13 q^{32} - 34 q^{33} - 98 q^{34} - 4 q^{36} - 58 q^{37} - 18 q^{38} + 30 q^{40} - 28 q^{41} - 26 q^{42} + 16 q^{44} - 28 q^{45} - 14 q^{46} - 24 q^{49} + 96 q^{50} - 14 q^{52} - 22 q^{53} - 17 q^{54} + 40 q^{56} + 34 q^{57} - 12 q^{58} + 98 q^{60} - 38 q^{61} - 4 q^{64} - 32 q^{65} - 176 q^{66} - 21 q^{68} + 28 q^{69} + 50 q^{70} - 120 q^{72} - 58 q^{73} - 14 q^{74} - 91 q^{76} - 18 q^{77} - 112 q^{78} + 66 q^{80} - 170 q^{81} + 114 q^{82} + 140 q^{84} - 24 q^{85} + 97 q^{86} + 127 q^{88} - 82 q^{89} + 266 q^{90} + 34 q^{92} + 226 q^{94} + 122 q^{96} + 183 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14691 + 0.827407i 0.810986 + 0.585065i
\(3\) 0.330273 + 0.225176i 0.190683 + 0.130006i 0.654899 0.755717i \(-0.272711\pi\)
−0.464215 + 0.885722i \(0.653664\pi\)
\(4\) 0.630795 + 1.89792i 0.315397 + 0.948960i
\(5\) −0.194137 0.0145486i −0.0868208 0.00650632i 0.0312488 0.999512i \(-0.490052\pi\)
−0.118070 + 0.993005i \(0.537671\pi\)
\(6\) 0.192480 + 0.531527i 0.0785797 + 0.216995i
\(7\) 1.62030 + 2.09156i 0.612416 + 0.790535i
\(8\) −0.846889 + 2.69866i −0.299420 + 0.954121i
\(9\) −1.03765 2.64388i −0.345882 0.881294i
\(10\) −0.210620 0.177316i −0.0666039 0.0560724i
\(11\) −4.10220 1.61000i −1.23686 0.485432i −0.345368 0.938467i \(-0.612246\pi\)
−0.891493 + 0.453035i \(0.850341\pi\)
\(12\) −0.219032 + 0.768872i −0.0632291 + 0.221954i
\(13\) 2.89899 2.31187i 0.804036 0.641197i −0.132731 0.991152i \(-0.542375\pi\)
0.936766 + 0.349955i \(0.113803\pi\)
\(14\) 0.127764 + 3.73948i 0.0341463 + 0.999417i
\(15\) −0.0608423 0.0485201i −0.0157094 0.0125278i
\(16\) −3.20420 + 2.39439i −0.801049 + 0.598599i
\(17\) 4.17672 + 4.50144i 1.01300 + 1.09176i 0.995768 + 0.0919072i \(0.0292963\pi\)
0.0172364 + 0.999851i \(0.494513\pi\)
\(18\) 0.997481 3.89085i 0.235109 0.917081i
\(19\) 2.69573 4.66913i 0.618442 1.07117i −0.371328 0.928502i \(-0.621098\pi\)
0.989770 0.142671i \(-0.0455691\pi\)
\(20\) −0.0948487 0.377634i −0.0212088 0.0844416i
\(21\) 0.0641719 + 1.05564i 0.0140034 + 0.230359i
\(22\) −3.37273 5.24071i −0.719068 1.11732i
\(23\) −2.58949 + 2.79080i −0.539945 + 0.581922i −0.942807 0.333338i \(-0.891825\pi\)
0.402862 + 0.915261i \(0.368015\pi\)
\(24\) −0.887380 + 0.700596i −0.181136 + 0.143009i
\(25\) −4.90668 0.739562i −0.981335 0.147912i
\(26\) 5.23773 0.252853i 1.02720 0.0495886i
\(27\) 0.519478 2.27598i 0.0999736 0.438013i
\(28\) −2.94754 + 4.39455i −0.557032 + 0.830491i
\(29\) −1.16681 5.11213i −0.216671 0.949299i −0.959918 0.280281i \(-0.909572\pi\)
0.743247 0.669017i \(-0.233285\pi\)
\(30\) −0.0296346 0.105990i −0.00541052 0.0193510i
\(31\) −4.63766 8.03266i −0.832948 1.44271i −0.895690 0.444679i \(-0.853318\pi\)
0.0627420 0.998030i \(-0.480015\pi\)
\(32\) −5.65606 + 0.0949747i −0.999859 + 0.0167893i
\(33\) −0.992315 1.45546i −0.172740 0.253363i
\(34\) 1.06579 + 8.61858i 0.182782 + 1.47807i
\(35\) −0.284132 0.429623i −0.0480270 0.0726195i
\(36\) 4.36333 3.63712i 0.727222 0.606186i
\(37\) 10.0178 + 3.09008i 1.64691 + 0.508006i 0.973000 0.230804i \(-0.0741355\pi\)
0.673914 + 0.738810i \(0.264612\pi\)
\(38\) 6.95502 3.12460i 1.12825 0.506877i
\(39\) 1.47804 0.110764i 0.236675 0.0177364i
\(40\) 0.203674 0.511590i 0.0322038 0.0808895i
\(41\) −1.28140 2.66086i −0.200122 0.415557i 0.776622 0.629967i \(-0.216932\pi\)
−0.976744 + 0.214410i \(0.931217\pi\)
\(42\) −0.799845 + 1.26382i −0.123419 + 0.195011i
\(43\) −0.871772 + 1.81025i −0.132944 + 0.276061i −0.956805 0.290731i \(-0.906101\pi\)
0.823861 + 0.566792i \(0.191816\pi\)
\(44\) 0.467995 8.80123i 0.0705529 1.32684i
\(45\) 0.162981 + 0.528372i 0.0242958 + 0.0787651i
\(46\) −5.27903 + 1.05823i −0.778351 + 0.156028i
\(47\) −0.800046 + 0.120588i −0.116699 + 0.0175895i −0.207132 0.978313i \(-0.566413\pi\)
0.0904332 + 0.995903i \(0.471175\pi\)
\(48\) −1.59742 + 0.0692948i −0.230568 + 0.0100018i
\(49\) −1.74925 + 6.77791i −0.249893 + 0.968274i
\(50\) −5.01559 4.90803i −0.709311 0.694100i
\(51\) 0.365842 + 2.42720i 0.0512281 + 0.339876i
\(52\) 6.21641 + 4.04374i 0.862061 + 0.560766i
\(53\) −5.82431 + 1.79656i −0.800031 + 0.246777i −0.667702 0.744429i \(-0.732722\pi\)
−0.132329 + 0.991206i \(0.542246\pi\)
\(54\) 2.47896 2.18052i 0.337343 0.296732i
\(55\) 0.772968 + 0.372242i 0.104227 + 0.0501931i
\(56\) −7.01663 + 2.60133i −0.937637 + 0.347617i
\(57\) 1.94170 0.935075i 0.257185 0.123854i
\(58\) 2.89159 6.82857i 0.379684 0.896635i
\(59\) 0.925691 + 12.3525i 0.120515 + 1.60816i 0.650065 + 0.759879i \(0.274742\pi\)
−0.529550 + 0.848279i \(0.677639\pi\)
\(60\) 0.0537083 0.146080i 0.00693371 0.0188589i
\(61\) 2.27555 7.37716i 0.291355 0.944549i −0.685031 0.728514i \(-0.740211\pi\)
0.976386 0.216035i \(-0.0693124\pi\)
\(62\) 1.32731 13.0500i 0.168569 1.65735i
\(63\) 3.84854 6.45419i 0.484870 0.813151i
\(64\) −6.56556 4.57094i −0.820695 0.571367i
\(65\) −0.596437 + 0.406644i −0.0739789 + 0.0504380i
\(66\) 0.0661633 2.49032i 0.00814414 0.306538i
\(67\) −1.40118 + 0.808972i −0.171182 + 0.0988317i −0.583143 0.812370i \(-0.698177\pi\)
0.411961 + 0.911201i \(0.364844\pi\)
\(68\) −5.90871 + 10.7666i −0.716536 + 1.30564i
\(69\) −1.48366 + 0.338636i −0.178612 + 0.0407670i
\(70\) 0.0296004 0.727831i 0.00353792 0.0869924i
\(71\) 4.57108 + 1.04332i 0.542487 + 0.123819i 0.484979 0.874526i \(-0.338827\pi\)
0.0575084 + 0.998345i \(0.481684\pi\)
\(72\) 8.01372 0.561185i 0.944426 0.0661363i
\(73\) −2.28410 + 15.1540i −0.267333 + 1.77364i 0.303753 + 0.952751i \(0.401760\pi\)
−0.571086 + 0.820890i \(0.693478\pi\)
\(74\) 8.93273 + 11.8328i 1.03841 + 1.37554i
\(75\) −1.45401 1.34913i −0.167895 0.155784i
\(76\) 10.5621 + 2.17101i 1.21155 + 0.249031i
\(77\) −3.27940 11.1887i −0.373722 1.27507i
\(78\) 1.78682 + 1.09590i 0.202317 + 0.124087i
\(79\) 2.58376 + 1.49174i 0.290696 + 0.167834i 0.638256 0.769824i \(-0.279656\pi\)
−0.347560 + 0.937658i \(0.612990\pi\)
\(80\) 0.656889 0.418225i 0.0734424 0.0467590i
\(81\) −5.56201 + 5.16079i −0.618001 + 0.573421i
