Properties

Label 196.2.p.a.103.21
Level $196$
Weight $2$
Character 196.103
Analytic conductor $1.565$
Analytic rank $0$
Dimension $312$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(3,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.p (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(312\)
Relative dimension: \(26\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 103.21
Character \(\chi\) \(=\) 196.103
Dual form 196.2.p.a.59.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.976093 + 1.02335i) q^{2} +(0.268294 + 0.182920i) q^{3} +(-0.0944861 + 1.99777i) q^{4} +(3.60103 + 0.269860i) q^{5} +(0.0746891 + 0.453105i) q^{6} +(-1.91709 - 1.82340i) q^{7} +(-2.13664 + 1.85331i) q^{8} +(-1.05750 - 2.69447i) q^{9} +O(q^{10})\) \(q+(0.976093 + 1.02335i) q^{2} +(0.268294 + 0.182920i) q^{3} +(-0.0944861 + 1.99777i) q^{4} +(3.60103 + 0.269860i) q^{5} +(0.0746891 + 0.453105i) q^{6} +(-1.91709 - 1.82340i) q^{7} +(-2.13664 + 1.85331i) q^{8} +(-1.05750 - 2.69447i) q^{9} +(3.23877 + 3.94851i) q^{10} +(0.946254 + 0.371377i) q^{11} +(-0.390781 + 0.518705i) q^{12} +(-2.72262 + 2.17122i) q^{13} +(-0.00528603 - 3.74165i) q^{14} +(0.916771 + 0.731100i) q^{15} +(-3.98214 - 0.377522i) q^{16} +(-1.83141 - 1.97379i) q^{17} +(1.72516 - 3.71224i) q^{18} +(-2.18150 + 3.77847i) q^{19} +(-0.879363 + 7.16851i) q^{20} +(-0.180808 - 0.839879i) q^{21} +(0.543583 + 1.33085i) q^{22} +(4.02678 - 4.33983i) q^{23} +(-0.912255 + 0.106399i) q^{24} +(7.95041 + 1.19833i) q^{25} +(-4.87944 - 0.666881i) q^{26} +(0.425920 - 1.86608i) q^{27} +(3.82386 - 3.65761i) q^{28} +(1.26899 + 5.55980i) q^{29} +(0.146683 + 1.65180i) q^{30} +(-2.93635 - 5.08591i) q^{31} +(-3.50061 - 4.44362i) q^{32} +(0.185942 + 0.272727i) q^{33} +(0.232251 - 3.80078i) q^{34} +(-6.41142 - 7.08344i) q^{35} +(5.48284 - 1.85805i) q^{36} +(-2.33916 - 0.721535i) q^{37} +(-5.99604 + 1.45570i) q^{38} +(-1.12762 + 0.0845035i) q^{39} +(-8.19423 + 6.09724i) q^{40} +(-2.01156 - 4.17704i) q^{41} +(0.683004 - 1.00483i) q^{42} +(1.13347 - 2.35367i) q^{43} +(-0.831333 + 1.85531i) q^{44} +(-3.08096 - 9.98823i) q^{45} +(8.37167 - 0.115282i) q^{46} +(1.76704 - 0.266339i) q^{47} +(-0.999329 - 0.829700i) q^{48} +(0.350456 + 6.99122i) q^{49} +(6.53402 + 9.30572i) q^{50} +(-0.130311 - 0.864558i) q^{51} +(-4.08033 - 5.64431i) q^{52} +(7.54844 - 2.32839i) q^{53} +(2.32538 - 1.38560i) q^{54} +(3.30727 + 1.59270i) q^{55} +(7.47545 + 0.342974i) q^{56} +(-1.27644 + 0.614702i) q^{57} +(-4.45097 + 6.72550i) q^{58} +(1.04136 + 13.8960i) q^{59} +(-1.54719 + 1.76242i) q^{60} +(-1.60668 + 5.20873i) q^{61} +(2.33851 - 7.96923i) q^{62} +(-2.88576 + 7.09378i) q^{63} +(1.13046 - 7.91973i) q^{64} +(-10.3901 + 7.08388i) q^{65} +(-0.0975981 + 0.456490i) q^{66} +(12.0921 - 6.98137i) q^{67} +(4.11622 - 3.47224i) q^{68} +(1.87420 - 0.427774i) q^{69} +(0.990686 - 13.4752i) q^{70} +(-6.12274 - 1.39748i) q^{71} +(7.25319 + 3.79723i) q^{72} +(0.391304 - 2.59613i) q^{73} +(-1.54485 - 3.09806i) q^{74} +(1.91385 + 1.77579i) q^{75} +(-7.34239 - 4.71515i) q^{76} +(-1.13688 - 2.43736i) q^{77} +(-1.18714 - 1.07147i) q^{78} +(8.77147 + 5.06421i) q^{79} +(-14.2379 - 2.43409i) q^{80} +(-5.90997 + 5.48365i) q^{81} +(2.31110 - 6.13570i) q^{82} +(-9.43230 + 11.8277i) q^{83} +(1.69497 - 0.281856i) q^{84} +(-6.06231 - 7.60190i) q^{85} +(3.51499 - 1.13747i) q^{86} +(-0.676535 + 1.72378i) q^{87} +(-2.71008 + 0.960206i) q^{88} +(-3.57183 + 1.40184i) q^{89} +(7.21414 - 12.9023i) q^{90} +(9.17849 + 0.801998i) q^{91} +(8.28950 + 8.45461i) q^{92} +(0.142508 - 1.90164i) q^{93} +(1.99736 + 1.54833i) q^{94} +(-8.87530 + 13.0177i) q^{95} +(-0.126365 - 1.83253i) q^{96} +13.8685i q^{97} +(-6.81238 + 7.18272i) q^{98} -2.94238i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9} - 20 q^{10} + 9 q^{12} - 28 q^{13} - 51 q^{14} - 17 q^{16} - 22 q^{17} - 12 q^{18} - 14 q^{20} - 34 q^{21} - 18 q^{22} - 44 q^{24} - 48 q^{25} - 2 q^{26} - 36 q^{28} - 11 q^{30} - 13 q^{32} - 34 q^{33} - 98 q^{34} - 4 q^{36} - 58 q^{37} - 18 q^{38} + 30 q^{40} - 28 q^{41} - 26 q^{42} + 16 q^{44} - 28 q^{45} - 14 q^{46} - 24 q^{49} + 96 q^{50} - 14 q^{52} - 22 q^{53} - 17 q^{54} + 40 q^{56} + 34 q^{57} - 12 q^{58} + 98 q^{60} - 38 q^{61} - 4 q^{64} - 32 q^{65} - 176 q^{66} - 21 q^{68} + 28 q^{69} + 50 q^{70} - 120 q^{72} - 58 q^{73} - 14 q^{74} - 91 q^{76} - 18 q^{77} - 112 q^{78} + 66 q^{80} - 170 q^{81} + 114 q^{82} + 140 q^{84} - 24 q^{85} + 97 q^{86} + 127 q^{88} - 82 q^{89} + 266 q^{90} + 34 q^{92} + 226 q^{94} + 122 q^{96} + 183 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.976093 + 1.02335i 0.690202 + 0.723617i
\(3\) 0.268294 + 0.182920i 0.154900 + 0.105609i 0.638290 0.769796i \(-0.279642\pi\)
−0.483390 + 0.875405i \(0.660595\pi\)
\(4\) −0.0944861 + 1.99777i −0.0472431 + 0.998883i
\(5\) 3.60103 + 0.269860i 1.61043 + 0.120685i 0.849298 0.527914i \(-0.177026\pi\)
0.761130 + 0.648599i \(0.224645\pi\)
\(6\) 0.0746891 + 0.453105i 0.0304917 + 0.184979i
\(7\) −1.91709 1.82340i −0.724591 0.689179i
\(8\) −2.13664 + 1.85331i −0.755416 + 0.655245i
\(9\) −1.05750 2.69447i −0.352500 0.898156i
\(10\) 3.23877 + 3.94851i 1.02419 + 1.24863i
\(11\) 0.946254 + 0.371377i 0.285306 + 0.111974i 0.503679 0.863891i \(-0.331980\pi\)
−0.218372 + 0.975866i \(0.570075\pi\)
\(12\) −0.390781 + 0.518705i −0.112809 + 0.149737i
\(13\) −2.72262 + 2.17122i −0.755119 + 0.602187i −0.923528 0.383530i \(-0.874708\pi\)
0.168410 + 0.985717i \(0.446137\pi\)
\(14\) −0.00528603 3.74165i −0.00141275 0.999999i
\(15\) 0.916771 + 0.731100i 0.236709 + 0.188769i
\(16\) −3.98214 0.377522i −0.995536 0.0943806i
\(17\) −1.83141 1.97379i −0.444183 0.478715i 0.470782 0.882250i \(-0.343972\pi\)
−0.914964 + 0.403535i \(0.867781\pi\)
\(18\) 1.72516 3.71224i 0.406625 0.874984i
\(19\) −2.18150 + 3.77847i −0.500471 + 0.866841i 0.499529 + 0.866297i \(0.333506\pi\)
−1.00000 0.000543834i \(0.999827\pi\)
\(20\) −0.879363 + 7.16851i −0.196632 + 1.60293i
\(21\) −0.180808 0.839879i −0.0394556 0.183277i
\(22\) 0.543583 + 1.33085i 0.115892 + 0.283737i
\(23\) 4.02678 4.33983i 0.839641 0.904918i −0.156934 0.987609i \(-0.550161\pi\)
0.996575 + 0.0826915i \(0.0263516\pi\)
\(24\) −0.912255 + 0.106399i −0.186213 + 0.0217187i
\(25\) 7.95041 + 1.19833i 1.59008 + 0.239666i
\(26\) −4.87944 0.666881i −0.956937 0.130786i
\(27\) 0.425920 1.86608i 0.0819682 0.359126i
\(28\) 3.82386 3.65761i 0.722641 0.691223i
