Properties

Label 196.2.p.a.103.20
Level $196$
Weight $2$
Character 196.103
Analytic conductor $1.565$
Analytic rank $0$
Dimension $312$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(3,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.p (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(312\)
Relative dimension: \(26\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 103.20
Character \(\chi\) \(=\) 196.103
Dual form 196.2.p.a.59.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.852071 - 1.12870i) q^{2} +(-0.330273 - 0.225176i) q^{3} +(-0.547949 - 1.92347i) q^{4} +(-0.194137 - 0.0145486i) q^{5} +(-0.535574 + 0.180915i) q^{6} +(-1.62030 - 2.09156i) q^{7} +(-2.63793 - 1.02046i) q^{8} +(-1.03765 - 2.64388i) q^{9} +O(q^{10})\) \(q+(0.852071 - 1.12870i) q^{2} +(-0.330273 - 0.225176i) q^{3} +(-0.547949 - 1.92347i) q^{4} +(-0.194137 - 0.0145486i) q^{5} +(-0.535574 + 0.180915i) q^{6} +(-1.62030 - 2.09156i) q^{7} +(-2.63793 - 1.02046i) q^{8} +(-1.03765 - 2.64388i) q^{9} +(-0.181840 + 0.206727i) q^{10} +(4.10220 + 1.61000i) q^{11} +(-0.252148 + 0.758657i) q^{12} +(2.89899 - 2.31187i) q^{13} +(-3.74137 + 0.0466832i) q^{14} +(0.0608423 + 0.0485201i) q^{15} +(-3.39950 + 2.10793i) q^{16} +(4.17672 + 4.50144i) q^{17} +(-3.86831 - 1.08158i) q^{18} +(-2.69573 + 4.66913i) q^{19} +(0.0783936 + 0.381390i) q^{20} +(0.0641719 + 1.05564i) q^{21} +(5.31258 - 3.25835i) q^{22} +(2.58949 - 2.79080i) q^{23} +(0.641452 + 0.931030i) q^{24} +(-4.90668 - 0.739562i) q^{25} +(-0.139270 - 5.24198i) q^{26} +(-0.519478 + 2.27598i) q^{27} +(-3.13522 + 4.26268i) q^{28} +(-1.16681 - 5.11213i) q^{29} +(0.106607 - 0.0273304i) q^{30} +(4.63766 + 8.03266i) q^{31} +(-0.517387 + 5.63314i) q^{32} +(-0.992315 - 1.45546i) q^{33} +(8.63966 - 0.878742i) q^{34} +(0.284132 + 0.429623i) q^{35} +(-4.51686 + 3.44460i) q^{36} +(10.0178 + 3.09008i) q^{37} +(2.97312 + 7.02111i) q^{38} +(-1.47804 + 0.110764i) q^{39} +(0.497274 + 0.236488i) q^{40} +(-1.28140 - 2.66086i) q^{41} +(1.24618 + 0.827049i) q^{42} +(0.871772 - 1.81025i) q^{43} +(0.848987 - 8.77268i) q^{44} +(0.162981 + 0.528372i) q^{45} +(-0.943565 - 5.30073i) q^{46} +(0.800046 - 0.120588i) q^{47} +(1.59742 + 0.0692948i) q^{48} +(-1.74925 + 6.77791i) q^{49} +(-5.01559 + 4.90803i) q^{50} +(-0.365842 - 2.42720i) q^{51} +(-6.03532 - 4.30935i) q^{52} +(-5.82431 + 1.79656i) q^{53} +(2.12628 + 2.52564i) q^{54} +(-0.772968 - 0.372242i) q^{55} +(2.13987 + 7.17084i) q^{56} +(1.94170 - 0.935075i) q^{57} +(-6.76429 - 3.03891i) q^{58} +(-0.925691 - 12.3525i) q^{59} +(0.0599887 - 0.143615i) q^{60} +(2.27555 - 7.37716i) q^{61} +(13.0181 + 1.60985i) q^{62} +(-3.84854 + 6.45419i) q^{63} +(5.91731 + 5.38382i) q^{64} +(-0.596437 + 0.406644i) q^{65} +(-2.48831 - 0.120124i) q^{66} +(1.40118 - 0.808972i) q^{67} +(6.36976 - 10.5004i) q^{68} +(-1.48366 + 0.338636i) q^{69} +(0.727018 + 0.0453686i) q^{70} +(-4.57108 - 1.04332i) q^{71} +(0.0392500 + 8.03325i) q^{72} +(-2.28410 + 15.1540i) q^{73} +(12.0237 - 8.67416i) q^{74} +(1.45401 + 1.34913i) q^{75} +(10.4581 + 2.62671i) q^{76} +(-3.27940 - 11.1887i) q^{77} +(-1.13437 + 1.76265i) q^{78} +(-2.58376 - 1.49174i) q^{79} +(0.690638 - 0.359770i) q^{80} +(-5.56201 + 5.16079i) q^{81} +(-4.09518 - 0.820918i) q^{82} +(-0.292327 + 0.366567i) q^{83} +(1.99533 - 0.701870i) q^{84} +(-0.745368 - 0.934662i) q^{85} +(-1.30043 - 2.52644i) q^{86} +(-0.765765 + 1.95114i) q^{87} +(-9.17837 - 8.43320i) q^{88} +(-10.1900 + 3.99930i) q^{89} +(0.735248 + 0.266253i) q^{90} +(-9.53265 - 2.31749i) q^{91} +(-6.78694 - 3.45159i) q^{92} +(0.277072 - 3.69726i) q^{93} +(0.545589 - 1.00577i) q^{94} +(0.591270 - 0.867234i) q^{95} +(1.43933 - 1.74397i) q^{96} +4.71195i q^{97} +(6.15978 + 7.74965i) q^{98} -12.5164i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9} - 20 q^{10} + 9 q^{12} - 28 q^{13} - 51 q^{14} - 17 q^{16} - 22 q^{17} - 12 q^{18} - 14 q^{20} - 34 q^{21} - 18 q^{22} - 44 q^{24} - 48 q^{25} - 2 q^{26} - 36 q^{28} - 11 q^{30} - 13 q^{32} - 34 q^{33} - 98 q^{34} - 