\(82\) 0.731965 4.11201i 0.0808320 0.454095i
\(83\) 0.292327 0.366567i 0.0320871 0.0402359i −0.765529 0.643401i \(-0.777523\pi\)
0.797616 + 0.603165i \(0.206094\pi\)
\(84\) −1.96304 + 0.787685i −0.214185 + 0.0859435i
\(85\) −0.745368 0.934662i −0.0808465 0.101378i
\(86\) −2.49766 + 1.35488i −0.269329 + 0.146101i
\(87\) 0.765765 1.95114i 0.0820986 0.209184i
\(88\) 7.81895 9.70698i 0.833503 1.03477i
\(89\) −10.1900 + 3.99930i −1.08014 + 0.423924i −0.837638 0.546226i \(-0.816064\pi\)
−0.242504 + 0.970150i \(0.577969\pi\)
\(90\) −0.250255 + 0.740846i −0.0263792 + 0.0780921i
\(91\) 9.53265 + 2.31749i 0.999294 + 0.242939i
\(92\) −6.93015 3.15421i −0.722518 0.328849i
\(93\) 0.277072 3.69726i 0.0287310 0.383388i
\(94\) −1.01735 0.523661i −0.104932 0.0540115i
\(95\) −0.591270 + 0.867234i −0.0606630 + 0.0889763i
\(96\) −1.88943 1.24224i −0.192839 0.126786i
\(97\) 4.71195i 0.478426i 0.970967 + 0.239213i \(0.0768894\pi\)
−0.970967 + 0.239213i \(0.923111\pi\)
\(98\) −7.61432 + 6.32630i −0.769163 + 0.639053i
\(99\) 12.5164i 1.25794i
\(100\) −1.69148 9.77899i −0.169148 0.977899i
\(101\) −0.123474 + 0.181102i −0.0122861 + 0.0180204i −0.832333 0.554276i \(-0.812995\pi\)
0.820047 + 0.572297i \(0.193947\pi\)
\(102\) −1.58870 + 3.08648i −0.157305 + 0.305607i
\(103\) −0.191758 + 2.55883i −0.0188945 + 0.252129i 0.979756 + 0.200195i \(0.0641576\pi\)
−0.998651 + 0.0519340i \(0.983461\pi\)
\(104\) 3.78383 + 9.78130i 0.371035 + 0.959135i
\(105\) 0.00289991 0.205873i 0.000283002 0.0200911i
\(106\) −8.16644 2.75859i −0.793195 0.267938i
\(107\) −8.20581 + 3.22054i −0.793286 + 0.311342i −0.727159 0.686469i \(-0.759160\pi\)
−0.0661272 + 0.997811i \(0.521064\pi\)
\(108\) 4.64732 0.449750i 0.447188 0.0432772i
\(109\) −2.12958 + 5.42609i −0.203977 + 0.519725i −0.995855 0.0909543i \(-0.971008\pi\)
0.791878 + 0.610679i \(0.209104\pi\)
\(110\) 0.578527 + 1.06649i 0.0551604 + 0.101685i
\(111\) 2.61279 + 3.27634i 0.247995 + 0.310976i
\(112\) −10.1998 2.82213i −0.963789 0.266666i
\(113\) 1.06011 1.32933i 0.0997265 0.125053i −0.729464 0.684019i \(-0.760230\pi\)
0.829190 + 0.558966i \(0.188802\pi\)
\(114\) 3.00064 + 0.534135i 0.281036 + 0.0500263i
\(115\) 0.543318 0.504125i 0.0506647 0.0470099i
\(116\) 8.96639 5.43922i 0.832509 0.505018i
\(117\) −9.12044 5.26569i −0.843185 0.486813i
\(118\) −9.15886 + 14.9331i −0.843141 + 1.37470i
\(119\) −2.64748 + 16.0295i −0.242694 + 1.46943i
\(120\) 0.182466 0.123102i 0.0166568 0.0112376i
\(121\) 6.17242 + 5.72717i 0.561129 + 0.520652i
\(122\) 8.71376 6.57811i 0.788907 0.595554i
\(123\) 0.175950 1.16735i 0.0158649 0.105257i
\(124\) 12.3199 13.8689i 1.10636 1.24546i
\(125\) 1.89081 + 0.431566i 0.169119 + 0.0386004i
\(126\) 9.75416 4.21805i 0.868969 0.375774i
\(127\) 4.30597 0.982809i 0.382093 0.0872102i −0.0271602 0.999631i \(-0.508646\pi\)
0.409253 + 0.912421i \(0.365789\pi\)
\(128\) −3.74806 10.6748i −0.331285 0.943531i
\(129\) −0.695549 + 0.401575i −0.0612397 + 0.0353567i
\(130\) −1.02052 0.0271133i −0.0895054 0.00237799i
\(131\) 6.19021 4.22042i 0.540841 0.368739i −0.261874 0.965102i \(-0.584340\pi\)
0.802715 + 0.596363i \(0.203388\pi\)
\(132\) 2.13640 2.80143i 0.185949 0.243833i
\(133\) 14.1337 1.92713i 1.22554 0.167103i
\(134\) −2.27637 0.231531i −0.196649 0.0200012i
\(135\) −0.133962 + 0.434296i −0.0115297 + 0.0373782i
\(136\) −15.6851 + 7.45935i −1.34498 + 0.639634i
\(137\) 0.177227 + 2.36493i 0.0151415 + 0.202050i 0.999644 + 0.0266792i \(0.00849325\pi\)
−0.984503 + 0.175370i \(0.943888\pi\)
\(138\) −1.98181 0.839207i −0.168703 0.0714381i
\(139\) 19.5010 9.39119i 1.65405 0.796550i 0.654887 0.755727i \(-0.272716\pi\)
0.999166 0.0408233i \(-0.0129981\pi\)
\(140\) 0.636161 0.810263i 0.0537654 0.0684797i
\(141\) −0.291387 0.140325i −0.0245392 0.0118175i
\(142\) 4.37936 + 4.97874i 0.367507 + 0.417806i
\(143\) −15.6144 + 4.81639i −1.30574 + 0.402767i
\(144\) 9.65532 + 5.98698i 0.804610 + 0.498915i
\(145\) 0.152147 + 1.00943i 0.0126351 + 0.0838286i
\(146\) −15.1582 + 15.4904i −1.25450 + 1.28199i
\(147\) −2.10396 + 1.84467i −0.173531 + 0.152146i
\(148\) 0.454447 + 20.9622i 0.0373553 + 1.72308i
\(149\) 11.9735 1.80472i 0.980911 0.147849i 0.361039 0.932551i \(-0.382422\pi\)
0.619873 + 0.784702i \(0.287184\pi\)
\(150\) −0.551341 2.75038i −0.0450168 0.224568i
\(151\) −4.42620 14.3494i −0.360199 1.16774i −0.936550 0.350534i \(-0.886000\pi\)
0.576351 0.817202i \(-0.304476\pi\)
\(152\) 10.3174 + 11.2291i 0.836854 + 0.910799i
\(153\) 7.56730 15.7137i 0.611780 1.27037i
\(154\) 5.49643 15.5458i 0.442915 1.25272i
\(155\) 0.783479 + 1.62691i 0.0629305 + 0.130677i
\(156\) 1.14256 + 2.73533i 0.0914779 + 0.219001i
\(157\) 2.73440 0.204915i 0.218229 0.0163540i 0.0348332 0.999393i \(-0.488910\pi\)
0.183396 + 0.983039i \(0.441291\pi\)
\(158\) 1.72907 + 3.84871i 0.137557 + 0.306187i
\(159\) −2.32816 0.718141i −0.184635 0.0569523i
\(160\) 1.09943 + 0.0638495i 0.0869178 + 0.00504774i
\(161\) −10.0329 0.894126i −0.790701 0.0704670i
\(162\) −10.6492 + 1.31690i −0.836679 + 0.103466i
\(163\) 1.69172 + 2.48130i 0.132506 + 0.194350i 0.886757 0.462235i \(-0.152952\pi\)
−0.754252 + 0.656586i \(0.772000\pi\)
\(164\) 4.24180 4.11046i 0.331229 0.320973i
\(165\) 0.171470 + 0.296996i 0.0133490 + 0.0231211i
\(166\) 0.638572 0.178545i 0.0495628 0.0138577i
\(167\) −0.423853 1.85702i −0.0327987 0.143701i 0.955877 0.293766i \(-0.0949087\pi\)
−0.988676 + 0.150065i \(0.952052\pi\)
\(168\) −2.90316 0.720831i −0.223984 0.0556134i
\(169\) 0.166644 0.730116i 0.0128188 0.0561627i
\(170\) −0.0815223 1.68869i −0.00625248 0.129517i
\(171\) −15.1418 2.28227i −1.15793 0.174529i
\(172\) −3.98562 0.512655i −0.303901 0.0390896i
\(173\) 2.19697 2.36777i 0.167032 0.180018i −0.643989 0.765035i \(-0.722722\pi\)
0.811021 + 0.585017i \(0.198912\pi\)
\(174\) 2.49265 1.60417i 0.188967 0.121612i
\(175\) −6.40345 11.4609i −0.484056 0.866364i
\(176\) 16.9992 4.66355i 1.28137 0.351528i