\(29\) 1.26899 + 5.55980i 0.235645 + 1.03243i 0.944870 + 0.327446i \(0.106188\pi\)
−0.709225 + 0.704983i \(0.750955\pi\)
\(30\) 0.146683 + 1.65180i 0.0267804 + 0.301576i
\(31\) −2.93635 5.08591i −0.527384 0.913456i −0.999491 0.0319145i \(-0.989840\pi\)
0.472106 0.881542i \(-0.343494\pi\)
\(32\) −3.50061 4.44362i −0.618825 0.785529i
\(33\) 0.185942 + 0.272727i 0.0323684 + 0.0474757i
\(34\) 0.232251 3.80078i 0.0398307 0.651828i
\(35\) −6.41142 7.08344i −1.08373 1.19732i
\(36\) 5.48284 1.85805i 0.913807 0.309675i
\(37\) −2.33916 0.721535i −0.384555 0.118620i 0.0964488 0.995338i \(-0.469252\pi\)
−0.481004 + 0.876718i \(0.659728\pi\)
\(38\) −5.99604 + 1.45570i −0.972687 + 0.236146i
\(39\) −1.12762 + 0.0845035i −0.180564 + 0.0135314i
\(40\) −8.19423 + 6.09724i −1.29562 + 0.964058i
\(41\) −2.01156 4.17704i −0.314152 0.652344i 0.682779 0.730625i \(-0.260771\pi\)
−0.996931 + 0.0782809i \(0.975057\pi\)
\(42\) 0.683004 1.00483i 0.105390 0.155049i
\(43\) 1.13347 2.35367i 0.172852 0.358931i −0.796488 0.604654i \(-0.793311\pi\)
0.969340 + 0.245724i \(0.0790256\pi\)
\(44\) −0.831333 + 1.85531i −0.125328 + 0.279698i
\(45\) −3.08096 9.98823i −0.459282 1.48896i
\(46\) 8.37167 0.115282i 1.23434 0.0169974i
\(47\) 1.76704 0.266339i 0.257750 0.0388495i −0.0188961 0.999821i \(-0.506015\pi\)
0.276646 + 0.960972i \(0.410777\pi\)
\(48\) −0.999329 0.829700i −0.144241 0.119757i
\(49\) 0.350456 + 6.99122i 0.0500652 + 0.998746i
\(50\) 6.53402 + 9.30572i 0.924050 + 1.31603i
\(51\) −0.130311 0.864558i −0.0182472 0.121062i
\(52\) −4.08033 5.64431i −0.565841 0.782725i
\(53\) 7.54844 2.32839i 1.03686 0.319828i 0.270824 0.962629i \(-0.412704\pi\)
0.766034 + 0.642800i \(0.222228\pi\)
\(54\) 2.32538 1.38560i 0.316445 0.188556i
\(55\) 3.30727 + 1.59270i 0.445952 + 0.214759i
\(56\) 7.47545 + 0.342974i 0.998949 + 0.0458318i
\(57\) −1.27644 + 0.614702i −0.169069 + 0.0814192i
\(58\) −4.45097 + 6.72550i −0.584441 + 0.883101i
\(59\) 1.04136 + 13.8960i 0.135574 + 1.80910i 0.487551 + 0.873094i \(0.337890\pi\)
−0.351978 + 0.936008i \(0.614491\pi\)
\(60\) −1.54719 + 1.76242i −0.199741 + 0.227527i
\(61\) −1.60668 + 5.20873i −0.205714 + 0.666909i 0.792647 + 0.609681i \(0.208702\pi\)
−0.998361 + 0.0572282i \(0.981774\pi\)
\(62\) 2.33851 7.96923i 0.296991 1.01209i
\(63\) −2.88576 + 7.09378i −0.363572 + 0.893732i
\(64\) 1.13046 7.91973i 0.141307 0.989966i
\(65\) −10.3901 + 7.08388i −1.28874 + 0.878647i
\(66\) −0.0975981 + 0.456490i −0.0120135 + 0.0561901i
\(67\) 12.0921 6.98137i 1.47728 0.852910i 0.477612 0.878571i \(-0.341502\pi\)
0.999671 + 0.0256611i \(0.00816908\pi\)
\(68\) 4.11622 3.47224i 0.499165 0.421071i
\(69\) 1.87420 0.427774i 0.225627 0.0514979i
\(70\) 0.990686 13.4752i 0.118410 1.61060i
\(71\) −6.12274 1.39748i −0.726636 0.165850i −0.156826 0.987626i \(-0.550126\pi\)
−0.569810 + 0.821776i \(0.692983\pi\)
\(72\) 7.25319 + 3.79723i 0.854797 + 0.447508i
\(73\) 0.391304 2.59613i 0.0457987 0.303854i −0.954190 0.299200i \(-0.903280\pi\)
0.999989 0.00465465i \(-0.00148163\pi\)
\(74\) −1.54485 3.09806i −0.179586 0.360142i
\(75\) 1.91385 + 1.77579i 0.220992 + 0.205051i
\(76\) −7.34239 4.71515i −0.842229 0.540864i
\(77\) −1.13688 2.43736i −0.129560 0.277763i
\(78\) −1.18714 1.07147i −0.134417 0.121320i
\(79\) 8.77147 + 5.06421i 0.986867 + 0.569768i 0.904336 0.426820i \(-0.140366\pi\)
0.0825308 + 0.996589i \(0.473700\pi\)
\(80\) −14.2379 2.43409i −1.59185 0.272139i
\(81\) −5.90997 + 5.48365i −0.656663 + 0.609295i
\(82\) 2.31110 6.13570i 0.255219 0.677575i
\(83\) −9.43230 + 11.8277i −1.03533 + 1.29826i −0.0819010 + 0.996640i \(0.526099\pi\)
−0.953428 + 0.301621i \(0.902472\pi\)
\(84\) 1.69497 0.281856i 0.184936 0.0307530i
\(85\) −6.06231 7.60190i −0.657550 0.824542i
\(86\) 3.51499 1.13747i 0.379031 0.122656i
\(87\) −0.676535 + 1.72378i −0.0725322 + 0.184809i
\(88\) −2.71008 + 0.960206i −0.288896 + 0.102358i
\(89\) −3.57183 + 1.40184i −0.378613 + 0.148595i −0.547013 0.837124i \(-0.684235\pi\)
0.168400 + 0.985719i \(0.446140\pi\)
\(90\) 7.21414 12.9023i 0.760437 1.36003i
\(91\) 9.17849 + 0.801998i 0.962167 + 0.0840722i
\(92\) 8.28950 + 8.45461i 0.864240 + 0.881454i
\(93\) 0.142508 1.90164i 0.0147774 0.197190i
\(94\) 1.99736 + 1.54833i 0.206012 + 0.159698i
\(95\) −8.87530 + 13.0177i −0.910587 + 1.33559i
\(96\) −0.126365 1.83253i −0.0128971 0.187031i
\(97\) 13.8685i 1.40813i 0.710135 + 0.704066i \(0.248634\pi\)
−0.710135 + 0.704066i \(0.751366\pi\)
\(98\) −6.81238 + 7.18272i −0.688154 + 0.725564i
\(99\) 2.94238i 0.295721i
\(100\) −3.14519 + 15.7698i −0.314519 + 1.57698i
\(101\) 4.31836 6.33388i 0.429693 0.630244i −0.548939 0.835862i \(-0.684968\pi\)
0.978632 + 0.205618i \(0.0659205\pi\)
\(102\) 0.757549 0.977243i 0.0750085 0.0967614i
\(103\) −0.300946 + 4.01584i −0.0296531 + 0.395693i 0.962554 + 0.271091i \(0.0873844\pi\)
−0.992207 + 0.124602i \(0.960235\pi\)
\(104\) 1.79331 9.68497i 0.175849 0.949690i
\(105\) −0.424446 3.07322i −0.0414217 0.299916i
\(106\) 9.75073 + 5.45197i 0.947075 + 0.529542i
\(107\) −11.7570 + 4.61427i −1.13659 + 0.446079i −0.857652 0.514231i \(-0.828078\pi\)
−0.278938 + 0.960309i \(0.589982\pi\)
\(108\) 3.68774 + 1.02721i 0.354853 + 0.0988429i
\(109\) 4.59354 11.7042i 0.439981 1.12105i −0.523202 0.852209i \(-0.675263\pi\)
0.963183 0.268846i \(-0.0866421\pi\)
\(110\) 1.59831 + 4.93910i 0.152393 + 0.470925i
\(111\) −0.495599 0.621462i −0.0470402 0.0589865i
\(112\) 6.94575 + 7.98477i 0.656312 + 0.754490i
\(113\) −10.8117 + 13.5575i −1.01708 + 1.27538i −0.0562022 + 0.998419i \(0.517899\pi\)
−0.960881 + 0.276962i \(0.910672\pi\)
\(114\) −1.87498 0.706239i −0.175608 0.0661453i
\(115\) 15.6717 14.5412i 1.46139 1.35597i
\(116\) −11.2271 + 2.00982i −1.04241 + 0.186607i
\(117\) 8.72945 + 5.03995i 0.807038 + 0.465943i
\(118\) −13.2040 + 14.6294i −1.21552 + 1.34675i
\(119\) −0.0880262 + 7.12332i −0.00806935 + 0.652994i
\(120\) −3.31377 + 0.136966i −0.302504 + 0.0125032i
\(121\) −7.30609 6.77907i −0.664190 0.616279i
\(122\) −6.89861 + 3.44001i −0.624571 + 0.311444i
\(123\) 0.224375 1.48863i 0.0202312 0.134225i
\(124\) 10.4379 5.38560i 0.937351 0.483641i
\(125\) 10.7033 + 2.44296i 0.957334 + 0.218505i
\(126\) −10.0762 + 3.97105i −0.897657 + 0.353769i
\(127\) 17.2681 3.94134i 1.53230 0.349737i 0.628539 0.777778i \(-0.283653\pi\)
0.903760 + 0.428041i \(0.140796\pi\)
\(128\) 9.20808 6.57353i 0.813887 0.581024i
\(129\) 0.734634 0.424141i 0.0646809 0.0373435i