4 q^{36} - 58 q^{37} - 18 q^{38} + 30 q^{40} - 28 q^{41} - 26 q^{42} + 16 q^{44} - 28 q^{45} - 14 q^{46} - 24 q^{49} + 96 q^{50} - 14 q^{52} - 22 q^{53} - 17 q^{54} + 40 q^{56} + 34 q^{57} - 12 q^{58} + 98 q^{60} - 38 q^{61} - 4 q^{64} - 32 q^{65} - 176 q^{66} - 21 q^{68} + 28 q^{69} + 50 q^{70} - 120 q^{72} - 58 q^{73} - 14 q^{74} - 91 q^{76} - 18 q^{77} - 112 q^{78} + 66 q^{80} - 170 q^{81} + 114 q^{82} + 140 q^{84} - 24 q^{85} + 97 q^{86} + 127 q^{88} - 82 q^{89} + 266 q^{90} + 34 q^{92} + 226 q^{94} + 122 q^{96} + 183 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.852071 1.12870i 0.602505 0.798115i
\(3\) −0.330273 0.225176i −0.190683 0.130006i 0.464215 0.885722i \(-0.346336\pi\)
−0.654899 + 0.755717i \(0.727289\pi\)
\(4\) −0.547949 1.92347i −0.273975 0.961737i
\(5\) −0.194137 0.0145486i −0.0868208 0.00650632i 0.0312488 0.999512i \(-0.490052\pi\)
−0.118070 + 0.993005i \(0.537671\pi\)
\(6\) −0.535574 + 0.180915i −0.218647 + 0.0738580i
\(7\) −1.62030 2.09156i −0.612416 0.790535i
\(8\) −2.63793 1.02046i −0.932648 0.360789i
\(9\) −1.03765 2.64388i −0.345882 0.881294i
\(10\) −0.181840 + 0.206727i −0.0575028 + 0.0653729i
\(11\) 4.10220 + 1.61000i 1.23686 + 0.485432i 0.891493 0.453035i \(-0.149659\pi\)
0.345368 + 0.938467i \(0.387754\pi\)
\(12\) −0.252148 + 0.758657i −0.0727889 + 0.219005i
\(13\) 2.89899 2.31187i 0.804036 0.641197i −0.132731 0.991152i \(-0.542375\pi\)
0.936766 + 0.349955i \(0.113803\pi\)
\(14\) −3.74137 + 0.0466832i −0.999922 + 0.0124766i
\(15\) 0.0608423 + 0.0485201i 0.0157094 + 0.0125278i
\(16\) −3.39950 + 2.10793i −0.849876 + 0.526983i
\(17\) 4.17672 + 4.50144i 1.01300 + 1.09176i 0.995768 + 0.0919072i \(0.0292963\pi\)
0.0172364 + 0.999851i \(0.494513\pi\)
\(18\) −3.86831 1.08158i −0.911770 0.254930i
\(19\) −2.69573 + 4.66913i −0.618442 + 1.07117i 0.371328 + 0.928502i \(0.378902\pi\)
−0.989770 + 0.142671i \(0.954431\pi\)
\(20\) 0.0783936 + 0.381390i 0.0175293 + 0.0852814i
\(21\) 0.0641719 + 1.05564i 0.0140034 + 0.230359i
\(22\) 5.31258 3.25835i 1.13265 0.694682i
\(23\) 2.58949 2.79080i 0.539945 0.581922i −0.402862 0.915261i \(-0.631985\pi\)
0.942807 + 0.333338i \(0.108175\pi\)
\(24\) 0.641452 + 0.931030i 0.130936 + 0.190046i
\(25\) −4.90668 0.739562i −0.981335 0.147912i
\(26\) −0.139270 5.24198i −0.0273131 1.02804i
\(27\) −0.519478 + 2.27598i −0.0999736 + 0.438013i
\(28\) −3.13522 + 4.26268i −0.592501 + 0.805570i
\(29\) −1.16681 5.11213i −0.216671 0.949299i −0.959918 0.280281i \(-0.909572\pi\)
0.743247 0.669017i \(-0.233285\pi\)
\(30\) 0.106607 0.0273304i 0.0194637 0.00498983i
\(31\) 4.63766 + 8.03266i 0.832948 + 1.44271i 0.895690 + 0.444679i \(0.146682\pi\)
−0.0627420 + 0.998030i \(0.519985\pi\)
\(32\) −0.517387 + 5.63314i −0.0914619 + 0.995809i
\(33\) −0.992315 1.45546i −0.172740 0.253363i
\(34\) 8.63966 0.878742i 1.48169 0.150703i
\(35\) 0.284132 + 0.429623i 0.0480270 + 0.0726195i
\(36\) −4.51686 + 3.44460i −0.752810 + 0.574100i
\(37\) 10.0178 + 3.09008i 1.64691 + 0.508006i 0.973000 0.230804i \(-0.0741355\pi\)
0.673914 + 0.738810i \(0.264612\pi\)
\(38\) 2.97312 + 7.02111i 0.482304 + 1.13897i
\(39\) −1.47804 + 0.110764i −0.236675 + 0.0177364i
\(40\) 0.497274 + 0.236488i 0.0786259 + 0.0373921i
\(41\) −1.28140 2.66086i −0.200122 0.415557i 0.776622 0.629967i \(-0.216932\pi\)
−0.976744 + 0.214410i \(0.931217\pi\)
\(42\) 1.24618 + 0.827049i 0.192290 + 0.127616i
\(43\) 0.871772 1.81025i 0.132944 0.276061i −0.823861 0.566792i \(-0.808184\pi\)
0.956805 + 0.290731i \(0.0938986\pi\)
\(44\) 0.848987 8.77268i 0.127990 1.32253i
\(45\) 0.162981 + 0.528372i 0.0242958 + 0.0787651i
\(46\) −0.943565 5.30073i −0.139121 0.781550i
\(47\) 0.800046 0.120588i 0.116699 0.0175895i −0.0904332 0.995903i \(-0.528825\pi\)
0.207132 + 0.978313i \(0.433587\pi\)
\(48\) 1.59742 + 0.0692948i 0.230568 + 0.0100018i
\(49\) −1.74925 + 6.77791i −0.249893 + 0.968274i
\(50\) −5.01559 + 4.90803i −0.709311 + 0.694100i
\(51\) −0.365842 2.42720i −0.0512281 0.339876i
\(52\) −6.03532 4.30935i −0.836948 0.597599i