\(177\) −2.47576 + 4.28814i −0.186089 + 0.322316i
\(178\) −14.9961 3.84449i −1.12400 0.288157i
\(179\) −11.4196 12.3074i −0.853539 0.919897i 0.144030 0.989573i \(-0.453994\pi\)
−0.997570 + 0.0696766i \(0.977803\pi\)
\(180\) −0.900001 + 0.642620i −0.0670821 + 0.0478981i
\(181\) −8.10171 6.46089i −0.602195 0.480235i 0.274301 0.961644i \(-0.411554\pi\)
−0.876496 + 0.481409i \(0.840125\pi\)
\(182\) 9.01556 + 10.5453i 0.668278 + 0.781672i
\(183\) 2.41272 1.92408i 0.178353 0.142232i
\(184\) −5.33842 9.35165i −0.393554 0.689413i
\(185\) −1.89987 0.745644i −0.139681 0.0548209i
\(186\) 3.37692 4.01117i 0.247608 0.294113i
\(187\) −9.88647 25.1903i −0.722970 1.84210i
\(188\) −0.733530 1.44236i −0.0534982 0.105195i
\(189\) 5.60207 2.60126i 0.407490 0.189214i
\(190\) −1.39569 + 0.505416i −0.101254 + 0.0366667i
\(191\) −6.21485 0.465739i −0.449691 0.0336997i −0.152040 0.988374i \(-0.548584\pi\)
−0.297651 + 0.954675i \(0.596203\pi\)
\(192\) −1.13916 2.98807i −0.0822118 0.215645i
\(193\) 1.49459 + 1.01899i 0.107583 + 0.0733488i 0.615916 0.787811i \(-0.288786\pi\)
−0.508333 + 0.861160i \(0.669738\pi\)
\(194\) −3.89870 + 5.40417i −0.279910 + 0.387997i
\(195\) −0.288554 −0.0206638
\(196\) −13.9674 + 0.955539i −0.997668 + 0.0682528i
\(197\) 9.35286 0.666364 0.333182 0.942863i \(-0.391878\pi\)
0.333182 + 0.942863i \(0.391878\pi\)
\(198\) −10.3561 + 14.3551i −0.735977 + 1.02017i
\(199\) 13.4363 + 9.16071i 0.952474 + 0.649386i 0.936567 0.350488i \(-0.113984\pi\)
0.0159065 + 0.999873i \(0.494937\pi\)
\(200\) 6.15124 12.6151i 0.434958 0.892025i
\(201\) −0.644934 0.0483311i −0.0454901 0.00340901i
\(202\) −0.291458 + 0.105545i −0.0205069 + 0.00742611i
\(203\) 8.80174 10.7236i 0.617761 0.752652i
\(204\) −4.37586 + 2.22540i −0.306372 + 0.155809i
\(205\) 0.210057 + 0.535216i 0.0146710 + 0.0373811i
\(206\) −2.33712 + 2.77608i −0.162835 + 0.193419i
\(207\) 10.0655 + 3.95043i 0.699602 + 0.274574i
\(208\) −3.75341 + 14.3490i −0.260252 + 0.994925i
\(209\) −18.5757 + 14.8136i −1.28491 + 1.02468i
\(210\) 0.173666 0.233718i 0.0119841 0.0161280i
\(211\) −5.84824 4.66382i −0.402609 0.321070i 0.401164 0.916006i \(-0.368606\pi\)
−0.803773 + 0.594936i \(0.797177\pi\)
\(212\) −7.08368 9.92081i −0.486509 0.681364i
\(213\) 1.27477 + 1.37388i 0.0873461 + 0.0941367i
\(214\) −12.0760 3.09588i −0.825499 0.211630i
\(215\) 0.195580 0.338754i 0.0133384 0.0231029i
\(216\) 5.70217 + 3.32940i 0.387983 + 0.226537i
\(217\) 9.28639 22.7153i 0.630401 1.54201i
\(218\) −6.93202 + 4.46119i −0.469496 + 0.302150i
\(219\) −4.16670 + 4.49063i −0.281559 + 0.303449i
\(220\) −0.218901 + 1.70184i −0.0147583 + 0.114738i
\(221\) 22.5150 + 3.39359i 1.51452 + 0.228278i
\(222\) 0.285766 + 5.91950i 0.0191794 + 0.397291i
\(223\) 2.47878 10.8603i 0.165992 0.727257i −0.821581 0.570092i \(-0.806907\pi\)
0.987572 0.157165i \(-0.0502354\pi\)
\(224\) −9.36316 11.6761i −0.625602 0.780142i
\(225\) 3.13608 + 13.7401i 0.209072 + 0.916005i
\(226\) 2.31575 0.647481i 0.154041 0.0430698i
\(227\) −8.60483 14.9040i −0.571123 0.989214i −0.996451 0.0841746i \(-0.973175\pi\)
0.425328 0.905039i \(-0.360159\pi\)
\(228\) 2.99951 + 3.09536i 0.198648 + 0.204995i
\(229\) −4.84690 7.10909i −0.320292 0.469782i 0.632001 0.774968i \(-0.282234\pi\)
−0.952293 + 0.305186i \(0.901281\pi\)
\(230\) 1.04025 0.128640i 0.0685922 0.00848228i
\(231\) 1.43633 4.43377i 0.0945036 0.291720i
\(232\) 14.7841 + 1.18058i 0.970622 + 0.0775088i
\(233\) 0.870386 + 0.268478i 0.0570209 + 0.0175886i 0.323134 0.946353i \(-0.395263\pi\)
−0.266114 + 0.963942i \(0.585740\pi\)
\(234\) −6.10343 13.5856i −0.398994 0.888117i
\(235\) 0.157073 0.0117710i 0.0102463 0.000767856i
\(236\) −22.8601 + 9.54877i −1.48807 + 0.621572i
\(237\) 0.517444 + 1.07448i 0.0336116 + 0.0697952i
\(238\) −16.2994 + 16.1939i −1.05653 + 1.04969i
\(239\) −10.0439 + 20.8563i −0.649683 + 1.34908i 0.272435 + 0.962174i \(0.412171\pi\)
−0.922119 + 0.386907i \(0.873543\pi\)
\(240\) 0.311127 + 0.00978750i 0.0200832 + 0.000631780i
\(241\) −4.79813 15.5552i −0.309075 1.00200i −0.968245 0.250003i \(-0.919568\pi\)
0.659170 0.751994i \(-0.270908\pi\)
\(242\) 2.34050 + 11.6756i 0.150453 + 0.750539i
\(243\) −9.92439 + 1.49586i −0.636650 + 0.0959595i
\(244\) 15.4367 0.334658i 0.988231 0.0214243i
\(245\) 0.438204 1.29040i 0.0279958 0.0824404i
\(246\) 1.16768 1.19326i 0.0744483 0.0760798i
\(247\) −2.97954 19.7679i −0.189583 1.25780i
\(248\) 25.6050 5.71270i 1.62592 0.362757i
\(249\) 0.179090 0.0552419i 0.0113494 0.00350082i
\(250\) 1.81151 + 2.05944i 0.114570 + 0.130250i
\(251\) 0.769700 + 0.370668i 0.0485830 + 0.0233964i 0.458018 0.888943i \(-0.348560\pi\)
−0.409434 + 0.912340i \(0.634274\pi\)
\(252\) 14.6772 + 3.23295i 0.924574 + 0.203657i
\(253\) 15.1158 7.27938i 0.950321 0.457650i
\(254\) 5.75173 + 2.43560i 0.360896 + 0.152823i
\(255\) −0.0357112 0.476533i −0.00223632 0.0298417i
\(256\) 4.53375 15.3442i 0.283359 0.959014i
\(257\) −3.63630 + 11.7886i −0.226826 + 0.735353i 0.768592 + 0.639739i \(0.220958\pi\)
−0.995419 + 0.0956137i \(0.969519\pi\)
\(258\) −1.13000 0.114932i −0.0703505 0.00715537i
\(259\) 9.76875 + 25.9597i 0.607001 + 1.61306i
\(260\) −1.14801 0.875481i −0.0711963 0.0542950i
\(261\) −12.3051 + 8.38949i −0.761668 + 0.519297i
\(262\) 10.5916 + 0.281399i 0.654352 + 0.0173849i
\(263\) 4.28173 2.47206i 0.264023 0.152434i −0.362145 0.932122i \(-0.617956\pi\)
0.626168 + 0.779688i \(0.284622\pi\)
\(264\) 4.76817 1.44531i 0.293461 0.0889527i
\(265\) 1.15685 0.264044i 0.0710650 0.0162201i
\(266\) 17.8045 + 9.48405i 1.09167 + 0.581505i
\(267\) −4.26604 0.973696i −0.261078 0.0595893i
\(268\) −2.41922 2.14903i −0.147777 0.131273i
\(269\) 2.93531 19.4745i 0.178969 1.18738i −0.701286 0.712880i \(-0.747391\pi\)
0.880255 0.474501i \(-0.157371\pi\)
\(270\) −0.512982 + 0.387255i −0.0312191 + 0.0235676i
\(271\) 18.1498 + 16.8406i 1.10252 + 1.02299i 0.999599 + 0.0283020i \(0.00901002\pi\)
0.102923 + 0.994689i \(0.467180\pi\)
\(272\) −24.1613 4.42276i −1.46499 0.268169i