\(130\) −17.3910 3.71822i −1.52529 0.326109i
\(131\) −3.32882 + 2.26955i −0.290841 + 0.198292i −0.699947 0.714195i \(-0.746793\pi\)
0.409106 + 0.912487i \(0.365841\pi\)
\(132\) −0.562414 + 0.345700i −0.0489518 + 0.0300893i
\(133\) 11.0718 3.26592i 0.960045 0.283192i
\(134\) 18.9474 + 5.55996i 1.63680 + 0.480307i
\(135\) 2.03733 6.60485i 0.175345 0.568455i
\(136\) 7.57112 + 0.823104i 0.649218 + 0.0705806i
\(137\) −1.44678 19.3059i −0.123606 1.64941i −0.622405 0.782696i \(-0.713844\pi\)
0.498798 0.866718i \(-0.333775\pi\)
\(138\) 2.26716 + 1.50041i 0.192993 + 0.127724i
\(139\) −16.9559 + 8.16553i −1.43818 + 0.692591i −0.980499 0.196525i \(-0.937034\pi\)
−0.457682 + 0.889116i \(0.651320\pi\)
\(140\) 14.7569 12.1392i 1.24718 1.02595i
\(141\) 0.522806 + 0.251770i 0.0440282 + 0.0212029i
\(142\) −4.54626 7.62977i −0.381513 0.640276i
\(143\) −3.38263 + 1.04340i −0.282870 + 0.0872538i
\(144\) 3.19390 + 11.1290i 0.266158 + 0.927416i
\(145\) 3.06929 + 20.3634i 0.254891 + 1.69109i
\(146\) 3.03870 2.13363i 0.251485 0.176580i
\(147\) −1.18481 + 1.93981i −0.0977212 + 0.159993i
\(148\) 1.66248 4.60492i 0.136655 0.378522i
\(149\) 0.0774860 0.0116791i 0.00634790 0.000956792i −0.145868 0.989304i \(-0.546597\pi\)
0.152215 + 0.988347i \(0.451359\pi\)
\(150\) 0.0508388 + 3.69187i 0.00415097 + 0.301440i
\(151\) 0.342471 + 1.11026i 0.0278699 + 0.0903519i 0.968439 0.249250i \(-0.0801840\pi\)
−0.940569 + 0.339602i \(0.889708\pi\)
\(152\) −2.34161 12.1162i −0.189930 0.982757i
\(153\) −3.38160 + 7.02197i −0.273386 + 0.567693i
\(154\) 1.38456 3.54252i 0.111571 0.285464i
\(155\) −9.20139 19.1069i −0.739074 1.53470i
\(156\) −0.0622738 2.26071i −0.00498589 0.181001i
\(157\) 14.4473 1.08268i 1.15302 0.0864070i 0.515535 0.856869i \(-0.327593\pi\)
0.637486 + 0.770462i \(0.279974\pi\)
\(158\) 3.37931 + 13.9194i 0.268844 + 1.10737i
\(159\) 2.45111 + 0.756067i 0.194386 + 0.0599600i
\(160\) −11.4066 16.9463i −0.901772 1.33972i
\(161\) −15.6329 + 0.977437i −1.23205 + 0.0770328i
\(162\) −11.3804 0.695410i −0.894126 0.0546366i
\(163\) −1.47156 2.15839i −0.115262 0.169058i 0.764273 0.644893i \(-0.223098\pi\)
−0.879534 + 0.475835i \(0.842146\pi\)
\(164\) 8.53482 3.62395i 0.666457 0.282983i
\(165\) 0.595984 + 1.03227i 0.0463973 + 0.0803625i
\(166\) −21.3107 + 1.89243i −1.65403 + 0.146881i
\(167\) −2.67430 11.7169i −0.206943 0.906678i −0.966587 0.256339i \(-0.917484\pi\)
0.759644 0.650340i \(-0.225373\pi\)
\(168\) 1.94288 + 1.45943i 0.149897 + 0.112597i
\(169\) −0.194298 + 0.851274i −0.0149460 + 0.0654826i
\(170\) 1.86202 13.6240i 0.142810 1.04491i
\(171\) 12.4879 + 1.88225i 0.954975 + 0.143939i
\(172\) 4.59498 + 2.48679i 0.350364 + 0.189616i
\(173\) 13.4292 14.4733i 1.02101 1.10038i 0.0260917 0.999660i \(-0.491694\pi\)
0.994914 0.100723i \(-0.0321157\pi\)
\(174\) −2.42439 + 0.990241i −0.183793 + 0.0750700i
\(175\) −13.0566 16.7940i −0.986986 1.26951i
\(176\) −3.62792 1.83611i −0.273465 0.138402i
\(177\) −2.26246 + 3.91869i −0.170057 + 0.294547i
\(178\) −4.92101 2.28690i −0.368845 0.171411i
\(179\) 12.9024 + 13.9054i 0.964368 + 1.03934i 0.999202 + 0.0399484i \(0.0127194\pi\)
−0.0348338 + 0.999393i \(0.511090\pi\)
\(180\) 20.2453 5.21129i 1.50899 0.388427i
\(181\) −1.34053 1.06903i −0.0996405 0.0794606i 0.572402 0.819973i \(-0.306012\pi\)
−0.672043 + 0.740512i \(0.734583\pi\)
\(182\) 8.13833 + 10.1756i 0.603253 + 0.754267i
\(183\) −1.38384 + 1.10358i −0.102297 + 0.0815787i
\(184\) −0.560700 + 16.7355i −0.0413354 + 1.23376i
\(185\) −8.22866 3.22951i −0.604983 0.237438i
\(186\) 2.08514 1.71034i 0.152890 0.125408i
\(187\) −0.999959 2.54785i −0.0731242 0.186318i
\(188\) 0.365122 + 3.55531i 0.0266293 + 0.259297i
\(189\) −4.21912 + 2.80081i −0.306896 + 0.203729i
\(190\) −21.9847 + 3.62393i −1.59494 + 0.262907i
\(191\) 4.27298 + 0.320216i 0.309182 + 0.0231700i 0.228418 0.973563i \(-0.426645\pi\)
0.0807644 + 0.996733i \(0.474264\pi\)
\(192\) 1.75197 1.91803i 0.126438 0.138422i
\(193\) 5.76372 + 3.92964i 0.414882 + 0.282862i 0.752718 0.658343i \(-0.228743\pi\)
−0.337836 + 0.941205i \(0.609695\pi\)
\(194\) −14.1923 + 13.5369i −1.01895 + 0.971895i
\(195\) −4.08339 −0.292418
\(196\) −13.9999 + 0.0395570i −0.999996 + 0.00282550i
\(197\) −6.92527 −0.493405 −0.246702 0.969091i \(-0.579347\pi\)
−0.246702 + 0.969091i \(0.579347\pi\)
\(198\) 3.01109 2.87204i 0.213989 0.204107i
\(199\) 4.51093 + 3.07550i 0.319772 + 0.218017i 0.712558 0.701613i \(-0.247536\pi\)
−0.392787 + 0.919630i \(0.628489\pi\)
\(200\) −19.2080 + 12.1742i −1.35821 + 0.860846i
\(201\) 4.52126 + 0.338822i 0.318905 + 0.0238986i
\(202\) 10.6969 1.76326i 0.752631 0.124062i
\(203\) 7.70495 12.9725i 0.540782 0.910491i
\(204\) 1.73950 0.178643i 0.121789 0.0125075i
\(205\) −6.11645 15.5845i −0.427192 1.08847i
\(206\) −4.40336 + 3.61186i −0.306796 + 0.251650i
\(207\) −15.9519 6.26064i −1.10873 0.435145i
\(208\) 11.6615 7.61825i 0.808583 0.528230i
\(209\) −3.46749 + 2.76523i −0.239852 + 0.191275i
\(210\) 2.73068 3.43410i 0.188435 0.236976i
\(211\) −12.6871 10.1176i −0.873418 0.696528i 0.0804484 0.996759i \(-0.474365\pi\)
−0.953866 + 0.300231i \(0.902936\pi\)
\(212\) 3.93835 + 15.3000i 0.270487 + 1.05081i
\(213\) −1.38707 1.49490i −0.0950404 0.102429i
\(214\) −16.1979 7.52753i −1.10727 0.514571i
\(215\) 4.71680 8.16974i 0.321683 0.557171i
\(216\) 2.54839 + 4.77649i 0.173396 + 0.324999i
\(217\) −3.64438 + 15.1043i −0.247397 + 1.02534i
\(218\) 16.4612 6.72354i 1.11489 0.455376i
\(219\) 0.579869 0.624950i 0.0391839 0.0422302i
\(220\) −3.49432 + 6.45666i −0.235587 + 0.435308i
\(221\) 9.27177 + 1.39749i 0.623687 + 0.0940056i
\(222\) 0.152221 1.11378i 0.0102164 0.0747517i
\(223\) 5.37572 23.5526i 0.359985 1.57720i −0.393242 0.919435i \(-0.628647\pi\)
0.753227 0.657761i \(-0.228496\pi\)
\(224\) −1.39151 + 14.9018i −0.0929741 + 0.995669i
\(225\) −5.17870 22.6894i −0.345247 1.51262i
\(226\) −24.4273 + 2.16919i −1.62488 + 0.144292i
\(227\) −6.40622 11.0959i −0.425196 0.736461i 0.571243 0.820781i \(-0.306462\pi\)
−0.996439 + 0.0843201i \(0.973128\pi\)
\(228\) −1.10742 2.60811i −0.0733410 0.172726i
\(229\) −6.57722 9.64701i −0.434635 0.637492i 0.544963 0.838460i \(-0.316544\pi\)
−0.979598 + 0.200968i \(0.935591\pi\)
\(230\) 30.1777 + 1.84404i 1.98986 + 0.121593i
\(231\) 0.140822 0.861887i 0.00926539 0.0567080i
\(232\) −13.0154 9.52746i −0.854505 0.625508i