\(53\) −5.82431 + 1.79656i −0.800031 + 0.246777i −0.667702 0.744429i \(-0.732722\pi\)
−0.132329 + 0.991206i \(0.542246\pi\)
\(54\) 2.12628 + 2.52564i 0.289350 + 0.343696i
\(55\) −0.772968 0.372242i −0.104227 0.0501931i
\(56\) 2.13987 + 7.17084i 0.285952 + 0.958244i
\(57\) 1.94170 0.935075i 0.257185 0.123854i
\(58\) −6.76429 3.03891i −0.888195 0.399029i
\(59\) −0.925691 12.3525i −0.120515 1.60816i −0.650065 0.759879i \(-0.725258\pi\)
0.529550 0.848279i \(-0.322361\pi\)
\(60\) 0.0599887 0.143615i 0.00774451 0.0185406i
\(61\) 2.27555 7.37716i 0.291355 0.944549i −0.685031 0.728514i \(-0.740211\pi\)
0.976386 0.216035i \(-0.0693124\pi\)
\(62\) 13.0181 + 1.60985i 1.65330 + 0.204451i
\(63\) −3.84854 + 6.45419i −0.484870 + 0.813151i
\(64\) 5.91731 + 5.38382i 0.739663 + 0.672977i
\(65\) −0.596437 + 0.406644i −0.0739789 + 0.0504380i
\(66\) −2.48831 0.120124i −0.306289 0.0147862i
\(67\) 1.40118 0.808972i 0.171182 0.0988317i −0.411961 0.911201i \(-0.635156\pi\)
0.583143 + 0.812370i \(0.301823\pi\)
\(68\) 6.36976 10.5004i 0.772447 1.27336i
\(69\) −1.48366 + 0.338636i −0.178612 + 0.0407670i
\(70\) 0.727018 + 0.0453686i 0.0868953 + 0.00542259i
\(71\) −4.57108 1.04332i −0.542487 0.123819i −0.0575084 0.998345i \(-0.518316\pi\)
−0.484979 + 0.874526i \(0.661173\pi\)
\(72\) 0.0392500 + 8.03325i 0.00462566 + 0.946727i
\(73\) −2.28410 + 15.1540i −0.267333 + 1.77364i 0.303753 + 0.952751i \(0.401760\pi\)
−0.571086 + 0.820890i \(0.693478\pi\)
\(74\) 12.0237 8.67416i 1.39772 1.00835i
\(75\) 1.45401 + 1.34913i 0.167895 + 0.155784i
\(76\) 10.4581 + 2.62671i 1.19962 + 0.301304i
\(77\) −3.27940 11.1887i −0.373722 1.27507i
\(78\) −1.13437 + 1.76265i −0.128443 + 0.199580i
\(79\) −2.58376 1.49174i −0.290696 0.167834i 0.347560 0.937658i \(-0.387010\pi\)
−0.638256 + 0.769824i \(0.720344\pi\)
\(80\) 0.690638 0.359770i 0.0772157 0.0402235i
\(81\) −5.56201 + 5.16079i −0.618001 + 0.573421i
\(82\) −4.09518 0.820918i −0.452237 0.0906553i
\(83\) −0.292327 + 0.366567i −0.0320871 + 0.0402359i −0.797616 0.603165i \(-0.793906\pi\)
0.765529 + 0.643401i \(0.222477\pi\)
\(84\) 1.99533 0.701870i 0.217709 0.0765803i
\(85\) −0.745368 0.934662i −0.0808465 0.101378i
\(86\) −1.30043 2.52644i −0.140229 0.272433i
\(87\) −0.765765 + 1.95114i −0.0820986 + 0.209184i
\(88\) −9.17837 8.43320i −0.978417 0.898983i
\(89\) −10.1900 + 3.99930i −1.08014 + 0.423924i −0.837638 0.546226i \(-0.816064\pi\)
−0.242504 + 0.970150i \(0.577969\pi\)
\(90\) 0.735248 + 0.266253i 0.0775020 + 0.0280655i
\(91\) −9.53265 2.31749i −0.999294 0.242939i
\(92\) −6.78694 3.45159i −0.707587 0.359853i
\(93\) 0.277072 3.69726i 0.0287310 0.383388i
\(94\) 0.545589 1.00577i 0.0562732 0.103737i
\(95\) 0.591270 0.867234i 0.0606630 0.0889763i
\(96\) 1.43933 1.74397i 0.146901 0.177993i
\(97\) 4.71195i 0.478426i 0.970967 + 0.239213i \(0.0768894\pi\)
−0.970967 + 0.239213i \(0.923111\pi\)
\(98\) 6.15978 + 7.74965i 0.622232 + 0.782833i
\(99\) 12.5164i 1.25794i
\(100\) 1.26608 + 9.84311i 0.126608 + 0.984311i
\(101\) −0.123474 + 0.181102i −0.0122861 + 0.0180204i −0.832333 0.554276i \(-0.812995\pi\)
0.820047 + 0.572297i \(0.193947\pi\)
\(102\) −3.05132 1.65522i −0.302126 0.163891i
\(103\) 0.191758 2.55883i 0.0188945 0.252129i −0.979756 0.200195i \(-0.935842\pi\)
0.998651 0.0519340i \(-0.0165385\pi\)
\(104\) −10.0065 + 3.14022i −0.981219 + 0.307924i
\(105\) 0.00289991 0.205873i 0.000283002 0.0200911i
\(106\) −2.93494 + 8.10473i −0.285067 + 0.787201i
\(107\) 8.20581 3.22054i 0.793286 0.311342i 0.0661272 0.997811i \(-0.478936\pi\)
0.727159 + 0.686469i \(0.240840\pi\)
\(108\) 4.66244 0.247920i 0.448644 0.0238561i
\(109\) −2.12958 + 5.42609i −0.203977 + 0.519725i −0.995855 0.0909543i \(-0.971008\pi\)
0.791878 + 0.610679i \(0.209104\pi\)
\(110\) −1.07877 + 0.555276i −0.102857 + 0.0529435i
\(111\) −2.61279 3.27634i −0.247995 0.310976i
\(112\) 9.91709 + 3.69478i 0.937076 + 0.349124i
\(113\) 1.06011 1.32933i 0.0997265 0.125053i −0.729464 0.684019i \(-0.760230\pi\)
0.829190 + 0.558966i \(0.188802\pi\)