\(273\) 2.62653 + 2.91193i 0.158965 + 0.176238i
\(274\) −1.75350 + 2.85899i −0.105933 + 0.172718i
\(275\) 18.9375 + 10.9336i 1.14197 + 0.659319i
\(276\) −1.57859 2.60226i −0.0950198 0.156638i
\(277\) −2.99811 + 2.78184i −0.180139 + 0.167144i −0.765088 0.643925i \(-0.777305\pi\)
0.584950 + 0.811070i \(0.301114\pi\)
\(278\) 30.1362 + 5.36444i 1.80745 + 0.321738i
\(279\) −16.4252 + 20.5965i −0.983348 + 1.23308i
\(280\) 1.40004 0.402932i 0.0836681 0.0240798i
\(281\) 1.54521 + 1.93763i 0.0921794 + 0.115589i 0.825782 0.563989i \(-0.190734\pi\)
−0.733603 + 0.679579i \(0.762163\pi\)
\(282\) −0.218089 0.402035i −0.0129870 0.0239409i
\(283\) −3.96822 + 10.1109i −0.235886 + 0.601028i −0.998975 0.0452654i \(-0.985587\pi\)
0.763089 + 0.646294i \(0.223682\pi\)
\(284\) 0.903277 + 9.33366i 0.0535996 + 0.553851i
\(285\) −0.390561 + 0.153284i −0.0231349 + 0.00907976i
\(286\) −21.8933 7.39548i −1.29458 0.437304i
\(287\) 3.48910 6.99154i 0.205955 0.412697i
\(288\) 6.12009 + 14.8554i 0.360630 + 0.875363i
\(289\) −1.54751 + 20.6500i −0.0910298 + 1.21471i
\(290\) −0.660711 + 1.28361i −0.0387983 + 0.0753763i
\(291\) −1.06102 + 1.55623i −0.0621980 + 0.0912278i
\(292\) −30.2019 + 5.22403i −1.76743 + 0.305713i
\(293\) 17.6595i 1.03168i −0.856686 0.515838i \(-0.827480\pi\)
0.856686 0.515838i \(-0.172520\pi\)
\(294\) −3.93934 + 0.374842i −0.229747 + 0.0218612i
\(295\) 2.41155i 0.140406i
\(296\) −16.8230 + 24.4177i −0.977819 + 1.41925i
\(297\) −5.79533 + 8.50019i −0.336279 + 0.493231i
\(298\) 15.2258 + 7.83715i 0.882007 + 0.453994i
\(299\) −1.05493 + 14.0771i −0.0610082 + 0.814098i
\(300\) 1.64335 3.61062i 0.0948788 0.208459i
\(301\) −5.19878 + 1.10979i −0.299653 + 0.0639673i
\(302\) 6.79635 20.1197i 0.391086 1.15776i
\(303\) −0.0815600 + 0.0320099i −0.00468550 + 0.00183892i
\(304\) 2.54211 + 21.4154i 0.145800 + 1.22826i
\(305\) −0.549097 + 1.39908i −0.0314412 + 0.0801109i
\(306\) 21.6806 11.7609i 1.23940 0.672325i
\(307\) −4.68520 5.87506i −0.267399 0.335307i 0.629945 0.776640i \(-0.283077\pi\)
−0.897344 + 0.441332i \(0.854506\pi\)
\(308\) 19.1666 13.2818i 1.09212 0.756801i
\(309\) −0.639521 + 0.801933i −0.0363811 + 0.0456204i
\(310\) −0.447540 + 2.51417i −0.0254185 + 0.142795i
\(311\) 19.4112 18.0110i 1.10071 1.02131i 0.101060 0.994880i \(-0.467777\pi\)
0.999651 0.0264294i \(-0.00841373\pi\)
\(312\) −0.952820 + 4.08253i −0.0539428 + 0.231128i
\(313\) 24.3382 + 14.0516i 1.37567 + 0.794246i 0.991635 0.129071i \(-0.0411996\pi\)
0.384039 + 0.923317i \(0.374533\pi\)
\(314\) 3.30566 + 2.02745i 0.186549 + 0.114415i
\(315\) −0.841044 + 1.19701i −0.0473875 + 0.0674437i
\(316\) −1.20137 + 5.84476i −0.0675825 + 0.328793i
\(317\) −18.3666 17.0418i −1.03157 0.957160i −0.0324689 0.999473i \(-0.510337\pi\)
−0.999104 + 0.0423126i \(0.986527\pi\)
\(318\) −2.07599 2.74998i −0.116416 0.154211i
\(319\) −3.44402 + 22.8496i −0.192828 + 1.27933i
\(320\) 1.20812 + 0.982909i 0.0675359 + 0.0549463i
\(321\) −3.43535 0.784096i −0.191743 0.0437640i
\(322\) −10.7670 9.32675i −0.600020 0.519760i
\(323\) 32.2771 7.36704i 1.79595 0.409913i
\(324\) −13.3032 7.30084i −0.739069 0.405602i
\(325\) −15.9342 + 9.19961i −0.883870 + 0.510302i
\(326\) −0.112797 + 4.24556i −0.00624723 + 0.235140i
\(327\) −1.92517 + 1.31256i −0.106462 + 0.0725847i
\(328\) 8.26598 1.20462i 0.456412 0.0665141i
\(329\) −1.54853 1.47796i −0.0853733 0.0814824i
\(330\) −0.0490755 + 0.482502i −0.00270152 + 0.0265609i
\(331\) −3.22837 + 10.4661i −0.177447 + 0.575270i 0.822531 + 0.568720i \(0.192561\pi\)
−0.999979 + 0.00655005i \(0.997915\pi\)
\(332\) 0.880112 + 0.323585i 0.0483024 + 0.0177590i
\(333\) −2.22513 29.6923i −0.121936 1.62713i
\(334\) 1.05039 2.48053i 0.0574749 0.135729i
\(335\) 0.283791 0.136667i 0.0155052 0.00746689i
\(336\) −2.73324 3.22882i −0.149110 0.176147i
\(337\) 3.01180 + 1.45040i 0.164063 + 0.0790086i 0.514113 0.857722i \(-0.328121\pi\)
−0.350050 + 0.936731i \(0.613835\pi\)
\(338\) 0.795228 0.699493i 0.0432547 0.0380474i
\(339\) 0.649459 0.200332i 0.0352738 0.0108805i
\(340\) 1.30374 2.00423i 0.0707052 0.108695i
\(341\) 6.09207 + 40.4182i 0.329904 + 2.18877i
\(342\) −15.4779 15.1460i −0.836951 0.819003i
\(343\) −17.0107 + 7.32360i −0.918493 + 0.395437i
\(344\) −4.14697 3.88570i −0.223589 0.209503i
\(345\) 0.292960 0.0441567i 0.0157725 0.00237732i
\(346\) 4.47883 0.897824i 0.240783 0.0482673i
\(347\) 6.69590 + 21.7076i 0.359455 + 1.16532i 0.937107 + 0.349041i \(0.113493\pi\)
−0.577653 + 0.816283i \(0.696031\pi\)
\(348\) 4.18614 + 0.222593i 0.224401 + 0.0119323i
\(349\) −4.52558 + 9.39746i −0.242249 + 0.503035i −0.986274 0.165117i \(-0.947200\pi\)
0.744025 + 0.668151i \(0.232914\pi\)
\(350\) 2.13868 18.4429i 0.114317 0.985814i
\(351\) −3.75581 7.79902i −0.200470 0.416281i
\(352\) 23.3552 + 8.71663i 1.24484 + 0.464598i
\(353\) 18.8128 1.40983i 1.00130 0.0750374i 0.436023 0.899935i \(-0.356387\pi\)
0.565282 + 0.824898i \(0.308768\pi\)
\(354\) −6.38750 + 2.86964i −0.339492 + 0.152520i
\(355\) −0.872238 0.269050i −0.0462936 0.0142797i
\(356\) −14.0182 16.8171i −0.742961 0.891307i
\(357\) −4.48387 + 4.69798i −0.237311 + 0.248643i
\(358\) −2.91399 23.5641i −0.154009 1.24540i
\(359\) 3.74259 + 5.48938i 0.197527 + 0.289718i 0.912204 0.409736i \(-0.134379\pi\)
−0.714678 + 0.699454i \(0.753427\pi\)
\(360\) −1.56393 0.00764126i −0.0824261 0.000402730i
\(361\) −5.03387 8.71891i −0.264940 0.458890i
\(362\) −3.94612 14.1135i −0.207403 0.741787i
\(363\) 0.748961 + 3.28141i 0.0393103 + 0.172230i
\(364\) 1.61473 + 19.5541i 0.0846349 + 1.02491i
\(365\) 0.663898 2.90873i 0.0347500 0.152250i
\(366\) 4.35916 0.210440i 0.227857 0.0109999i
\(367\) 21.3368 + 3.21600i 1.11377 + 0.167874i 0.680045 0.733171i \(-0.261960\pi\)
0.433727 + 0.901045i \(0.357198\pi\)
\(368\) 1.61494 15.1425i 0.0841845 0.789359i
\(369\) −5.70536 + 6.14892i −0.297009 + 0.320100i
\(370\) −1.56202 2.42715i −0.0812058 0.126182i
\(371\) −13.1948 9.27093i −0.685038 0.481323i