\(233\) 18.2589 + 5.63211i 1.19618 + 0.368972i 0.827970 0.560772i \(-0.189496\pi\)
0.368207 + 0.929744i \(0.379972\pi\)
\(234\) 3.36312 + 13.8527i 0.219854 + 0.905581i
\(235\) 6.43504 0.482240i 0.419776 0.0314579i
\(236\) −27.8593 + 0.767417i −1.81349 + 0.0499546i
\(237\) 1.42699 + 2.96317i 0.0926928 + 0.192479i
\(238\) −7.37557 + 6.86294i −0.478087 + 0.444858i
\(239\) −3.62867 + 7.53502i −0.234719 + 0.487400i −0.984744 0.174010i \(-0.944327\pi\)
0.750024 + 0.661410i \(0.230042\pi\)
\(240\) −3.37471 3.25745i −0.217836 0.210267i
\(241\) 1.42088 + 4.60637i 0.0915266 + 0.296722i 0.989749 0.142820i \(-0.0456170\pi\)
−0.898222 + 0.439542i \(0.855141\pi\)
\(242\) −0.194076 14.0937i −0.0124757 0.905976i
\(243\) −8.26674 + 1.24601i −0.530311 + 0.0799316i
\(244\) −10.2540 3.70192i −0.656446 0.236991i
\(245\) −0.624645 + 25.2701i −0.0399071 + 1.61445i
\(246\) 1.74240 1.22343i 0.111091 0.0780028i
\(247\) −2.26448 15.0239i −0.144086 0.955945i
\(248\) 15.6997 + 5.42478i 0.996932 + 0.344474i
\(249\) −4.69415 + 1.44795i −0.297480 + 0.0917604i
\(250\) 7.94743 + 13.3378i 0.502639 + 0.843556i
\(251\) 7.21740 + 3.47572i 0.455558 + 0.219385i 0.647568 0.762008i \(-0.275786\pi\)
−0.192010 + 0.981393i \(0.561500\pi\)
\(252\) −13.8990 6.43534i −0.875558 0.405388i
\(253\) 5.42207 2.61113i 0.340883 0.164160i
\(254\) 20.8887 + 13.8242i 1.31067 + 0.867408i
\(255\) −0.235945 3.14846i −0.0147754 0.197164i
\(256\) 15.7150 + 3.00670i 0.982185 + 0.187919i
\(257\) 8.63183 27.9837i 0.538439 1.74558i −0.119831 0.992794i \(-0.538235\pi\)
0.658270 0.752782i \(-0.271289\pi\)
\(258\) 1.15112 + 0.337786i 0.0716653 + 0.0210296i
\(259\) 3.16873 + 5.64846i 0.196895 + 0.350978i
\(260\) −13.1702 21.4264i −0.816782 1.32881i
\(261\) 13.6388 9.29875i 0.844218 0.575578i
\(262\) −5.57179 1.19125i −0.344226 0.0735959i
\(263\) −5.00223 + 2.88804i −0.308451 + 0.178084i −0.646233 0.763140i \(-0.723657\pi\)
0.337782 + 0.941224i \(0.390323\pi\)
\(264\) −0.902739 0.238110i −0.0555598 0.0146547i
\(265\) 27.8105 6.34756i 1.70838 0.389927i
\(266\) 14.1493 + 8.14245i 0.867547 + 0.499246i
\(267\) −1.21473 0.277253i −0.0743400 0.0169676i
\(268\) 12.8046 + 24.8168i 0.782166 + 1.51593i
\(269\) −2.28061 + 15.1309i −0.139051 + 0.922544i 0.805125 + 0.593105i \(0.202098\pi\)
−0.944177 + 0.329440i \(0.893140\pi\)
\(270\) 8.74768 4.36205i 0.532367 0.265466i
\(271\) 8.10601 + 7.52127i 0.492405 + 0.456885i 0.886865 0.462028i \(-0.152878\pi\)
−0.394461 + 0.918913i \(0.629069\pi\)
\(272\) 6.54780 + 8.55133i 0.397018 + 0.518500i
\(273\) 2.31583 + 1.89410i 0.140161 + 0.114636i
\(274\) 18.3445 20.3249i 1.10823 1.22787i
\(275\) 7.07807 + 4.08653i 0.426824 + 0.246427i
\(276\) 0.677507 + 3.78463i 0.0407811 + 0.227808i
\(277\) −12.4187 + 11.5229i −0.746169 + 0.692344i −0.958576 0.284837i \(-0.908060\pi\)
0.212407 + 0.977181i \(0.431870\pi\)
\(278\) −24.9067 9.38149i −1.49381 0.562664i
\(279\) −10.5986 + 13.2903i −0.634523 + 0.795667i
\(280\) 26.8267 + 3.25238i 1.60320 + 0.194367i
\(281\) 3.71664 + 4.66052i 0.221716 + 0.278023i 0.880232 0.474544i \(-0.157387\pi\)
−0.658516 + 0.752567i \(0.728815\pi\)
\(282\) 0.252658 + 0.780764i 0.0150456 + 0.0464938i
\(283\) −2.08570 + 5.31429i −0.123982 + 0.315902i −0.979366 0.202092i \(-0.935226\pi\)
0.855384 + 0.517994i \(0.173321\pi\)
\(284\) 3.37034 12.0998i 0.199993 0.717989i
\(285\) −4.76238 + 1.86910i −0.282099 + 0.110716i
\(286\) −4.36953 2.44315i −0.258375 0.144467i
\(287\) −3.76006 + 11.6756i −0.221950 + 0.689190i
\(288\) −8.27130 + 14.1314i −0.487391 + 0.832701i
\(289\) 0.728624 9.72281i 0.0428602 0.571930i
\(290\) −17.8430 + 23.0176i −1.04778 + 1.35164i
\(291\) −2.53682 + 3.72083i −0.148711 + 0.218119i
\(292\) 5.14950 + 1.02703i 0.301352 + 0.0601026i
\(293\) 8.98210i 0.524740i −0.964967 0.262370i \(-0.915496\pi\)
0.964967 0.262370i \(-0.0845041\pi\)
\(294\) −3.14158 + 0.680961i −0.183221 + 0.0397145i
\(295\) 50.3208i 2.92979i
\(296\) 6.33517 2.79353i 0.368224 0.162371i
\(297\) 1.09605 1.60760i 0.0635990 0.0932827i
\(298\) 0.0875854 + 0.0678953i 0.00507368 + 0.00393307i
\(299\) −1.54066 + 20.5587i −0.0890988 + 1.18894i
\(300\) −3.72845 + 3.65563i −0.215262 + 0.211058i
\(301\) −6.46462 + 2.44543i −0.372614 + 0.140952i
\(302\) −0.801903 + 1.43419i −0.0461443 + 0.0825281i
\(303\) 2.31718 0.909427i 0.133119 0.0522452i
\(304\) 10.1135 14.2229i 0.580050 0.815737i
\(305\) −7.19132 + 18.3232i −0.411774 + 1.04918i
\(306\) −10.4867 + 3.39353i −0.599484 + 0.193995i
\(307\) 16.2678 + 20.3992i 0.928452 + 1.16424i 0.986141 + 0.165908i \(0.0530554\pi\)
−0.0576889 + 0.998335i \(0.518373\pi\)
\(308\) 4.97669 2.04093i 0.283573 0.116293i
\(309\) −0.815318 + 1.02238i −0.0463818 + 0.0581610i
\(310\) 10.5716 28.0663i 0.600427 1.59406i
\(311\) −4.69079 + 4.35241i −0.265990 + 0.246803i −0.801880 0.597485i \(-0.796167\pi\)
0.535890 + 0.844288i \(0.319976\pi\)
\(312\) 2.25271 2.27039i 0.127534 0.128535i
\(313\) −2.06748 1.19366i −0.116861 0.0674695i 0.440430 0.897787i \(-0.354826\pi\)
−0.557291 + 0.830317i \(0.688159\pi\)
\(314\) 15.2099 + 13.7279i 0.858343 + 0.774708i
\(315\) −12.3060 + 24.7661i −0.693366 + 1.39541i
\(316\) −10.9459 + 17.0448i −0.615754 + 0.958848i
\(317\) −0.891158 0.826874i −0.0500524 0.0464419i 0.654750 0.755845i \(-0.272774\pi\)
−0.704802 + 0.709404i \(0.748964\pi\)
\(318\) 1.61879 + 3.24633i 0.0907772 + 0.182045i
\(319\) −0.863999 + 5.73226i −0.0483747 + 0.320945i
\(320\) 6.20803 28.2141i 0.347039 1.57721i
\(321\) −3.99837 0.912601i −0.223167 0.0509364i
\(322\) −16.2594 15.0439i −0.906103 0.838362i
\(323\) 11.4531 2.61411i 0.637270 0.145453i
\(324\) −10.3966 12.3249i −0.577592 0.684715i
\(325\) −24.2478 + 13.9995i −1.34502 + 0.776550i
\(326\) 0.772402 3.61271i 0.0427794 0.200090i
\(327\) 3.37334 2.29990i 0.186546 0.127185i
\(328\) 12.0393 + 5.19679i 0.664761 + 0.286944i
\(329\) −3.87322 2.71142i −0.213538 0.149486i
\(330\) −0.474641 + 1.61750i −0.0261282 + 0.0890402i
\(331\) 5.78107 18.7418i 0.317756 1.03014i −0.645995 0.763341i \(-0.723558\pi\)
0.963752 0.266800i \(-0.0859663\pi\)
\(332\) −22.7378 19.9611i −1.24790 1.09551i
\(333\) 0.529509 + 7.06581i 0.0290169 + 0.387204i
\(334\) 9.38008 14.1735i 0.513255 0.775539i
\(335\) 45.4279 21.8769i 2.48199 1.19526i
\(336\) 0.402931 + 3.41278i 0.0219817 + 0.186182i
\(337\) 2.62493 + 1.26410i 0.142989 + 0.0688599i 0.504010 0.863698i \(-0.331857\pi\)
−0.361021 + 0.932558i \(0.617572\pi\)