\(114\) 0.599046 2.98836i 0.0561058 0.279886i
\(115\) −0.543318 + 0.504125i −0.0506647 + 0.0470099i
\(116\) −9.19369 + 5.04552i −0.853613 + 0.468464i
\(117\) −9.12044 5.26569i −0.843185 0.486813i
\(118\) −14.7311 9.48037i −1.35610 0.872739i
\(119\) 2.64748 16.0295i 0.242694 1.46943i
\(120\) −0.110985 0.190080i −0.0101315 0.0173518i
\(121\) 6.17242 + 5.72717i 0.561129 + 0.520652i
\(122\) −6.38770 8.85429i −0.578316 0.801630i
\(123\) −0.175950 + 1.16735i −0.0158649 + 0.105257i
\(124\) 12.9094 13.3219i 1.15930 1.19634i
\(125\) 1.89081 + 0.431566i 0.169119 + 0.0386004i
\(126\) 4.00564 + 9.84329i 0.356851 + 0.876910i
\(127\) −4.30597 + 0.982809i −0.382093 + 0.0872102i −0.409253 0.912421i \(-0.634211\pi\)
0.0271602 + 0.999631i \(0.491354\pi\)
\(128\) 11.1187 2.09150i 0.982764 0.184864i
\(129\) −0.695549 + 0.401575i −0.0612397 + 0.0353567i
\(130\) −0.0492259 + 1.01969i −0.00431740 + 0.0894328i
\(131\) −6.19021 + 4.22042i −0.540841 + 0.368739i −0.802715 0.596363i \(-0.796612\pi\)
0.261874 + 0.965102i \(0.415660\pi\)
\(132\) −2.25580 + 2.70621i −0.196342 + 0.235545i
\(133\) 14.1337 1.92713i 1.22554 0.167103i
\(134\) 0.280815 2.27082i 0.0242587 0.196169i
\(135\) 0.133962 0.434296i 0.0115297 0.0373782i
\(136\) −6.42433 16.1366i −0.550882 1.38371i
\(137\) 0.177227 + 2.36493i 0.0151415 + 0.202050i 0.999644 + 0.0266792i \(0.00849325\pi\)
−0.984503 + 0.175370i \(0.943888\pi\)
\(138\) −0.881964 + 1.96316i −0.0750778 + 0.167115i
\(139\) −19.5010 + 9.39119i −1.65405 + 0.796550i −0.654887 + 0.755727i \(0.727284\pi\)
−0.999166 + 0.0408233i \(0.987002\pi\)
\(140\) 0.670679 0.781931i 0.0566827 0.0660853i
\(141\) −0.291387 0.140325i −0.0245392 0.0118175i
\(142\) −5.07249 + 4.27042i −0.425673 + 0.358365i
\(143\) 15.6144 4.81639i 1.30574 0.402767i
\(144\) 9.10061 + 6.80060i 0.758384 + 0.566716i
\(145\) 0.152147 + 1.00943i 0.0126351 + 0.0838286i
\(146\) 15.1582 + 15.4904i 1.25450 + 1.28199i
\(147\) 2.10396 1.84467i 0.173531 0.152146i
\(148\) 0.454447 20.9622i 0.0373553 1.72308i
\(149\) 11.9735 1.80472i 0.980911 0.147849i 0.361039 0.932551i \(-0.382422\pi\)
0.619873 + 0.784702i \(0.287184\pi\)
\(150\) 2.76169 0.491599i 0.225491 0.0401389i
\(151\) 4.42620 + 14.3494i 0.360199 + 1.16774i 0.936550 + 0.350534i \(0.114000\pi\)
−0.576351 + 0.817202i \(0.695524\pi\)
\(152\) 11.8758 9.56594i 0.963255 0.775900i
\(153\) 7.56730 15.7137i 0.611780 1.27037i
\(154\) −15.4230 5.83208i −1.24282 0.469963i
\(155\) −0.783479 1.62691i −0.0629305 0.130677i
\(156\) 1.02294 + 2.78227i 0.0819008 + 0.222760i
\(157\) 2.73440 0.204915i 0.218229 0.0163540i 0.0348332 0.999393i \(-0.488910\pi\)
0.183396 + 0.983039i \(0.441291\pi\)
\(158\) −3.88528 + 1.64524i −0.309096 + 0.130888i
\(159\) 2.32816 + 0.718141i 0.184635 + 0.0569523i
\(160\) 0.182398 1.08608i 0.0144199 0.0858619i
\(161\) −10.0329 0.894126i −0.790701 0.0704670i
\(162\) 1.08578 + 10.6752i 0.0853070 + 0.838725i
\(163\) −1.69172 2.48130i −0.132506 0.194350i 0.754252 0.656586i \(-0.228000\pi\)
−0.886757 + 0.462235i \(0.847048\pi\)
\(164\) −4.41596 + 3.92277i −0.344828 + 0.306317i
\(165\) 0.171470 + 0.296996i 0.0133490 + 0.0231211i
\(166\) 0.164662 + 0.642292i 0.0127802 + 0.0498515i
\(167\) 0.423853 + 1.85702i 0.0327987 + 0.143701i 0.988676 0.150065i \(-0.0479484\pi\)
−0.955877 + 0.293766i \(0.905091\pi\)
\(168\) 0.907962 2.85018i 0.0700508 0.219896i
\(169\) 0.166644 0.730116i 0.0128188 0.0561627i
\(170\) −1.69006 + 0.0449019i −0.129622 + 0.00344382i
\(171\) 15.1418 + 2.28227i 1.15793 + 0.174529i
\(172\) −3.95966 0.684904i −0.301921 0.0522234i
\(173\) 2.19697 2.36777i 0.167032 0.180018i −0.643989 0.765035i \(-0.722722\pi\)
0.811021 + 0.585017i \(0.198912\pi\)
\(174\) 1.54977 + 2.52683i 0.117488 + 0.191558i
\(175\) 6.40345 + 11.4609i 0.484056 + 0.866364i
\(176\) −17.3392 + 3.17398i −1.30699 + 0.239248i
\(177\) −2.47576 + 4.28814i −0.186089 + 0.322316i
\(178\) −4.16862 + 14.9092i −0.312451 + 1.11749i
\(179\) 11.4196 + 12.3074i 0.853539 + 0.919897i 0.997570 0.0696766i \(-0.0221967\pi\)