\(372\) 7.19188 1.80635i 0.372882 0.0936551i
\(373\) −14.3264 + 24.8140i −0.741792 + 1.28482i 0.209886 + 0.977726i \(0.432691\pi\)
−0.951679 + 0.307096i \(0.900643\pi\)
\(374\) 9.50378 37.0711i 0.491429 1.91690i
\(375\) 0.527306 + 0.568301i 0.0272300 + 0.0293469i
\(376\) 0.352125 2.26118i 0.0181595 0.116611i
\(377\) −15.2011 12.1225i −0.782899 0.624341i
\(378\) 8.57735 + 1.65179i 0.441171 + 0.0849588i
\(379\) 16.2053 12.9233i 0.832408 0.663823i −0.111597 0.993754i \(-0.535597\pi\)
0.944005 + 0.329930i \(0.107025\pi\)
\(380\) −2.01891 0.575137i −0.103568 0.0295039i
\(381\) 1.64345 + 0.645007i 0.0841966 + 0.0330447i
\(382\) −6.74250 5.67637i −0.344976 0.290428i
\(383\) 0.540532 + 1.37725i 0.0276199 + 0.0703744i 0.944018 0.329893i \(-0.107013\pi\)
−0.916399 + 0.400267i \(0.868917\pi\)
\(384\) 1.16583 4.36959i 0.0594938 0.222984i
\(385\) 0.473875 + 2.21985i 0.0241509 + 0.113134i
\(386\) 0.871034 + 2.40533i 0.0443344 + 0.122428i
\(387\) 5.69068 + 0.426458i 0.289274 + 0.0216781i
\(388\) −8.94289 + 2.97227i −0.454007 + 0.150894i
\(389\) 9.22428 + 6.28901i 0.467690 + 0.318865i 0.774132 0.633024i \(-0.218186\pi\)
−0.306443 + 0.951889i \(0.599139\pi\)
\(390\) −0.330944 0.238751i −0.0167580 0.0120896i
\(391\) −23.3782 −1.18229
\(392\) −16.8099 10.4608i −0.849027 0.528349i
\(393\) 2.99480 0.151068
\(394\) 10.7269 + 7.73862i 0.540412 + 0.389866i
\(395\) −0.479902 0.327192i −0.0241465 0.0164628i
\(396\) −23.7550 + 7.89525i −1.19374 + 0.396751i
\(397\) −15.4021 1.15423i −0.773010 0.0579291i −0.317616 0.948219i \(-0.602882\pi\)
−0.455394 + 0.890290i \(0.650501\pi\)
\(398\) 7.83055 + 21.6238i 0.392510 + 1.08390i
\(399\) 5.10191 + 2.54609i 0.255415 + 0.127464i
\(400\) 17.4928 9.37882i 0.874638 0.468941i
\(401\) −12.8979 32.8634i −0.644092 1.64112i −0.761599 0.648048i \(-0.775585\pi\)
0.117507 0.993072i \(-0.462510\pi\)
\(402\) −0.699690 0.589054i −0.0348974 0.0293794i
\(403\) −32.0150 12.5650i −1.59478 0.625905i
\(404\) −0.421604 0.120104i −0.0209756 0.00597542i
\(405\) 1.15488 0.920982i 0.0573862 0.0457640i
\(406\) 18.9676 5.01640i 0.941346 0.248960i
\(407\) −36.1200 28.8047i −1.79040 1.42780i
\(408\) −6.86003 1.06829i −0.339622 0.0528881i
\(409\) −15.8079 17.0369i −0.781652 0.842420i 0.209130 0.977888i \(-0.432937\pi\)
−0.990782 + 0.135468i \(0.956746\pi\)
\(410\) −0.201926 + 0.787645i −0.00997240 + 0.0388990i
\(411\) −0.473993 + 0.820980i −0.0233803 + 0.0404959i
\(412\) −4.97741 + 1.25016i −0.245220 + 0.0615907i
\(413\) −24.3361 + 21.9509i −1.19750 + 1.08013i
\(414\) 8.27561 + 12.8591i 0.406724 + 0.631988i
\(415\) −0.0620846 + 0.0669113i −0.00304762 + 0.00328455i
\(416\) −16.1773 + 13.3514i −0.793157 + 0.654606i
\(417\) 8.55533 + 1.28951i 0.418956 + 0.0631475i
\(418\) −33.5615 + 1.62019i −1.64155 + 0.0792463i
\(419\) 3.42751 15.0169i 0.167445 0.733623i −0.819568 0.572982i \(-0.805787\pi\)
0.987013 0.160641i \(-0.0513563\pi\)
\(420\) 0.392559 0.124360i 0.0191549 0.00606813i
\(421\) 1.28026 + 5.60919i 0.0623961 + 0.273375i 0.996496 0.0836356i \(-0.0266532\pi\)
−0.934100 + 0.357011i \(0.883796\pi\)
\(422\) −2.84852 10.1878i −0.138664 0.495936i
\(423\) 1.14898 + 1.99010i 0.0558656 + 0.0967620i
\(424\) 0.0842305 17.2393i 0.00409059 0.837216i
\(425\) −17.1647 25.1760i −0.832612 1.22122i
\(426\) 0.325290 + 2.63047i 0.0157604 + 0.127447i
\(427\) 19.1169 7.19377i 0.925130 0.348131i
\(428\) −11.2885 13.5425i −0.545651 0.654600i
\(429\) −6.24154 1.92526i −0.301344 0.0929524i
\(430\) 0.504600 0.226696i 0.0243340 0.0109322i
\(431\) 28.3932 2.12777i 1.36765 0.102491i 0.629433 0.777054i \(-0.283287\pi\)
0.738217 + 0.674563i \(0.235668\pi\)
\(432\) 3.78509 + 8.53653i 0.182110 + 0.410714i
\(433\) 12.2009 + 25.3353i 0.586336 + 1.21754i 0.957355 + 0.288914i \(0.0932942\pi\)
−0.371019 + 0.928625i \(0.620992\pi\)
\(434\) 29.4454 18.3687i 1.41343 0.881726i
\(435\) −0.177050 + 0.367648i −0.00848889 + 0.0176274i
\(436\) −11.6416 0.619029i −0.557532 0.0296461i
\(437\) 6.05008 + 19.6139i 0.289415 + 0.938259i
\(438\) −8.49440 + 1.70279i −0.405878 + 0.0813622i
\(439\) 30.6784 4.62403i 1.46420 0.220693i 0.631915 0.775038i \(-0.282269\pi\)
0.832287 + 0.554345i \(0.187031\pi\)
\(440\) −1.65917 + 1.77073i −0.0790979 + 0.0844163i
\(441\) 19.7351 2.40828i 0.939767 0.114680i
\(442\) 23.0148 + 22.5212i 1.09470 + 1.07123i
\(443\) −2.25301 14.9477i −0.107044 0.710188i −0.976395 0.215993i \(-0.930701\pi\)
0.869351 0.494195i \(-0.164537\pi\)
\(444\) −4.57009 + 7.02557i −0.216887 + 0.333419i
\(445\) 2.03645 0.628162i 0.0965370 0.0297777i
\(446\) 11.8288 10.4048i 0.560110 0.492680i
\(447\) 4.36092 + 2.10011i 0.206265 + 0.0993318i
\(448\) −1.07779 21.1386i −0.0509210 0.998703i
\(449\) −37.6374 + 18.1252i −1.77622 + 0.855383i −0.815068 + 0.579366i \(0.803300\pi\)
−0.961153 + 0.276017i \(0.910985\pi\)
\(450\) −7.77184 + 18.3534i −0.366368 + 0.865188i
\(451\) 0.972601 + 12.9785i 0.0457980 + 0.611132i
\(452\) 3.19168 + 1.17346i 0.150124 + 0.0551950i
\(453\) 1.76929 5.73589i 0.0831284 0.269496i
\(454\) 2.46273 24.2132i 0.115582 1.13638i
\(455\) −1.81693 0.588598i −0.0851789 0.0275939i
\(456\) 0.879045 + 6.03191i 0.0411651 + 0.282470i
\(457\) 6.38832 4.35548i 0.298833 0.203741i −0.404616 0.914487i \(-0.632595\pi\)
0.703449 + 0.710746i \(0.251642\pi\)
\(458\) 0.323170 12.1638i 0.0151008 0.568378i
\(459\) 12.4149 7.16775i 0.579478 0.334562i
\(460\) 1.29951 + 0.713174i 0.0605900 + 0.0332519i
\(461\) 17.1104 3.90534i 0.796911 0.181890i 0.195368 0.980730i \(-0.437410\pi\)
0.601543 + 0.798840i \(0.294553\pi\)
\(462\) 5.31587 3.89669i 0.247317 0.181290i
\(463\) −26.7014 6.09441i −1.24092 0.283231i −0.448818 0.893623i \(-0.648155\pi\)
−0.792099 + 0.610392i \(0.791012\pi\)
\(464\) 15.9791 + 13.5865i 0.741813 + 0.630736i
\(465\) −0.107580 + 0.713746i −0.00498890 + 0.0330992i
\(466\) 0.776111 + 1.02808i 0.0359526 + 0.0476250i
\(467\) 1.40072 + 1.29968i 0.0648175 + 0.0601419i 0.711916 0.702264i \(-0.247827\pi\)