\(338\) −1.06080 + 0.632088i −0.0577001 + 0.0343811i
\(339\) −5.38066 + 1.65971i −0.292237 + 0.0901432i
\(340\) 15.7596 11.3928i 0.854686 0.617862i
\(341\) −0.889742 5.90306i −0.0481823 0.319668i
\(342\) 10.2632 + 14.6167i 0.554968 + 0.790383i
\(343\) 12.0759 14.0418i 0.652038 0.758187i
\(344\) 1.94027 + 7.12960i 0.104612 + 0.384402i
\(345\) 6.86448 1.03465i 0.369571 0.0557039i
\(346\) 27.9194 0.384463i 1.50096 0.0206689i
\(347\) −7.13671 23.1366i −0.383119 1.24204i −0.917819 0.396999i \(-0.870052\pi\)
0.534701 0.845042i \(-0.320424\pi\)
\(348\) −3.37980 1.51443i −0.181176 0.0811822i
\(349\) 2.52692 5.24720i 0.135263 0.280876i −0.822325 0.569018i \(-0.807323\pi\)
0.957588 + 0.288142i \(0.0930376\pi\)
\(350\) 4.44171 29.7540i 0.237420 1.59042i
\(351\) 2.89204 + 6.00538i 0.154365 + 0.320543i
\(352\) −1.66220 5.50484i −0.0885957 0.293409i
\(353\) −4.78133 + 0.358311i −0.254485 + 0.0190710i −0.201362 0.979517i \(-0.564537\pi\)
−0.0531230 + 0.998588i \(0.516918\pi\)
\(354\) −6.21856 + 1.50972i −0.330513 + 0.0802409i
\(355\) −21.6710 6.68463i −1.15018 0.354783i
\(356\) −2.46306 7.26814i −0.130542 0.385211i
\(357\) −1.32661 + 1.89504i −0.0702118 + 0.100296i
\(358\) −1.63622 + 26.7766i −0.0864767 + 1.41519i
\(359\) 9.94963 + 14.5934i 0.525121 + 0.770212i 0.993563 0.113283i \(-0.0361367\pi\)
−0.468441 + 0.883495i \(0.655184\pi\)
\(360\) 25.0942 + 15.6313i 1.32258 + 0.823840i
\(361\) −0.0179026 0.0310083i −0.000942244 0.00163201i
\(362\) −0.214483 2.41530i −0.0112730 0.126945i
\(363\) −0.720156 3.15521i −0.0377984 0.165606i
\(364\) −2.46944 + 18.2607i −0.129434 + 0.957121i
\(365\) 2.10969 9.24315i 0.110426 0.483808i
\(366\) −2.48010 0.338959i −0.129637 0.0177177i
\(367\) −25.3258 3.81725i −1.32200 0.199259i −0.550150 0.835066i \(-0.685429\pi\)
−0.771848 + 0.635807i \(0.780667\pi\)
\(368\) −17.6736 + 15.7616i −0.921299 + 0.821632i
\(369\) −9.12768 + 9.83730i −0.475168 + 0.512109i
\(370\) −4.72702 11.5731i −0.245746 0.601656i
\(371\) −18.7166 9.30007i −0.971717 0.482836i
\(372\) 3.78556 + 0.464376i 0.196272 + 0.0240767i
\(373\) −1.60741 + 2.78412i −0.0832285 + 0.144156i −0.904635 0.426187i \(-0.859856\pi\)
0.821406 + 0.570343i \(0.193190\pi\)
\(374\) 1.63129 3.51025i 0.0843521 0.181511i
\(375\) 2.42477 + 2.61328i 0.125215 + 0.134949i
\(376\) −3.28193 + 3.84396i −0.169252 + 0.198237i
\(377\) −15.5265 12.3820i −0.799656 0.637704i
\(378\) −6.98446 1.58378i −0.359242 0.0814608i
\(379\) 5.33103 4.25136i 0.273837 0.218378i −0.476936 0.878938i \(-0.658253\pi\)
0.750773 + 0.660560i \(0.229681\pi\)
\(380\) −25.1677 18.9608i −1.29108 0.972667i
\(381\) 5.35388 + 2.10124i 0.274288 + 0.107650i
\(382\) 3.84313 + 4.68531i 0.196632 + 0.239721i
\(383\) −7.21861 18.3927i −0.368854 0.939825i −0.987987 0.154538i \(-0.950611\pi\)
0.619133 0.785286i \(-0.287484\pi\)
\(384\) 3.67290 0.0793003i 0.187432 0.00404678i
\(385\) −3.43621 9.08379i −0.175125 0.462953i
\(386\) 1.60453 + 9.73399i 0.0816687 + 0.495447i
\(387\) −7.54052 0.565084i −0.383306 0.0287248i
\(388\) −27.7060 1.31038i −1.40656 0.0665245i
\(389\) −24.8143 16.9181i −1.25814 0.857783i −0.263854 0.964563i \(-0.584994\pi\)
−0.994283 + 0.106780i \(0.965946\pi\)
\(390\) −3.98577 4.17874i −0.201827 0.211599i
\(391\) −15.9406 −0.806151
\(392\) −13.7057 14.2882i −0.692244 0.721664i
\(393\) −1.30825 −0.0659925
\(394\) −6.75970 7.08696i −0.340549 0.357036i
\(395\) 30.2197 + 20.6034i 1.52052 + 1.03667i
\(396\) 5.87820 + 0.278014i 0.295391 + 0.0139707i
\(397\) −3.08908 0.231494i −0.155036 0.0116184i −0.00301415 0.999995i \(-0.500959\pi\)
−0.152022 + 0.988377i \(0.548578\pi\)
\(398\) 1.25578 + 7.61823i 0.0629464 + 0.381868i
\(399\) 3.56789 + 1.14902i 0.178618 + 0.0575229i
\(400\) −31.2073 7.77338i −1.56036 0.388669i
\(401\) 1.43344 + 3.65234i 0.0715825 + 0.182389i 0.962187 0.272389i \(-0.0878137\pi\)
−0.890605 + 0.454778i \(0.849719\pi\)
\(402\) 4.06644 + 4.95755i 0.202816 + 0.247260i
\(403\) 19.0372 + 7.47154i 0.948309 + 0.372184i
\(404\) 12.2456 + 9.22555i 0.609241 + 0.458988i
\(405\) −22.7618 + 18.1519i −1.13104 + 0.901976i
\(406\) 20.7961 4.77750i 1.03210 0.237104i
\(407\) −1.94548 1.55147i −0.0964337 0.0769033i
\(408\) 1.88072 + 1.60574i 0.0931098 + 0.0794961i
\(409\) 10.5158 + 11.3333i 0.519973 + 0.560397i 0.937374 0.348325i \(-0.113249\pi\)
−0.417401 + 0.908722i \(0.637059\pi\)
\(410\) 9.97812 21.4711i 0.492784 1.06038i
\(411\) 3.14327 5.44430i 0.155046 0.268547i
\(412\) −7.99428 0.980660i −0.393850 0.0483137i
\(413\) 23.3415 28.5386i 1.14856 1.40429i
\(414\) −9.16367 22.4353i −0.450370 1.10263i
\(415\) −37.1578 + 40.0465i −1.82400 + 1.96581i
\(416\) 19.1789 + 4.49771i 0.940322 + 0.220519i
\(417\) −6.04280 0.910806i −0.295917 0.0446024i
\(418\) −6.21440 0.849331i −0.303956 0.0415422i
\(419\) 1.51303 6.62902i 0.0739164 0.323849i −0.924429 0.381355i \(-0.875458\pi\)
0.998345 + 0.0575058i \(0.0183148\pi\)
\(420\) 6.17968 0.557567i 0.301538 0.0272065i
\(421\) 5.33882 + 23.3909i 0.260198 + 1.14000i 0.921037 + 0.389475i \(0.127343\pi\)
−0.660839 + 0.750528i \(0.729799\pi\)
\(422\) −2.02993 22.8591i −0.0988154 1.11276i
\(423\) −2.58629 4.47959i −0.125750 0.217805i
\(424\) −11.8131 + 18.9645i −0.573693 + 0.921000i
\(425\) −12.1952 17.8871i −0.591555 0.867651i
\(426\) 0.175901 2.87862i 0.00852245 0.139470i
\(427\) 12.5777 7.05598i 0.608678 0.341463i
\(428\) −8.10737 23.9237i −0.391884 1.15639i
\(429\) −1.09840 0.338811i −0.0530312 0.0163579i
\(430\) 12.9645 3.14749i 0.625205 0.151785i
\(431\) 2.22820 0.166980i 0.107329 0.00804316i −0.0209575 0.999780i \(-0.506671\pi\)
0.128286 + 0.991737i \(0.459052\pi\)
\(432\) −2.40056 + 7.27019i −0.115497 + 0.349787i
\(433\) 8.55861 + 17.7721i 0.411301 + 0.854075i 0.998988 + 0.0449864i \(0.0143244\pi\)
−0.587687 + 0.809089i \(0.699961\pi\)
\(434\) −19.0142 + 11.0137i −0.912710 + 0.528674i
\(435\) −2.90140 + 6.02482i −0.139112 + 0.288868i
\(436\) 22.9481 + 10.2827i 1.09902 + 0.492452i
\(437\) 7.61352 + 24.6824i 0.364204 + 1.18072i
\(438\) 1.20555 0.0166009i 0.0576033 0.000793224i
\(439\) 8.54427 1.28784i 0.407796 0.0614653i 0.0580587 0.998313i \(-0.481509\pi\)
0.349737 + 0.936848i \(0.386271\pi\)
\(440\) −10.0182 + 2.72638i −0.477599 + 0.129975i
\(441\) 18.4670 8.33752i 0.879382 0.397025i
\(442\) 7.61998 + 10.8523i 0.362445 + 0.516193i
\(443\) −5.09326 33.7916i −0.241988 1.60549i −0.698393 0.715714i \(-0.746101\pi\)
0.456405 0.889772i \(-0.349137\pi\)