−0.144030 + 0.989573i \(0.546006\pi\)
\(180\) 0.927005 0.603011i 0.0690949 0.0449458i
\(181\) −8.10171 6.46089i −0.602195 0.480235i 0.274301 0.961644i \(-0.411554\pi\)
−0.876496 + 0.481409i \(0.840125\pi\)
\(182\) −10.7383 + 8.78488i −0.795973 + 0.651179i
\(183\) −2.41272 + 1.92408i −0.178353 + 0.142232i
\(184\) −9.67878 + 4.71945i −0.713529 + 0.347923i
\(185\) −1.89987 0.745644i −0.139681 0.0548209i
\(186\) −3.93703 3.46306i −0.288677 0.253924i
\(187\) 9.88647 + 25.1903i 0.722970 + 1.84210i
\(188\) −0.670332 1.47279i −0.0488890 0.107414i
\(189\) 5.60207 2.60126i 0.407490 0.189214i
\(190\) −0.475047 1.40631i −0.0344635 0.102025i
\(191\) 6.21485 + 0.465739i 0.449691 + 0.0336997i 0.297651 0.954675i \(-0.403797\pi\)
0.152040 + 0.988374i \(0.451416\pi\)
\(192\) −0.742019 3.11057i −0.0535506 0.224486i
\(193\) 1.49459 + 1.01899i 0.107583 + 0.0733488i 0.615916 0.787811i \(-0.288786\pi\)
−0.508333 + 0.861160i \(0.669738\pi\)
\(194\) 5.31840 + 4.01491i 0.381839 + 0.288254i
\(195\) 0.288554 0.0206638
\(196\) 13.9956 0.349318i 0.999689 0.0249513i
\(197\) 9.35286 0.666364 0.333182 0.942863i \(-0.391878\pi\)
0.333182 + 0.942863i \(0.391878\pi\)
\(198\) −14.1273 10.6648i −1.00398 0.757916i
\(199\) −13.4363 9.16071i −0.952474 0.649386i −0.0159065 0.999873i \(-0.505063\pi\)
−0.936567 + 0.350488i \(0.886016\pi\)
\(200\) 12.1888 + 6.95800i 0.861875 + 0.492005i
\(201\) −0.644934 0.0483311i −0.0454901 0.00340901i
\(202\) 0.0992029 + 0.293677i 0.00697989 + 0.0206631i
\(203\) −8.80174 + 10.7236i −0.617761 + 0.752652i
\(204\) −4.46820 + 2.03367i −0.312836 + 0.142385i
\(205\) 0.210057 + 0.535216i 0.0146710 + 0.0373811i
\(206\) −2.72477 2.39674i −0.189844 0.166989i
\(207\) −10.0655 3.95043i −0.699602 0.274574i
\(208\) −4.98187 + 13.9701i −0.345431 + 0.968651i
\(209\) −18.5757 + 14.8136i −1.28491 + 1.02468i
\(210\) −0.229899 0.178691i −0.0158645 0.0123309i
\(211\) 5.84824 + 4.66382i 0.402609 + 0.321070i 0.803773 0.594936i \(-0.202823\pi\)
−0.401164 + 0.916006i \(0.631394\pi\)
\(212\) 6.64707 + 10.2185i 0.456522 + 0.701809i
\(213\) 1.27477 + 1.37388i 0.0873461 + 0.0941367i
\(214\) 3.35689 12.0061i 0.229473 0.820718i
\(215\) −0.195580 + 0.338754i −0.0133384 + 0.0231029i
\(216\) 3.69290 5.47377i 0.251270 0.372443i
\(217\) 9.28639 22.7153i 0.630401 1.54201i
\(218\) 4.30990 + 7.02708i 0.291903 + 0.475934i
\(219\) 4.16670 4.49063i 0.281559 0.303449i
\(220\) −0.292450 + 1.69075i −0.0197170 + 0.113991i
\(221\) 22.5150 + 3.39359i 1.51452 + 0.228278i
\(222\) −5.92431 + 0.157398i −0.397613 + 0.0105639i
\(223\) −2.47878 + 10.8603i −0.165992 + 0.727257i 0.821581 + 0.570092i \(0.193093\pi\)
−0.987572 + 0.157165i \(0.949765\pi\)
\(224\) 12.6204 8.04524i 0.843235 0.537545i
\(225\) 3.13608 + 13.7401i 0.209072 + 0.916005i
\(226\) −0.597137 2.32923i −0.0397210 0.154938i
\(227\) 8.60483 + 14.9040i 0.571123 + 0.989214i 0.996451 + 0.0841746i \(0.0268253\pi\)
−0.425328 + 0.905039i \(0.639841\pi\)
\(228\) −2.86255 3.22244i −0.189577 0.213412i
\(229\) −4.84690 7.10909i −0.320292 0.469782i 0.632001 0.774968i \(-0.282234\pi\)
−0.952293 + 0.305186i \(0.901281\pi\)
\(230\) 0.106063 + 1.04280i 0.00699360 + 0.0687600i
\(231\) −1.43633 + 4.43377i −0.0945036 + 0.291720i
\(232\) −2.13879 + 14.6761i −0.140418 + 0.963534i
\(233\) 0.870386 + 0.268478i 0.0570209 + 0.0175886i 0.323134 0.946353i \(-0.395263\pi\)
−0.266114 + 0.963942i \(0.585740\pi\)
\(234\) −13.7147 + 5.80754i −0.896556 + 0.379651i
\(235\) −0.157073 + 0.0117710i −0.0102463 + 0.000767856i
\(236\) −23.2525 + 8.54908i −1.51361 + 0.556498i
\(237\) 0.517444 + 1.07448i 0.0336116 + 0.0697952i
\(238\) −15.8368 16.6465i −1.02655 1.07903i
\(239\) 10.0439 20.8563i 0.649683 1.34908i −0.272435 0.962174i \(-0.587829\pi\)
0.922119 0.386907i \(-0.126457\pi\)
\(240\) −0.309111 0.0366929i −0.0199530 0.00236852i
\(241\) −4.79813 15.5552i −0.309075 1.00200i −0.968245 0.250003i \(-0.919568\pi\)
0.659170 0.751994i \(-0.270908\pi\)
\(242\) 11.7236 2.08688i 0.753623 0.134150i
\(243\) 9.92439 1.49586i 0.636650 0.0959595i