−0.647099 + 0.762406i \(0.724018\pi\)
\(468\) 4.24073 20.6314i 0.196028 0.953688i
\(469\) −3.96235 1.61988i −0.182964 0.0747989i
\(470\) 0.189888 + 0.116463i 0.00875888 + 0.00537205i
\(471\) 0.949242 + 0.548045i 0.0437388 + 0.0252526i
\(472\) −34.1192 7.96306i −1.57046 0.366530i
\(473\) 6.49068 6.02248i 0.298442 0.276914i
\(474\) −0.295575 + 1.66047i −0.0135762 + 0.0762679i
\(475\) −16.6802 + 20.9163i −0.765339 + 0.959704i
\(476\) −32.0928 + 5.08665i −1.47097 + 0.233146i
\(477\) 10.7935 + 13.5346i 0.494199 + 0.619707i
\(478\) −28.7760 + 15.6099i −1.31618 + 0.713979i
\(479\) 2.51807 6.41594i 0.115054 0.293152i −0.861735 0.507359i \(-0.830622\pi\)
0.976788 + 0.214208i \(0.0687169\pi\)
\(480\) 0.348736 + 0.268654i 0.0159175 + 0.0122623i
\(481\) 36.1853 14.2017i 1.64991 0.647542i
\(482\) 7.36744 21.8104i 0.335578 0.993434i
\(483\) −3.11225 2.55447i −0.141612 0.116233i
\(484\) −6.97618 + 15.3274i −0.317099 + 0.696701i
\(485\) 0.0685521 0.914765i 0.00311279 0.0415373i
\(486\) −12.6200 6.49590i −0.572457 0.294660i
\(487\) −8.50254 + 12.4709i −0.385287 + 0.565112i −0.969066 0.246800i \(-0.920621\pi\)
0.583779 + 0.811912i \(0.301573\pi\)
\(488\) 17.9813 + 12.3886i 0.813976 + 0.560805i
\(489\) 1.20044i 0.0542858i
\(490\) 1.57026 1.11739i 0.0709372 0.0504787i
\(491\) 41.7664i 1.88489i 0.334359 + 0.942446i \(0.391480\pi\)
−0.334359 + 0.942446i \(0.608520\pi\)
\(492\) 2.32653 0.402421i 0.104888 0.0181425i
\(493\) 18.1385 26.6043i 0.816916 1.19820i
\(494\) 12.9389 25.1373i 0.582148 1.13098i
\(495\) 0.182095 2.42989i 0.00818457 0.109215i
\(496\) 34.0933 + 14.6338i 1.53084 + 0.657079i
\(497\) 5.22436 + 11.2512i 0.234345 + 0.504684i
\(498\) 0.251107 + 0.0848229i 0.0112524 + 0.00380101i
\(499\) −29.2093 + 11.4638i −1.30759 + 0.513191i −0.913858 0.406035i \(-0.866911\pi\)
−0.393731 + 0.919226i \(0.628816\pi\)
\(500\) 0.373638 + 3.86084i 0.0167096 + 0.172662i
\(501\) 0.278170 0.708766i 0.0124277 0.0316653i
\(502\) 0.576082 + 1.06198i 0.0257118 + 0.0473984i
\(503\) 15.6121 + 19.5770i 0.696111 + 0.872896i 0.996726 0.0808497i \(-0.0257634\pi\)
−0.300615 + 0.953746i \(0.597192\pi\)
\(504\) 14.1584 + 15.8519i 0.630665 + 0.706099i
\(505\) 0.0266056 0.0333624i 0.00118393 0.00148461i
\(506\) 23.3594 + 4.15813i 1.03845 + 0.184852i
\(507\) 0.219443 0.203613i 0.00974580 0.00904278i
\(508\) 4.58147 + 7.55243i 0.203270 + 0.335085i
\(509\) 25.2495 + 14.5778i 1.11916 + 0.646149i 0.941187 0.337886i \(-0.109712\pi\)
0.177976 + 0.984035i \(0.443045\pi\)
\(510\) 0.353329 0.576087i 0.0156457 0.0255096i
\(511\) −35.3964 + 19.7767i −1.56585 + 0.874870i
\(512\) 17.8957 13.8472i 0.790886 0.611963i
\(513\) −9.22650 8.56094i −0.407360 0.377975i
\(514\) −13.9245 + 10.5117i −0.614182 + 0.463653i
\(515\) 0.0744547 0.493975i 0.00328087 0.0217671i
\(516\) −1.20091 1.06678i −0.0528669 0.0469625i
\(517\) 3.47610 + 0.793397i 0.152879 + 0.0348936i
\(518\) −10.2754 + 37.8561i −0.451474 + 1.66330i
\(519\) 1.25876 0.287305i 0.0552536 0.0126113i
\(520\) −0.592279 1.95396i −0.0259731 0.0856870i
\(521\) 28.9879 16.7362i 1.26998 0.733225i 0.294998 0.955498i \(-0.404681\pi\)
0.974985 + 0.222273i \(0.0713476\pi\)
\(522\) −21.0544 0.559376i −0.921525 0.0244832i
\(523\) −10.4464 + 7.12227i −0.456791 + 0.311435i −0.769766 0.638327i \(-0.779627\pi\)
0.312975 + 0.949762i \(0.398675\pi\)
\(524\) 11.9148 + 9.08631i 0.520499 + 0.396937i
\(525\) 0.465841 5.22714i 0.0203310 0.228131i
\(526\) 6.95615 + 0.707512i 0.303303 + 0.0308490i
\(527\) 16.7883 54.4263i 0.731310 2.37085i
\(528\) 6.66451 + 2.28758i 0.290036 + 0.0995542i
\(529\) 0.635653 + 8.48221i 0.0276371 + 0.368792i
\(530\) 1.54528 + 0.654355i 0.0671225 + 0.0284234i
\(531\) 31.6980 15.2649i 1.37558 0.662442i
\(532\) 12.5730 + 25.6089i 0.545107 + 1.11029i
\(533\) −9.86635 4.75138i −0.427359 0.205805i
\(534\) −4.08711 4.64649i −0.176867 0.201073i
\(535\) 1.63991 0.505845i 0.0708994 0.0218696i
\(536\) −0.996498 4.46642i −0.0430422 0.192920i
\(537\) −1.00025 6.63622i −0.0431639 0.286374i
\(538\) 19.4799 19.9067i 0.839836 0.858241i
\(539\) 18.0882 24.9881i 0.779114 1.07631i
\(540\) −0.908761 + 0.0197014i −0.0391068 + 0.000847813i
\(541\) 18.5357 2.79381i 0.796912 0.120115i 0.262050 0.965054i \(-0.415602\pi\)
0.534862 + 0.844939i \(0.320363\pi\)
\(542\) 6.88215 + 34.3319i 0.295614 + 1.47468i
\(543\) −1.22093 3.95817i −0.0523953 0.169861i
\(544\) −24.0513 25.0637i −1.03119 1.07460i
\(545\) 0.492373 1.02242i 0.0210910 0.0437958i
\(546\) 0.603037 + 5.51293i 0.0258076 + 0.235932i
\(547\) 1.22035 + 2.53409i 0.0521784 + 0.108350i 0.925428 0.378924i \(-0.123706\pi\)
−0.873249 + 0.487273i \(0.837991\pi\)
\(548\) −4.37665 + 1.82815i −0.186961 + 0.0780946i
\(549\) −21.8656 + 1.63860i −0.933199 + 0.0699336i
\(550\) 12.6730 + 28.2088i 0.540381 + 1.20283i
\(551\) −27.0146 8.33290i −1.15086 0.354994i
\(552\) 0.342632 4.29068i 0.0145834 0.182624i
\(553\) 1.06642 + 7.82116i 0.0453487 + 0.332590i
\(554\) −5.74026 + 0.709855i −0.243880 + 0.0301588i
\(555\) −0.459575 0.674072i −0.0195079 0.0286128i
\(556\) 30.1248 + 31.0874i 1.27758 + 1.31840i
\(557\) −2.95318 5.11505i −0.125130 0.216732i 0.796654 0.604436i \(-0.206601\pi\)
−0.921784 + 0.387704i \(0.873268\pi\)
\(558\) −35.8798 + 10.0320i −1.51891 + 0.424688i
\(559\) 1.65781 + 7.26333i 0.0701178 + 0.307206i
\(560\) 1.93910 + 0.696273i 0.0819420 + 0.0294229i
\(561\) 2.40703 10.5459i 0.101625 0.445248i
\(562\) 0.169002 + 3.50080i 0.00712894 + 0.147672i
\(563\) 1.71325 + 0.258230i 0.0722048 + 0.0108831i 0.185045 0.982730i \(-0.440757\pi\)
−0.112841 + 0.993613i \(0.535995\pi\)
\(564\) 0.0825195 0.641546i 0.00347470 0.0270139i
\(565\) −0.225146 + 0.242650i −0.00947198 + 0.0102084i
\(566\) −12.9170 + 8.31289i −0.542941 + 0.349417i
\(567\) −19.8062 3.27124i −0.831783 0.137379i
\(568\) −6.68676 + 11.4522i −0.280570 + 0.480525i
\(569\) 4.44875 7.70545i 0.186501 0.323029i −0.757580 0.652742i \(-0.773619\pi\)
0.944081 + 0.329713i \(0.106952\pi\)