\(444\) 1.28836 0.931372i 0.0611430 0.0442010i
\(445\) −13.2406 + 4.08417i −0.627663 + 0.193608i
\(446\) 29.3497 17.4882i 1.38975 0.828092i
\(447\) 0.0229254 + 0.0110403i 0.00108433 + 0.000522187i
\(448\) −16.6080 + 13.1215i −0.784654 + 0.619935i
\(449\) −6.81365 + 3.28128i −0.321556 + 0.154853i −0.587697 0.809081i \(-0.699965\pi\)
0.266142 + 0.963934i \(0.414251\pi\)
\(450\) 18.1642 27.4465i 0.856271 1.29384i
\(451\) −0.352185 4.69959i −0.0165838 0.221295i
\(452\) −26.0632 22.8803i −1.22591 1.07620i
\(453\) −0.111206 + 0.360521i −0.00522492 + 0.0169388i
\(454\) 5.10191 17.3864i 0.239445 0.815986i
\(455\) 32.8355 + 5.36492i 1.53935 + 0.251511i
\(456\) 1.58806 3.67904i 0.0743677 0.172287i
\(457\) 6.23225 4.24908i 0.291533 0.198764i −0.408718 0.912661i \(-0.634024\pi\)
0.700251 + 0.713897i \(0.253072\pi\)
\(458\) 3.45228 16.1472i 0.161314 0.754507i
\(459\) −4.46328 + 2.57688i −0.208328 + 0.120278i
\(460\) 27.5691 + 32.6823i 1.28542 + 1.52382i
\(461\) 1.91325 0.436686i 0.0891088 0.0203385i −0.177734 0.984079i \(-0.556877\pi\)
0.266843 + 0.963740i \(0.414020\pi\)
\(462\) 1.01947 0.697172i 0.0474299 0.0324354i
\(463\) −8.24963 1.88292i −0.383393 0.0875069i 0.0264806 0.999649i \(-0.491570\pi\)
−0.409873 + 0.912142i \(0.634427\pi\)
\(464\) −2.95435 22.6190i −0.137152 1.05006i
\(465\) 1.02635 6.80938i 0.0475958 0.315777i
\(466\) 12.0587 + 24.1826i 0.558610 + 1.12024i
\(467\) 3.54961 + 3.29356i 0.164256 + 0.152408i 0.758019 0.652233i \(-0.226168\pi\)
−0.593762 + 0.804641i \(0.702358\pi\)
\(468\) −10.8935 + 16.9632i −0.503550 + 0.784124i
\(469\) −35.9114 8.66475i −1.65823 0.400101i
\(470\) 6.77470 + 6.11458i 0.312494 + 0.282045i
\(471\) 4.07417 + 2.35222i 0.187728 + 0.108385i
\(472\) −27.9786 27.7607i −1.28782 1.27779i
\(473\) 1.94664 1.80622i 0.0895068 0.0830502i
\(474\) −1.63949 + 4.35264i −0.0753041 + 0.199923i
\(475\) −21.8717 + 27.4262i −1.00354 + 1.25840i
\(476\) −14.2224 0.848911i −0.651884 0.0389098i
\(477\) −14.2562 17.8768i −0.652749 0.818521i
\(478\) −11.2529 + 3.64148i −0.514695 + 0.166557i
\(479\) 2.42139 6.16959i 0.110636 0.281896i −0.864823 0.502077i \(-0.832570\pi\)
0.975459 + 0.220181i \(0.0706648\pi\)
\(480\) 0.0394797 6.63308i 0.00180199 0.302757i
\(481\) 7.93525 3.11435i 0.361816 0.142002i
\(482\) −3.32701 + 5.95029i −0.151541 + 0.271028i
\(483\) −4.37301 2.59733i −0.198979 0.118183i
\(484\) 14.2333 13.9553i 0.646969 0.634334i
\(485\) −3.74254 + 49.9408i −0.169940 + 2.26769i
\(486\) −9.34420 7.24354i −0.423862 0.328573i
\(487\) 19.6967 28.8897i 0.892542 1.30912i −0.0579341 0.998320i \(-0.518451\pi\)
0.950476 0.310798i \(-0.100596\pi\)
\(488\) −6.22051 14.1069i −0.281589 0.638587i
\(489\) 0.848261i 0.0383597i
\(490\) −26.4699 + 24.0268i −1.19579 + 1.08542i
\(491\) 2.92120i 0.131832i −0.997825 0.0659160i \(-0.979003\pi\)
0.997825 0.0659160i \(-0.0209969\pi\)
\(492\) 2.95273 + 0.588903i 0.133119 + 0.0265498i
\(493\) 8.64985 12.6870i 0.389570 0.571394i
\(494\) 13.1643 16.9820i 0.592290 0.764058i
\(495\) 0.794030 10.5956i 0.0356890 0.476237i
\(496\) 9.77293 + 21.3614i 0.438817 + 0.959153i
\(497\) 9.18969 + 13.8433i 0.412214 + 0.620955i
\(498\) −6.06369 3.39042i −0.271720 0.151928i
\(499\) 5.99362 2.35232i 0.268311 0.105304i −0.227371 0.973808i \(-0.573013\pi\)
0.495683 + 0.868504i \(0.334918\pi\)
\(500\) −5.89178 + 21.1519i −0.263489 + 0.945942i
\(501\) 1.42575 3.63275i 0.0636977 0.162299i
\(502\) 3.48798 + 10.7785i 0.155676 + 0.481070i
\(503\) −9.35419 11.7298i −0.417083 0.523005i 0.528261 0.849082i \(-0.322844\pi\)
−0.945343 + 0.326077i \(0.894273\pi\)
\(504\) −6.98116 20.5051i −0.310966 0.913368i
\(505\) 17.2598 21.6431i 0.768051 0.963105i
\(506\) 7.96454 + 2.99996i 0.354067 + 0.133365i
\(507\) −0.207844 + 0.192851i −0.00923066 + 0.00856480i
\(508\) 6.24228 + 34.8701i 0.276956 + 1.54711i
\(509\) 10.8110 + 6.24176i 0.479191 + 0.276661i 0.720079 0.693892i \(-0.244105\pi\)
−0.240888 + 0.970553i \(0.577439\pi\)
\(510\) 2.99167 3.31464i 0.132473 0.146775i
\(511\) −5.48394 + 4.26352i −0.242595 + 0.188607i
\(512\) 12.2624 + 19.0167i 0.541924 + 0.840427i
\(513\) 6.12177 + 5.68017i 0.270283 + 0.250786i
\(514\) 37.0626 18.4813i 1.63476 0.815176i
\(515\) −2.16743 + 14.3799i −0.0955082 + 0.633655i
\(516\) 0.777922 + 1.50770i 0.0342461 + 0.0663729i
\(517\) 1.77098 + 0.404216i 0.0778878 + 0.0177774i
\(518\) −2.68737 + 8.75613i −0.118076 + 0.384722i
\(519\) 6.25043 1.42662i 0.274364 0.0626217i
\(520\) 9.07135 34.3919i 0.397805 1.50818i
\(521\) 4.67395 2.69851i 0.204769 0.118224i −0.394109 0.919064i \(-0.628947\pi\)
0.598878 + 0.800840i \(0.295613\pi\)
\(522\) 22.8285 + 4.88077i 0.999178 + 0.213625i
\(523\) −15.4331 + 10.5221i −0.674843 + 0.460101i −0.851626 0.524149i \(-0.824383\pi\)
0.176783 + 0.984250i \(0.443431\pi\)
\(524\) −4.21951 6.86466i −0.184330 0.299884i
\(525\) −0.431046 6.89405i −0.0188124 0.300881i
\(526\) −7.83812 2.30003i −0.341758 0.100286i
\(527\) −4.66086 + 15.1101i −0.203030 + 0.658208i
\(528\) −0.637488 1.15624i −0.0277431 0.0503187i
\(529\) −0.900428 12.0154i −0.0391490 0.522408i
\(530\) 33.6414 + 22.2640i 1.46129 + 0.967087i
\(531\) 36.3411 17.5009i 1.57707 0.759476i
\(532\) 5.47843 + 22.4274i 0.237520 + 0.972352i
\(533\) 14.5460 + 7.00496i 0.630055 + 0.303419i
\(534\) −0.901958 1.51371i −0.0390315 0.0655048i
\(535\) −43.5824 + 13.4434i −1.88423 + 0.581208i
\(536\) −12.8978 + 37.3271i −0.557098 + 1.61228i
\(537\) 0.918047 + 6.09084i 0.0396166 + 0.262839i
\(538\) −17.7102 + 12.4353i −0.763542 + 0.536122i
\(539\) −2.26476 + 6.74562i −0.0975501 + 0.290555i
\(540\) 13.0024 + 4.69417i 0.559536 + 0.202005i
\(541\) 31.6489 4.77031i 1.36069 0.205091i 0.572189 0.820122i \(-0.306094\pi\)
0.788504 + 0.615030i \(0.210856\pi\)
\(542\) 0.215325 + 15.6367i 0.00924900 + 0.671655i
\(543\) −0.164108 0.532024i −0.00704253 0.0228313i
\(544\) −2.35974 + 15.0476i −0.101173 + 0.645159i
\(545\) 19.6999 40.9073i 0.843852 1.75228i
\(546\) 0.322143 + 4.21872i 0.0137865 + 0.180545i
\(547\) 5.08964 + 10.5687i 0.217617 + 0.451887i 0.980987 0.194075i \(-0.0621706\pi\)
−0.763369 + 0.645962i \(0.776456\pi\)
\(548\) 38.7054 1.06618i 1.65341 0.0455451i
\(549\) 15.7338 1.17909i 0.671503 0.0503222i
\(550\) 2.72691 + 11.2322i 0.116276 + 0.478941i
\(551\) −23.7759 7.33388i −1.01289 0.312434i
\(552\) −3.21169 + 4.38748i −0.136699 + 0.186744i
\(553\) −7.58162 25.7024i −0.322403 1.09298i
\(554\) −23.9138 1.46128i −1.01600 0.0620838i