\(244\) −15.4367 0.334658i −0.988231 0.0214243i
\(245\) 0.438204 1.29040i 0.0279958 0.0824404i
\(246\) 1.16768 + 1.19326i 0.0744483 + 0.0760798i
\(247\) 2.97954 + 19.7679i 0.189583 + 1.25780i
\(248\) −4.03676 25.9221i −0.256334 1.64606i
\(249\) 0.179090 0.0552419i 0.0113494 0.00350082i
\(250\) 2.09822 1.76644i 0.132703 0.111720i
\(251\) −0.769700 0.370668i −0.0485830 0.0233964i 0.409434 0.912340i \(-0.365726\pi\)
−0.458018 + 0.888943i \(0.651440\pi\)
\(252\) 14.5233 + 3.86600i 0.914879 + 0.243535i
\(253\) 15.1158 7.27938i 0.950321 0.457650i
\(254\) −2.55969 + 5.69759i −0.160609 + 0.357499i
\(255\) 0.0357112 + 0.476533i 0.00223632 + 0.0298417i
\(256\) 7.11325 14.3318i 0.444578 0.895740i
\(257\) −3.63630 + 11.7886i −0.226826 + 0.735353i 0.768592 + 0.639739i \(0.220958\pi\)
−0.995419 + 0.0956137i \(0.969519\pi\)
\(258\) −0.139397 + 1.12724i −0.00867849 + 0.0701789i
\(259\) −9.76875 25.9597i −0.607001 1.61306i
\(260\) 1.10899 + 0.924411i 0.0687764 + 0.0573295i
\(261\) −12.3051 + 8.38949i −0.761668 + 0.519297i
\(262\) −0.510899 + 10.5830i −0.0315635 + 0.653821i
\(263\) −4.28173 + 2.47206i −0.264023 + 0.152434i −0.626168 0.779688i \(-0.715378\pi\)
0.362145 + 0.932122i \(0.382044\pi\)
\(264\) 1.13241 + 4.85201i 0.0696950 + 0.298621i
\(265\) 1.15685 0.264044i 0.0710650 0.0162201i
\(266\) 9.86772 17.5948i 0.605029 1.07881i
\(267\) 4.26604 + 0.973696i 0.261078 + 0.0595893i
\(268\) −2.32381 2.25186i −0.141949 0.137554i
\(269\) 2.93531 19.4745i 0.178969 1.18738i −0.701286 0.712880i \(-0.747391\pi\)
0.880255 0.474501i \(-0.157371\pi\)
\(270\) −0.376046 0.521255i −0.0228854 0.0317226i
\(271\) −18.1498 16.8406i −1.10252 1.02299i −0.999599 0.0283020i \(-0.990990\pi\)
−0.102923 0.994689i \(-0.532820\pi\)
\(272\) −23.6875 6.49840i −1.43627 0.394024i
\(273\) 2.62653 + 2.91193i 0.158965 + 0.176238i
\(274\) 2.82032 + 1.81505i 0.170382 + 0.109651i
\(275\) −18.9375 10.9336i −1.14197 0.659319i
\(276\) 1.46433 + 2.66823i 0.0881421 + 0.160608i
\(277\) −2.99811 + 2.78184i −0.180139 + 0.167144i −0.765088 0.643925i \(-0.777305\pi\)
0.584950 + 0.811070i \(0.301114\pi\)
\(278\) −6.01636 + 30.0128i −0.360838 + 1.80005i
\(279\) 16.4252 20.5965i 0.983348 1.23308i
\(280\) −0.311103 1.42326i −0.0185920 0.0850560i
\(281\) 1.54521 + 1.93763i 0.0921794 + 0.115589i 0.825782 0.563989i \(-0.190734\pi\)
−0.733603 + 0.679579i \(0.762163\pi\)
\(282\) −0.406668 + 0.209324i −0.0242167 + 0.0124650i
\(283\) 3.96822 10.1109i 0.235886 0.601028i −0.763089 0.646294i \(-0.776318\pi\)
0.998975 + 0.0452654i \(0.0144133\pi\)
\(284\) 0.497922 + 9.36404i 0.0295462 + 0.555653i
\(285\) −0.390561 + 0.153284i −0.0231349 + 0.00907976i
\(286\) 7.86826 21.7279i 0.465260 1.28480i
\(287\) −3.48910 + 6.99154i −0.205955 + 0.412697i
\(288\) 15.4302 4.47731i 0.909235 0.263828i
\(289\) −1.54751 + 20.6500i −0.0910298 + 1.21471i
\(290\) 1.26899 + 0.688377i 0.0745176 + 0.0404229i
\(291\) 1.06102 1.55623i 0.0621980 0.0912278i
\(292\) 30.3999 3.91022i 1.77902 0.228828i
\(293\) 17.6595i 1.03168i −0.856686 0.515838i \(-0.827480\pi\)
0.856686 0.515838i \(-0.172520\pi\)
\(294\) −0.289371 3.94654i −0.0168765 0.230167i
\(295\) 2.41155i 0.140406i
\(296\) −23.2729 18.3742i −1.35271 1.06798i
\(297\) −5.79533 + 8.50019i −0.336279 + 0.493231i
\(298\) 8.16532 15.0524i 0.473004 0.871960i
\(299\) 1.05493 14.0771i 0.0610082 0.814098i
\(300\) 1.79828 3.53600i 0.103824 0.204151i
\(301\) −5.19878 + 1.10979i −0.299653 + 0.0639673i
\(302\) 19.9677 + 7.23083i 1.14901 + 0.416087i
\(303\) 0.0815600 0.0320099i 0.00468550 0.00183892i
\(304\) −0.678086 21.5551i −0.0388909 1.23627i
\(305\) −0.549097 + 1.39908i −0.0314412 + 0.0801109i
\(306\) −11.2882 21.9304i −0.645304 1.25368i
\(307\) 4.68520 + 5.87506i 0.267399 + 0.335307i 0.897344 0.441332i \(-0.145494\pi\)
−0.629945 + 0.776640i \(0.716923\pi\)
\(308\) −19.7242 + 12.4387i −1.12389 + 0.708759i
\(309\) −0.639521 + 0.801933i −0.0363811 + 0.0456204i
\(310\) −2.50388 0.501927i −0.142211 0.0285076i
\(311\) −19.4112 + 18.0110i −1.10071 + 1.02131i −0.101060 + 0.994880i \(0.532223\pi\)