\(570\) −0.574766 0.147351i −0.0240743 0.00617184i
\(571\) 3.16463 + 3.41066i 0.132436 + 0.142732i 0.795788 0.605576i \(-0.207057\pi\)
−0.663352 + 0.748308i \(0.730867\pi\)
\(572\) −18.9906 26.5966i −0.794036 1.11206i
\(573\) −1.94772 1.55326i −0.0813673 0.0648883i
\(574\) 9.78652 5.13174i 0.408481 0.214195i
\(575\) 14.7697 11.7785i 0.615941 0.491196i
\(576\) −5.27228 + 22.1016i −0.219678 + 0.920899i
\(577\) −21.2859 8.35411i −0.886145 0.347786i −0.121770 0.992558i \(-0.538857\pi\)
−0.764375 + 0.644772i \(0.776952\pi\)
\(578\) −18.8608 + 22.4033i −0.784507 + 0.931853i
\(579\) 0.264169 + 0.673093i 0.0109785 + 0.0279728i
\(580\) −1.81984 + 0.925506i −0.0755649 + 0.0384296i
\(581\) 1.24035 + 0.0174715i 0.0514586 + 0.000724841i
\(582\) −2.50453 + 0.906956i −0.103816 + 0.0375945i
\(583\) 26.7850 + 2.00726i 1.10932 + 0.0831321i
\(584\) −38.9611 18.9978i −1.61222 0.786133i
\(585\) 1.69401 + 1.15496i 0.0700387 + 0.0477516i
\(586\) 14.6116 20.2538i 0.603598 0.836676i
\(587\) −28.2761 −1.16708 −0.583539 0.812085i \(-0.698332\pi\)
−0.583539 + 0.812085i \(0.698332\pi\)
\(588\) −4.82821 2.82953i −0.199112 0.116688i
\(589\) −50.0074 −2.06052
\(590\) 1.99533 2.76582i 0.0821465 0.113867i
\(591\) 3.08900 + 2.10604i 0.127064 + 0.0866310i
\(592\) −39.4978 + 14.0853i −1.62335 + 0.578903i
\(593\) −0.991362 0.0742923i −0.0407103 0.00305082i 0.0543594 0.998521i \(-0.482688\pi\)
−0.0950697 + 0.995471i \(0.530307\pi\)
\(594\) −13.6798 + 4.95383i −0.561290 + 0.203258i
\(595\) 0.747181 3.07342i 0.0306314 0.125998i
\(596\) 10.9781 + 21.5864i 0.449679 + 0.884214i
\(597\) 2.37487 + 6.05107i 0.0971970 + 0.247654i
\(598\) −12.8574 + 15.2722i −0.525777 + 0.624528i
\(599\) 34.0410 + 13.3601i 1.39088 + 0.545879i 0.938292 0.345843i \(-0.112407\pi\)
0.452584 + 0.891722i \(0.350502\pi\)
\(600\) 4.87222 2.78133i 0.198908 0.113547i
\(601\) −18.2701 + 14.5699i −0.745252 + 0.594319i −0.920746 0.390162i \(-0.872419\pi\)
0.175494 + 0.984480i \(0.443848\pi\)
\(602\) −6.88077 3.02868i −0.280439 0.123440i
\(603\) 3.59276 + 2.86513i 0.146308 + 0.116677i
\(604\) 24.4420 17.4521i 0.994529 0.710116i
\(605\) −1.11497 1.20166i −0.0453302 0.0488543i
\(606\) −0.120027 0.0307709i −0.00487577 0.00124998i
\(607\) −13.0059 + 22.5269i −0.527894 + 0.914339i 0.471577 + 0.881825i \(0.343685\pi\)
−0.999471 + 0.0325144i \(0.989649\pi\)
\(608\) −14.8037 + 26.6649i −0.600370 + 1.08140i
\(609\) 5.32169 1.55979i 0.215646 0.0632057i
\(610\) −1.78737 + 1.15028i −0.0723685 + 0.0465737i
\(611\) −2.04054 + 2.19918i −0.0825516 + 0.0889695i
\(612\) 34.5967 + 4.45003i 1.39849 + 0.179882i
\(613\) −26.5082 3.99546i −1.07065 0.161375i −0.410015 0.912079i \(-0.634477\pi\)
−0.660639 + 0.750704i \(0.729715\pi\)
\(614\) −0.512430 10.6147i −0.0206800 0.428375i
\(615\) −0.0511419 + 0.224067i −0.00206224 + 0.00903526i
\(616\) 32.9718 + 0.625579i 1.32847 + 0.0252053i
\(617\) −7.57972 33.2089i −0.305148 1.33694i −0.862244 0.506493i \(-0.830942\pi\)
0.557096 0.830448i \(-0.311915\pi\)
\(618\) −1.39700 + 0.390600i −0.0561954 + 0.0157122i
\(619\) −12.0083 20.7989i −0.482653 0.835979i 0.517149 0.855895i \(-0.326993\pi\)
−0.999802 + 0.0199165i \(0.993660\pi\)
\(620\) −2.59353 + 2.51323i −0.104159 + 0.100934i
\(621\) 5.00664 + 7.34339i 0.200909 + 0.294680i
\(622\) 37.1653 4.59595i 1.49019 0.184281i
\(623\) −24.8757 14.8330i −0.996624 0.594272i
\(624\) −4.47071 + 3.89391i −0.178972 + 0.155881i
\(625\) 23.3474 + 7.20173i 0.933897 + 0.288069i
\(626\) 16.2872 + 36.2535i 0.650967 + 1.44898i
\(627\) −9.47073 + 0.709733i −0.378225 + 0.0283440i
\(628\) 2.11376 + 5.06042i 0.0843482 + 0.201933i
\(629\) 27.9317 + 58.0008i 1.11371 + 2.31265i
\(630\) −1.95501 + 0.676971i −0.0778896 + 0.0269712i
\(631\) 12.8293 26.6402i 0.510725 1.06053i −0.473036 0.881043i \(-0.656842\pi\)
0.983760 0.179487i \(-0.0574438\pi\)
\(632\) −6.21386 + 5.70937i −0.247174 + 0.227107i
\(633\) −0.881335 2.85722i −0.0350299 0.113564i
\(634\) −6.96437 34.7420i −0.276591 1.37978i
\(635\) −0.850248 + 0.128154i −0.0337411 + 0.00508565i
\(636\) −0.105615 4.87165i −0.00418789 0.193174i
\(637\) 10.5986 + 23.6932i 0.419931 + 0.938757i
\(638\) −22.8559 + 23.3567i −0.904872 + 0.924702i
\(639\) −1.98476 13.1680i −0.0785157 0.520918i
\(640\) 0.572336 + 2.12691i 0.0226235 + 0.0840736i
\(641\) 26.5549 8.19111i 1.04886 0.323529i 0.278028 0.960573i \(-0.410319\pi\)
0.770828 + 0.637044i \(0.219843\pi\)
\(642\) −3.29126 3.74172i −0.129896 0.147674i
\(643\) −22.3272 10.7522i −0.880499 0.424026i −0.0616919 0.998095i \(-0.519650\pi\)
−0.818807 + 0.574069i \(0.805364\pi\)
\(644\) −4.63170 19.6056i −0.182515 0.772569i
\(645\) 0.140874 0.0678415i 0.00554692 0.00267126i
\(646\) 43.1144 + 18.2570i 1.69631 + 0.718312i
\(647\) 1.45719 + 19.4448i 0.0572880 + 0.764456i 0.949685 + 0.313205i \(0.101403\pi\)
−0.892397 + 0.451250i \(0.850978\pi\)
\(648\) −9.21682 19.3806i −0.362071 0.761342i
\(649\) 16.0901 52.1628i 0.631591 2.04757i
\(650\) −25.8869 2.63296i −1.01537 0.103273i
\(651\) 8.18199 5.41117i 0.320677 0.212080i
\(652\) −3.64218 + 4.77594i −0.142639 + 0.187040i
\(653\) 16.4595 11.2219i 0.644108 0.439146i −0.196711 0.980462i \(-0.563026\pi\)
0.840819 + 0.541316i \(0.182074\pi\)
\(654\) −3.29401 0.0875159i −0.128806 0.00342214i
\(655\) −1.26315 + 0.729281i −0.0493555 + 0.0284954i
\(656\) 10.4770 + 5.45774i 0.409059 + 0.213089i
\(657\) 42.4355 9.68562i 1.65557 0.377872i
\(658\) −0.553151 2.97635i −0.0215641 0.116030i
\(659\) 3.79879 + 0.867049i 0.147980 + 0.0337754i 0.295869 0.955228i \(-0.404391\pi\)
−0.147889 + 0.989004i \(0.547248\pi\)
\(660\) −0.455511 + 0.512780i −0.0177307 + 0.0199599i
\(661\) −1.89468 + 12.5704i −0.0736946 + 0.488932i 0.921288 + 0.388882i \(0.127138\pi\)
−0.994982 + 0.100050i \(0.968100\pi\)
\(662\) −12.3624 + 9.33250i −0.480478 + 0.362718i
\(663\) 6.67195 + 6.19066i 0.259117 + 0.240425i
\(664\) 0.741671 + 1.09933i 0.0287824 + 0.0426624i
\(665\) −2.77191 + 0.168503i −0.107490 + 0.00653427i