\(555\) −1.61696 2.37164i −0.0686360 0.100671i
\(556\) −14.7107 34.6455i −0.623874 1.46929i
\(557\) −2.51911 4.36323i −0.106738 0.184876i 0.807709 0.589582i \(-0.200707\pi\)
−0.914447 + 0.404706i \(0.867374\pi\)
\(558\) −23.9458 + 2.12643i −1.01371 + 0.0900190i
\(559\) 2.02432 + 8.86914i 0.0856197 + 0.375124i
\(560\) 22.8571 + 30.6277i 0.965887 + 1.29426i
\(561\) 0.197770 0.866486i 0.00834985 0.0365831i
\(562\) −1.14155 + 8.35252i −0.0481535 + 0.352330i
\(563\) 11.0879 + 1.67123i 0.467298 + 0.0704338i 0.378471 0.925613i \(-0.376450\pi\)
0.0888271 + 0.996047i \(0.471688\pi\)
\(564\) −0.552376 + 1.02066i −0.0232592 + 0.0429773i
\(565\) −42.5920 + 45.9032i −1.79186 + 1.93116i
\(566\) −7.47421 + 3.05283i −0.314165 + 0.128320i
\(567\) 21.3288 + 0.263570i 0.895726 + 0.0110689i
\(568\) 15.6721 8.36146i 0.657585 0.350839i
\(569\) −13.7771 + 23.8626i −0.577566 + 1.00037i 0.418191 + 0.908359i \(0.362664\pi\)
−0.995758 + 0.0920151i \(0.970669\pi\)
\(570\) −6.56126 3.04917i −0.274821 0.127715i
\(571\) −21.9017 23.6044i −0.916557 0.987814i 0.0834049 0.996516i \(-0.473421\pi\)
−0.999962 + 0.00870195i \(0.997230\pi\)
\(572\) −1.76486 6.85629i −0.0737927 0.286676i
\(573\) 1.08784 + 0.867525i 0.0454452 + 0.0362414i
\(574\) −15.6184 + 7.54863i −0.651900 + 0.315074i
\(575\) 37.2151 29.6780i 1.55198 1.23766i
\(576\) −22.5349 + 5.32913i −0.938955 + 0.222047i
\(577\) 10.2678 + 4.02982i 0.427454 + 0.167764i 0.569308 0.822124i \(-0.307211\pi\)
−0.141854 + 0.989888i \(0.545306\pi\)
\(578\) 10.6610 8.74473i 0.443441 0.363733i
\(579\) 0.827563 + 2.10860i 0.0343924 + 0.0876303i
\(580\) −40.9714 + 4.20767i −1.70124 + 0.174714i
\(581\) 39.6492 5.47599i 1.64492 0.227182i
\(582\) −6.28388 + 1.03582i −0.260475 + 0.0429363i
\(583\) 8.00745 + 0.600076i 0.331635 + 0.0248526i
\(584\) 3.97537 + 6.27221i 0.164502 + 0.259546i
\(585\) 30.0749 + 20.5047i 1.24344 + 0.847765i
\(586\) 9.19182 8.76736i 0.379711 0.362176i
\(587\) −27.4194 −1.13172 −0.565859 0.824502i \(-0.691456\pi\)
−0.565859 + 0.824502i \(0.691456\pi\)
\(588\) −3.76334 2.55025i −0.155197 0.105171i
\(589\) 25.6226 1.05576
\(590\) −51.4957 + 49.1178i −2.12005 + 2.02215i
\(591\) −1.85801 1.26677i −0.0764282 0.0521079i
\(592\) 9.04247 + 3.75634i 0.371643 + 0.154385i
\(593\) −40.4479 3.03115i −1.66099 0.124474i −0.789132 0.614224i \(-0.789469\pi\)
−0.871863 + 0.489750i \(0.837088\pi\)
\(594\) 2.71498 0.447533i 0.111397 0.0183625i
\(595\) −2.23928 + 25.6275i −0.0918016 + 1.05063i
\(596\) 0.0160108 + 0.155902i 0.000655830 + 0.00638602i
\(597\) 0.647686 + 1.65028i 0.0265080 + 0.0675414i
\(598\) −22.5426 + 18.4906i −0.921834 + 0.756136i
\(599\) −26.5372 10.4151i −1.08428 0.425548i −0.245152 0.969485i \(-0.578838\pi\)
−0.839126 + 0.543937i \(0.816933\pi\)
\(600\) −7.38030 0.247267i −0.301300 0.0100946i
\(601\) −0.596081 + 0.475359i −0.0243146 + 0.0193903i −0.635572 0.772042i \(-0.719236\pi\)
0.611257 + 0.791432i \(0.290664\pi\)
\(602\) −8.81259 4.22859i −0.359175 0.172345i
\(603\) −31.5985 25.1989i −1.28679 1.02618i
\(604\) −2.25040 + 0.579272i −0.0915677 + 0.0235702i
\(605\) −24.4800 26.3832i −0.995255 1.07263i
\(606\) 3.19245 + 1.48360i 0.129684 + 0.0602672i
\(607\) 18.1533 31.4424i 0.736819 1.27621i −0.217101 0.976149i \(-0.569660\pi\)
0.953921 0.300059i \(-0.0970064\pi\)
\(608\) 24.4267 3.53317i 0.990632 0.143289i
\(609\) 4.44012 2.07106i 0.179923 0.0839234i
\(610\) −25.7704 + 10.5259i −1.04341 + 0.426181i
\(611\) −4.23271 + 4.56177i −0.171237 + 0.184550i
\(612\) −13.7087 7.41913i −0.554143 0.299901i
\(613\) 9.75180 + 1.46985i 0.393871 + 0.0593666i 0.342992 0.939338i \(-0.388560\pi\)
0.0508792 + 0.998705i \(0.483798\pi\)
\(614\) −4.99659 + 36.5591i −0.201646 + 1.47541i
\(615\) 1.20970 5.30004i 0.0487798 0.213718i
\(616\) 6.94630 + 3.10075i 0.279875 + 0.124933i
\(617\) −4.13381 18.1114i −0.166421 0.729138i −0.987408 0.158192i \(-0.949434\pi\)
0.820987 0.570946i \(-0.193424\pi\)
\(618\) −1.84207 + 0.163579i −0.0740991 + 0.00658013i
\(619\) −10.7176 18.5634i −0.430776 0.746127i 0.566164 0.824293i \(-0.308427\pi\)
−0.996940 + 0.0781661i \(0.975094\pi\)
\(620\) 39.0405 16.5769i 1.56790 0.665744i
\(621\) −6.38337 9.36269i −0.256156 0.375712i
\(622\) −9.03268 0.551952i −0.362177 0.0221313i
\(623\) 9.40363 + 3.82541i 0.376748 + 0.153262i
\(624\) 4.52225 + 0.0891970i 0.181035 + 0.00357074i
\(625\) −0.531369 0.163906i −0.0212548 0.00655623i
\(626\) −0.796519 3.28087i −0.0318353 0.131130i
\(627\) −1.43612 + 0.107623i −0.0573533 + 0.00429803i
\(628\) 0.797865 + 28.9647i 0.0318383 + 1.15582i
\(629\) 2.85980 + 5.93844i 0.114028 + 0.236781i
\(630\) −37.3562 + 11.5807i −1.48831 + 0.461386i
\(631\) −6.18007 + 12.8330i −0.246025 + 0.510876i −0.987013 0.160643i \(-0.948643\pi\)
0.740988 + 0.671518i \(0.234358\pi\)
\(632\) −28.1270 + 5.43589i −1.11883 + 0.216228i
\(633\) −1.55316 5.03523i −0.0617327 0.200132i
\(634\) −0.0236724 1.71907i −0.000940152 0.0682731i
\(635\) 63.2466 9.53289i 2.50986 0.378301i
\(636\) −1.74204 + 4.82531i −0.0690764 + 0.191336i
\(637\) −16.1336 18.2735i −0.639237 0.724023i
\(638\) −6.70944 + 4.71104i −0.265629 + 0.186512i
\(639\) 2.70935 + 17.9754i 0.107180 + 0.711095i
\(640\) 34.9324 21.1866i 1.38083 0.837473i
\(641\) −8.44069 + 2.60361i −0.333387 + 0.102836i −0.456929 0.889503i \(-0.651051\pi\)
0.123542 + 0.992339i \(0.460575\pi\)
\(642\) −2.96887 4.98251i −0.117172 0.196644i
\(643\) −9.90250 4.76879i −0.390516 0.188063i 0.228314 0.973588i \(-0.426679\pi\)
−0.618830 + 0.785525i \(0.712393\pi\)
\(644\) −0.475597 31.3233i −0.0187412 1.23431i
\(645\) 2.75989 1.32910i 0.108671 0.0523331i
\(646\) 13.8545 + 9.16896i 0.545097 + 0.360748i
\(647\) 0.958400 + 12.7890i 0.0376786 + 0.502786i 0.983835 + 0.179076i \(0.0573109\pi\)
−0.946157 + 0.323709i \(0.895070\pi\)
\(648\) 2.46455 22.6696i 0.0968168 0.890547i
\(649\) −4.17526 + 13.5359i −0.163893 + 0.531329i
\(650\) −37.9944 11.1492i −1.49026 0.437306i
\(651\) −3.74063 + 3.38575i −0.146607 + 0.132698i
\(652\) 4.45100 2.73591i 0.174315 0.107146i
\(653\) −14.1241 + 9.62967i −0.552720 + 0.376838i −0.807234 0.590231i \(-0.799037\pi\)
0.254515 + 0.967069i \(0.418084\pi\)
\(654\) 5.64630 + 1.20718i 0.220788 + 0.0472046i
\(655\) −12.5996 + 7.27441i −0.492309 + 0.284235i
\(656\) 6.43338 + 17.3930i 0.251181 + 0.679082i
\(657\) −7.40901 + 1.69106i −0.289053 + 0.0659744i
\(658\) −1.00589 6.61026i −0.0392136 0.257695i