−0.999651 + 0.0264294i \(0.991586\pi\)
\(312\) 4.01198 + 1.21610i 0.227134 + 0.0688480i
\(313\) 24.3382 + 14.0516i 1.37567 + 0.794246i 0.991635 0.129071i \(-0.0411996\pi\)
0.384039 + 0.923317i \(0.374533\pi\)
\(314\) 2.09862 3.26094i 0.118432 0.184025i
\(315\) 0.841044 1.19701i 0.0473875 0.0674437i
\(316\) −1.45355 + 5.78720i −0.0817683 + 0.325555i
\(317\) −18.3666 17.0418i −1.03157 0.957160i −0.0324689 0.999473i \(-0.510337\pi\)
−0.999104 + 0.0423126i \(0.986527\pi\)
\(318\) 2.79433 2.01589i 0.156698 0.113046i
\(319\) 3.44402 22.8496i 0.192828 1.27933i
\(320\) −1.07044 1.13129i −0.0598396 0.0632409i
\(321\) −3.43535 0.784096i −0.191743 0.0437640i
\(322\) −9.55793 + 10.5623i −0.532643 + 0.588614i
\(323\) −32.2771 + 7.36704i −1.79595 + 0.409913i
\(324\) 12.9743 + 7.87053i 0.720797 + 0.437252i
\(325\) −15.9342 + 9.19961i −0.883870 + 0.510302i
\(326\) −4.24212 0.204790i −0.234949 0.0113423i
\(327\) 1.92517 1.31256i 0.106462 0.0725847i
\(328\) 0.664934 + 8.32679i 0.0367149 + 0.459770i
\(329\) −1.54853 1.47796i −0.0853733 0.0814824i
\(330\) 0.481325 + 0.0595218i 0.0264961 + 0.00327657i
\(331\) 3.22837 10.4661i 0.177447 0.575270i −0.822531 0.568720i \(-0.807439\pi\)
0.999979 0.00655005i \(-0.00208496\pi\)
\(332\) 0.865262 + 0.361424i 0.0474874 + 0.0198357i
\(333\) −2.22513 29.6923i −0.121936 1.62713i
\(334\) 2.45718 + 1.10391i 0.134451 + 0.0604033i
\(335\) −0.283791 + 0.136667i −0.0155052 + 0.00746689i
\(336\) −2.44337 3.45338i −0.133297 0.188397i
\(337\) 3.01180 + 1.45040i 0.164063 + 0.0790086i 0.514113 0.857722i \(-0.328121\pi\)
−0.350050 + 0.936731i \(0.613835\pi\)
\(338\) −0.682092 0.810202i −0.0371009 0.0440692i
\(339\) −0.649459 + 0.200332i −0.0352738 + 0.0108805i
\(340\) −1.38937 + 1.94584i −0.0753494 + 0.105528i
\(341\) 6.09207 + 40.4182i 0.329904 + 2.18877i
\(342\) 15.4779 15.1460i 0.836951 0.819003i
\(343\) 17.0107 7.32360i 0.918493 0.395437i
\(344\) −4.14697 + 3.88570i −0.223589 + 0.209503i
\(345\) 0.292960 0.0441567i 0.0157725 0.00237732i
\(346\) −0.800538 4.49723i −0.0430372 0.241773i
\(347\) −6.69590 21.7076i −0.359455 1.16532i −0.937107 0.349041i \(-0.886507\pi\)
0.577653 0.816283i \(-0.303969\pi\)
\(348\) 4.17256 + 0.403805i 0.223673 + 0.0216462i
\(349\) −4.52558 + 9.39746i −0.242249 + 0.503035i −0.986274 0.165117i \(-0.947200\pi\)
0.744025 + 0.668151i \(0.232914\pi\)
\(350\) 18.3922 + 2.53791i 0.983104 + 0.135657i
\(351\) 3.75581 + 7.79902i 0.200470 + 0.416281i
\(352\) −11.1918 + 22.2753i −0.596523 + 1.18728i
\(353\) 18.8128 1.40983i 1.00130 0.0750374i 0.436023 0.899935i \(-0.356387\pi\)
0.565282 + 0.824898i \(0.308768\pi\)
\(354\) 2.73052 + 6.44820i 0.145126 + 0.342718i
\(355\) 0.872238 + 0.269050i 0.0462936 + 0.0142797i
\(356\) 13.2762 + 17.4089i 0.703635 + 0.922668i
\(357\) −4.48387 + 4.69798i −0.237311 + 0.248643i
\(358\) 23.6217 2.40257i 1.24845 0.126980i
\(359\) −3.74259 5.48938i −0.197527 0.289718i 0.714678 0.699454i \(-0.246573\pi\)
−0.912204 + 0.409736i \(0.865621\pi\)
\(360\) 0.109252 1.56012i 0.00575811 0.0822257i
\(361\) −5.03387 8.71891i −0.264940 0.458890i
\(362\) −14.1957 + 3.63929i −0.746108 + 0.191277i
\(363\) −0.748961 3.28141i −0.0393103 0.172230i
\(364\) 0.765772 + 19.6057i 0.0401374 + 1.02762i
\(365\) 0.663898 2.90873i 0.0347500 0.152250i
\(366\) 0.115909 + 4.36270i 0.00605865 + 0.228042i
\(367\) −21.3368 3.21600i −1.11377 0.167874i −0.433727 0.901045i \(-0.642802\pi\)
−0.680045 + 0.733171i \(0.738040\pi\)
\(368\) −2.92015 + 14.9458i −0.152223 + 0.779104i
\(369\) −5.70536 + 6.14892i −0.297009 + 0.320100i
\(370\) −2.46044 + 1.50905i −0.127912 + 0.0784518i
\(371\) 13.1948 + 9.27093i 0.685038 + 0.481323i
\(372\) −7.26341 + 1.49297i −0.376590 + 0.0774070i
\(373\) −14.3264 + 24.8140i −0.741792 + 1.28482i 0.209886 + 0.977726i \(0.432691\pi\)
−0.951679 + 0.307096i \(0.900643\pi\)
\(374\) 36.8564 + 10.3050i 1.90580 + 0.532861i
\(375\) −0.527306 0.568301i −0.0272300 0.0293469i
\(376\) −2.23352 0.498317i −0.115185 0.0256988i