\(666\) 22.0156 35.8954i 0.853086 1.39092i
\(667\) 17.2884 + 9.98145i 0.669409 + 0.386483i
\(668\) 3.25711 1.97584i 0.126022 0.0764475i
\(669\) 3.26415 3.02869i 0.126199 0.117096i
\(670\) 0.438561 + 0.0780668i 0.0169431 + 0.00301598i
\(671\) −21.2120 + 26.5990i −0.818880 + 1.02684i
\(672\) −0.463219 5.96466i −0.0178691 0.230092i
\(673\) −15.0825 18.9129i −0.581388 0.729038i 0.400961 0.916095i \(-0.368676\pi\)
−0.982349 + 0.187058i \(0.940105\pi\)
\(674\) 2.25418 + 4.15546i 0.0868276 + 0.160062i
\(675\) −4.23214 + 10.7833i −0.162895 + 0.415050i
\(676\) 1.49082 0.144276i 0.0573392 0.00554907i
\(677\) 9.04295 3.54910i 0.347549 0.136403i −0.185144 0.982711i \(-0.559275\pi\)
0.532693 + 0.846308i \(0.321180\pi\)
\(678\) 0.910626 + 0.307605i 0.0349724 + 0.0118135i
\(679\) −9.85532 + 7.63477i −0.378212 + 0.292996i
\(680\) 3.15358 1.21994i 0.120934 0.0467826i
\(681\) 0.514086 6.86000i 0.0196998 0.262876i
\(682\) −26.4553 + 51.3966i −1.01303 + 1.96808i
\(683\) 13.2415 19.4217i 0.506670 0.743149i −0.484637 0.874715i \(-0.661048\pi\)
0.991307 + 0.131567i \(0.0420007\pi\)
\(684\) −5.21984 30.1776i −0.199586 1.15387i
\(685\) 0.461699i 0.0176406i
\(686\) −25.5693 5.67530i −0.976242 0.216684i
\(687\) 3.43935i 0.131219i
\(688\) −1.54113 7.88777i −0.0587551 0.300718i
\(689\) −12.7312 + 18.6733i −0.485021 + 0.711395i
\(690\) 0.372534 + 0.191754i 0.0141821 + 0.00729995i
\(691\) −1.12843 + 15.0579i −0.0429277 + 0.572830i 0.933723 + 0.357996i \(0.116540\pi\)
−0.976651 + 0.214834i \(0.931079\pi\)
\(692\) 5.87967 + 2.67609i 0.223511 + 0.101730i
\(693\) −26.1787 + 20.2803i −0.994447 + 0.770383i
\(694\) −10.2814 + 30.4368i −0.390278 + 1.15537i
\(695\) −3.92250 + 1.53947i −0.148789 + 0.0583954i
\(696\) 4.61694 + 3.71894i 0.175005 + 0.140966i
\(697\) 6.62564 16.8818i 0.250964 0.639446i
\(698\) −12.9660 + 7.03353i −0.490769 + 0.266223i
\(699\) 0.227010 + 0.284662i 0.00858631 + 0.0107669i
\(700\) 17.7126 19.3827i 0.669475 0.732598i
\(701\) −1.23888 + 1.55350i −0.0467918 + 0.0586751i −0.804677 0.593713i \(-0.797661\pi\)
0.757885 + 0.652388i \(0.226233\pi\)
\(702\) 2.14540 12.0523i 0.0809728 0.454886i
\(703\) 41.4332 38.4444i 1.56268 1.44996i
\(704\) 19.5741 + 29.3214i 0.737726 + 1.10509i
\(705\) 0.0545276 + 0.0314815i 0.00205363 + 0.00118566i
\(706\) 22.7431 + 13.9489i 0.855946 + 0.524974i
\(707\) −0.578851 + 0.0351881i −0.0217699 + 0.00132338i
\(708\) −9.70024 1.99385i −0.364557 0.0749336i
\(709\) −28.7151 26.6437i −1.07842 1.00062i −0.999993 0.00370477i \(-0.998821\pi\)
−0.0784240 0.996920i \(-0.524989\pi\)
\(710\) −0.777763 1.03027i −0.0291889 0.0386654i
\(711\) 1.26294 8.37906i 0.0473640 0.314239i
\(712\) −2.16292 30.8864i −0.0810587 1.15752i
\(713\) 34.4267 + 7.85767i 1.28929 + 0.294272i
\(714\) −9.02972 + 1.67817i −0.337929 + 0.0628038i
\(715\) 3.10140 0.707875i 0.115986 0.0264730i
\(716\) 16.1550 29.4369i 0.603741 1.10011i
\(717\) −8.01356 + 4.62663i −0.299272 + 0.172785i
\(718\) −0.249540 + 9.39246i −0.00931276 + 0.350523i
\(719\) −34.0296 + 23.2010i −1.26909 + 0.865252i −0.995329 0.0965454i \(-0.969221\pi\)
−0.273763 + 0.961797i \(0.588268\pi\)
\(720\) −1.78736 1.30277i −0.0666108 0.0485513i
\(721\) −5.66265 + 3.74500i −0.210888 + 0.139471i
\(722\) 1.44071 14.1648i 0.0536177 0.527161i
\(723\) 1.91796 6.21788i 0.0713298 0.231245i
\(724\) 7.15175 19.4519i 0.265793 0.722923i
\(725\) 1.94442 + 25.9465i 0.0722140 + 0.963629i
\(726\) −1.85608 + 4.38317i −0.0688854 + 0.162675i
\(727\) 7.55205 3.63687i 0.280090 0.134884i −0.288565 0.957460i \(-0.593178\pi\)
0.568655 + 0.822576i \(0.307464\pi\)
\(728\) −14.3272 + 23.7628i −0.531002 + 0.880706i
\(729\) 16.8936 + 8.13554i 0.625690 + 0.301316i
\(730\) 3.16813 2.78673i 0.117258 0.103141i
\(731\) −11.7899 + 3.63670i −0.436065 + 0.134508i
\(732\) 5.17367 + 3.36544i 0.191224 + 0.124390i
\(733\) −4.83649 32.0880i −0.178640 1.18520i −0.880909 0.473286i \(-0.843068\pi\)
0.702269 0.711911i \(-0.252170\pi\)
\(734\) 21.8104 + 21.3427i 0.805036 + 0.787772i
\(735\) 0.435294 0.327510i 0.0160561 0.0120804i
\(736\) 14.3812 16.0309i 0.530099 0.590906i
\(737\) 7.05037 1.06267i 0.259704 0.0391441i
\(738\) −11.6312 + 2.33158i −0.428150 + 0.0858268i
\(739\) −0.764853 2.47959i −0.0281356 0.0912133i 0.940416 0.340026i \(-0.110436\pi\)
−0.968552 + 0.248813i \(0.919960\pi\)
\(740\) 0.216745 4.07615i 0.00796769 0.149842i
\(741\) 3.46721 7.19974i 0.127371 0.264489i
\(742\) −7.46234 21.5503i −0.273951 0.791138i
\(743\) −12.7510 26.4776i −0.467787 0.971370i −0.992745 0.120242i \(-0.961633\pi\)
0.524957 0.851128i \(-0.324081\pi\)
\(744\) 9.74302 + 3.87889i 0.357196 + 0.142207i
\(745\) −2.35077 + 0.176166i −0.0861255 + 0.00645421i
\(746\) −36.9623 + 16.6056i −1.35329 + 0.607976i
\(747\) −1.27249 0.392512i −0.0465580 0.0143612i
\(748\) 41.5729 34.6536i 1.52005 1.26706i
\(749\) −20.0319 11.9447i −0.731948 0.436450i
\(750\) 0.134555 + 1.08809i 0.00491326 + 0.0397313i
\(751\) −17.9660 26.3513i −0.655589 0.961573i −0.999743 0.0226595i \(-0.992787\pi\)
0.344154 0.938913i \(-0.388166\pi\)
\(752\) 2.27477 2.30201i 0.0829524 0.0839458i
\(753\) 0.170746 + 0.295740i 0.00622231 + 0.0107774i
\(754\) −7.40406 26.4809i −0.269640 0.964379i
\(755\) 0.650528 + 2.85015i 0.0236751 + 0.103727i
\(756\) 8.47073 + 8.99141i 0.308077 + 0.327014i
\(757\) −8.49472 + 37.2178i −0.308746 + 1.35270i 0.547789 + 0.836616i \(0.315469\pi\)
−0.856535 + 0.516088i \(0.827388\pi\)
\(758\) 29.2787 1.41344i 1.06345 0.0513385i
\(759\) 6.63148 + 0.999535i 0.240707 + 0.0362808i
\(760\) −1.83963 2.33009i −0.0667305 0.0845212i
\(761\) −21.5187 + 23.1917i −0.780054 + 0.840698i −0.990586 0.136889i \(-0.956290\pi\)
0.210533 + 0.977587i \(0.432480\pi\)
\(762\) 1.35120 + 2.09957i 0.0489489 + 0.0760593i
\(763\) −14.7996 + 4.33775i −0.535780 + 0.157037i
\(764\) −3.03636 12.0891i −0.109852 0.437367i
\(765\) −1.69771 + 2.94051i −0.0613807 + 0.106315i
\(766\) −0.519609 + 2.02682i −0.0187742 + 0.0732321i