\(659\) −9.76310 2.22836i −0.380317 0.0868048i 0.0280888 0.999605i \(-0.491058\pi\)
−0.408405 + 0.912801i \(0.633915\pi\)
\(660\) −2.11856 + 1.09310i −0.0824647 + 0.0425489i
\(661\) −1.89879 + 12.5976i −0.0738544 + 0.489992i 0.921073 + 0.389391i \(0.127315\pi\)
−0.994927 + 0.100601i \(0.967924\pi\)
\(662\) 24.8222 12.3777i 0.964744 0.481071i
\(663\) 2.23193 + 2.07093i 0.0866810 + 0.0804282i
\(664\) −1.76706 42.7526i −0.0685753 1.65912i
\(665\) 40.7511 8.77285i 1.58026 0.340197i
\(666\) −6.71394 + 7.43876i −0.260160 + 0.288246i
\(667\) 29.2385 + 16.8809i 1.13212 + 0.653630i
\(668\) 23.6602 4.23554i 0.915442 0.163878i
\(669\) 5.75050 5.33568i 0.222327 0.206289i
\(670\) 66.7295 + 25.1347i 2.57799 + 0.971037i
\(671\) −3.45473 + 4.33209i −0.133368 + 0.167239i
\(672\) −3.09917 + 3.74353i −0.119553 + 0.144410i
\(673\) 26.4174 + 33.1264i 1.01832 + 1.27693i 0.960405 + 0.278608i \(0.0898729\pi\)
0.0579121 + 0.998322i \(0.481556\pi\)
\(674\) 1.26856 + 3.92010i 0.0488631 + 0.150997i
\(675\) 5.62241 14.3257i 0.216407 0.551395i
\(676\) −1.68229 0.468595i −0.0647034 0.0180229i
\(677\) 2.91245 1.14305i 0.111934 0.0439310i −0.308713 0.951155i \(-0.599898\pi\)
0.420647 + 0.907224i \(0.361803\pi\)
\(678\) −6.95049 3.88626i −0.266932 0.149251i
\(679\) 25.2877 26.5871i 0.970455 1.02032i
\(680\) 27.0417 + 5.00716i 1.03700 + 0.192016i
\(681\) 0.310909 4.14879i 0.0119141 0.158982i
\(682\) 5.17241 6.67245i 0.198062 0.255501i
\(683\) 2.66755 3.91258i 0.102071 0.149711i −0.771805 0.635859i \(-0.780646\pi\)
0.873876 + 0.486148i \(0.161598\pi\)
\(684\) −4.94023 + 24.7701i −0.188895 + 0.947108i
\(685\) 69.9114i 2.67118i
\(686\) 26.1569 1.34824i 0.998674 0.0514761i
\(687\) 3.79134i 0.144649i
\(688\) −5.40219 + 8.94473i −0.205956 + 0.341015i
\(689\) −15.4961 + 22.7286i −0.590354 + 0.865891i
\(690\) 7.75918 + 6.01484i 0.295387 + 0.228981i
\(691\) 0.234552 3.12988i 0.00892279 0.119066i −0.990964 0.134130i \(-0.957176\pi\)
0.999887 + 0.0150636i \(0.00479508\pi\)
\(692\) 27.6454 + 28.1960i 1.05092 + 1.07185i
\(693\) −5.36513 + 5.64081i −0.203804 + 0.214277i
\(694\) 16.7108 29.8869i 0.634332 1.13449i
\(695\) −63.2622 + 24.8286i −2.39967 + 0.941801i
\(696\) −1.74920 4.93694i −0.0663032 0.187134i
\(697\) −4.56062 + 11.6203i −0.172746 + 0.440149i
\(698\) 7.83622 2.53583i 0.296605 0.0959828i
\(699\) 3.86852 + 4.85097i 0.146321 + 0.183480i
\(700\) 34.7843 24.4972i 1.31472 0.925909i
\(701\) −5.63937 + 7.07155i −0.212996 + 0.267089i −0.876840 0.480783i \(-0.840353\pi\)
0.663844 + 0.747871i \(0.268924\pi\)
\(702\) −3.32270 + 8.82137i −0.125407 + 0.332941i
\(703\) 7.82918 7.26442i 0.295283 0.273983i
\(704\) 4.01091 7.07425i 0.151167 0.266621i
\(705\) 1.81469 + 1.04771i 0.0683454 + 0.0394592i
\(706\) −5.03370 4.54322i −0.189446 0.170987i
\(707\) −19.8279 + 4.26852i −0.745703 + 0.160534i
\(708\) −7.61487 4.89013i −0.286184 0.183782i
\(709\) −20.0573 18.6105i −0.753269 0.698932i 0.206897 0.978363i \(-0.433664\pi\)
−0.960166 + 0.279431i \(0.909854\pi\)
\(710\) −14.3122 28.7018i −0.537128 1.07716i
\(711\) 4.36952 28.9899i 0.163870 1.08720i
\(712\) 5.03367 9.61495i 0.188645 0.360336i
\(713\) −33.8960 7.73654i −1.26942 0.289736i
\(714\) −3.23419 + 0.492149i −0.121036 + 0.0184182i
\(715\) −12.4625 + 2.84449i −0.466071 + 0.106378i
\(716\) −28.9989 + 24.4620i −1.08374 + 0.914190i
\(717\) −2.35186 + 1.35784i −0.0878317 + 0.0507096i
\(718\) −5.22241 + 24.4265i −0.194898 + 0.911588i
\(719\) −18.7536 + 12.7860i −0.699393 + 0.476838i −0.860075 0.510168i \(-0.829583\pi\)
0.160682 + 0.987006i \(0.448631\pi\)
\(720\) 8.49805 + 40.9377i 0.316704 + 1.52566i
\(721\) 7.89941 7.14998i 0.294189 0.266279i
\(722\) 0.0142577 0.0485876i 0.000530615 0.00180824i
\(723\) −0.461383 + 1.49577i −0.0171590 + 0.0556281i
\(724\) 2.26234 2.57705i 0.0840792 0.0957753i
\(725\) 3.42649 + 45.7234i 0.127257 + 1.69812i
\(726\) 2.52594 3.81675i 0.0937465 0.141653i
\(727\) 41.6374 20.0515i 1.54425 0.743670i 0.548530 0.836131i \(-0.315188\pi\)
0.995716 + 0.0924607i \(0.0294732\pi\)
\(728\) −21.0975 + 15.2970i −0.781924 + 0.566946i
\(729\) 19.3454 + 9.31625i 0.716496 + 0.345046i
\(730\) 11.5182 6.86322i 0.426308 0.254019i
\(731\) −6.72149 + 2.07331i −0.248603 + 0.0766840i
\(732\) −2.07394 2.86887i −0.0766549 0.106036i
\(733\) −0.210337 1.39549i −0.00776897 0.0515438i 0.984610 0.174764i \(-0.0559161\pi\)
−0.992379 + 0.123220i \(0.960678\pi\)
\(734\) −20.8140 29.6432i −0.768258 1.09415i
\(735\) −4.79000 + 6.66557i −0.176682 + 0.245863i
\(736\) −33.3807 2.70142i −1.23043 0.0995758i
\(737\) 14.0349 2.11542i 0.516982 0.0779225i
\(738\) −18.9765 + 0.261314i −0.698533 + 0.00961912i
\(739\) 15.0672 + 48.8466i 0.554256 + 1.79685i 0.602626 + 0.798024i \(0.294121\pi\)
−0.0483705 + 0.998829i \(0.515403\pi\)
\(740\) 7.22930 16.1338i 0.265754 0.593090i
\(741\) 2.14061 4.44503i 0.0786374 0.163292i
\(742\) −8.75191 28.2313i −0.321293 1.03641i
\(743\) 15.8802 + 32.9756i 0.582589 + 1.20976i 0.959027 + 0.283316i \(0.0914345\pi\)
−0.376438 + 0.926442i \(0.622851\pi\)
\(744\) 3.21984 + 4.32722i 0.118045 + 0.158644i
\(745\) 0.282181 0.0211465i 0.0103383 0.000774749i
\(746\) −4.41810 + 1.07261i −0.161758 + 0.0392712i
\(747\) 41.8441 + 12.9072i 1.53100 + 0.472250i
\(748\) 5.18450 1.75695i 0.189564 0.0642404i
\(749\) 30.9528 + 12.5916i 1.13099 + 0.460089i
\(750\) −0.307498 + 5.03219i −0.0112282 + 0.183750i
\(751\) 1.29477 + 1.89908i 0.0472470 + 0.0692986i 0.849135 0.528175i \(-0.177124\pi\)
−0.801888 + 0.597474i \(0.796171\pi\)
\(752\) −7.13717 + 0.393502i −0.260266 + 0.0143495i
\(753\) 1.30061 + 2.25272i 0.0473968 + 0.0820936i
\(754\) −2.48423 27.9750i −0.0904702 1.01879i
\(755\) 0.933631 + 4.09050i 0.0339783 + 0.148869i
\(756\) −5.19672 8.69345i −0.189003 0.316178i
\(757\) −4.78122 + 20.9479i −0.173776 + 0.761365i 0.810645 + 0.585538i \(0.199117\pi\)
−0.984421 + 0.175826i \(0.943740\pi\)
\(758\) 9.55421 + 1.30579i 0.347024 + 0.0474284i
\(759\) 1.93234 + 0.291253i 0.0701393 + 0.0105718i
\(760\) −5.16251 44.2628i −0.187264 1.60558i
\(761\) 21.7654 23.4576i 0.788997 0.850336i −0.202659 0.979249i \(-0.564958\pi\)
0.991656 + 0.128913i \(0.0411488\pi\)
\(762\) 3.07558 + 7.52990i 0.111417 + 0.272780i
\(763\) −30.1475 + 14.0620i −1.09141 + 0.509080i
\(764\) −1.04345 + 8.50617i −0.0377508 + 0.307742i
\(765\) −14.0722 + 24.3737i −0.508781 + 0.881234i
\(766\) 11.7761 25.3402i 0.425489 0.915578i
\(767\) −33.0064