\(377\) −15.2011 12.1225i −0.782899 0.624341i
\(378\) 1.83731 8.53954i 0.0945009 0.439226i
\(379\) −16.2053 + 12.9233i −0.832408 + 0.663823i −0.944005 0.329930i \(-0.892975\pi\)
0.111597 + 0.993754i \(0.464403\pi\)
\(380\) −1.99209 0.662093i −0.102192 0.0339646i
\(381\) 1.64345 + 0.645007i 0.0841966 + 0.0330447i
\(382\) 5.82118 6.61789i 0.297837 0.338601i
\(383\) −0.540532 1.37725i −0.0276199 0.0703744i 0.916399 0.400267i \(-0.131083\pi\)
−0.944018 + 0.329893i \(0.892987\pi\)
\(384\) −4.14317 1.81291i −0.211430 0.0925144i
\(385\) 0.473875 + 2.21985i 0.0241509 + 0.113134i
\(386\) 2.42364 0.818695i 0.123360 0.0416705i
\(387\) −5.69068 0.426458i −0.289274 0.0216781i
\(388\) 9.06330 2.58191i 0.460120 0.131076i
\(389\) 9.22428 + 6.28901i 0.467690 + 0.318865i 0.774132 0.633024i \(-0.218186\pi\)
−0.306443 + 0.951889i \(0.599139\pi\)
\(390\) 0.245868 0.325692i 0.0124500 0.0164921i
\(391\) 23.3782 1.18229
\(392\) 11.5310 16.0946i 0.582404 0.812900i
\(393\) 2.99480 0.151068
\(394\) 7.96930 10.5566i 0.401488 0.531835i
\(395\) 0.479902 + 0.327192i 0.0241465 + 0.0164628i
\(396\) −24.0749 + 6.85832i −1.20981 + 0.344644i
\(397\) −15.4021 1.15423i −0.773010 0.0579291i −0.317616 0.948219i \(-0.602882\pi\)
−0.455394 + 0.890290i \(0.650501\pi\)
\(398\) −21.7884 + 7.36003i −1.09215 + 0.368925i
\(399\) −5.10191 2.54609i −0.255415 0.127464i
\(400\) 18.2392 7.82879i 0.911961 0.391440i
\(401\) −12.8979 32.8634i −0.644092 1.64112i −0.761599 0.648048i \(-0.775585\pi\)
0.117507 0.993072i \(-0.462510\pi\)
\(402\) −0.604081 + 0.686758i −0.0301288 + 0.0342524i
\(403\) 32.0150 + 12.5650i 1.59478 + 0.625905i
\(404\) 0.416003 + 0.138263i 0.0206969 + 0.00687885i
\(405\) 1.15488 0.920982i 0.0573862 0.0457640i
\(406\) 4.60411 + 19.0719i 0.228498 + 0.946521i
\(407\) 36.1200 + 28.8047i 1.79040 + 1.42780i
\(408\) −1.51181 + 6.77611i −0.0748457 + 0.335467i
\(409\) −15.8079 17.0369i −0.781652 0.842420i 0.209130 0.977888i \(-0.432937\pi\)
−0.990782 + 0.135468i \(0.956746\pi\)
\(410\) 0.783084 + 0.218950i 0.0386737 + 0.0108132i
\(411\) 0.473993 0.820980i 0.0233803 0.0404959i
\(412\) −5.02692 + 1.03327i −0.247658 + 0.0509054i
\(413\) −24.3361 + 21.9509i −1.19750 + 1.08013i
\(414\) −13.0354 + 7.99496i −0.640655 + 0.392931i
\(415\) 0.0620846 0.0669113i 0.00304762 0.00328455i
\(416\) 11.5232 + 17.5266i 0.564971 + 0.859311i
\(417\) 8.55533 + 1.28951i 0.418956 + 0.0631475i
\(418\) 0.892391 + 33.5888i 0.0436483 + 1.64288i
\(419\) −3.42751 + 15.0169i −0.167445 + 0.733623i 0.819568 + 0.572982i \(0.194213\pi\)
−0.987013 + 0.160641i \(0.948644\pi\)
\(420\) −0.397580 + 0.107230i −0.0193999 + 0.00523228i
\(421\) 1.28026 + 5.60919i 0.0623961 + 0.273375i 0.996496 0.0836356i \(-0.0266532\pi\)
−0.934100 + 0.357011i \(0.883796\pi\)
\(422\) 10.2472 2.62703i 0.498825 0.127882i
\(423\) −1.14898 1.99010i −0.0558656 0.0967620i
\(424\) 17.1974 + 1.20430i 0.835181 + 0.0584861i
\(425\) −17.1647 25.1760i −0.832612 1.22122i
\(426\) 2.63690 0.268200i 0.127758 0.0129943i
\(427\) −19.1169 + 7.19377i −0.925130 + 0.348131i
\(428\) −10.6910 14.0190i −0.516769 0.677633i
\(429\) −6.24154 1.92526i −0.301344 0.0929524i
\(430\) 0.215706 + 0.509395i 0.0104023 + 0.0245652i
\(431\) −28.3932 + 2.12777i −1.36765 + 0.102491i −0.738217 0.674563i \(-0.764332\pi\)
−0.629433 + 0.777054i \(0.716713\pi\)
\(432\) −3.03165 8.83224i −0.145860 0.424941i
\(433\) 12.2009 + 25.3353i 0.586336 + 1.21754i 0.957355 + 0.288914i \(0.0932942\pi\)
−0.371019 + 0.928625i \(0.620992\pi\)
\(434\) −17.7262 29.8366i −0.850883 1.43220i
\(435\) 0.177050 0.367648i 0.00848889 0.0176274i
\(436\) 11.6038 + 1.12298i 0.555723 + 0.0537808i
\(437\) 6.05008 + 19.6139i 0.289415 + 0.938259i
\(438\) −1.51827 8.52931i −0.0725460 0.407546i
\(439\) −30.6784 + 4.62403i −1.46420 + 0.220693i −0.832287 0.554345i \(-0.812969\pi\)
−0.631915 + 0.775038i \(0.717731\pi\)
\(440\) 1.65917 + 1.77073i 0.0790979 + 0.0844163i
\(441\) 19.7351 2.40828i 0.939767 0.114680i
\(442\) 23.0148 22.5212i 1.09470 1.07123i
\(443\) 2.25301 + 14.9477i 0.107044 + 0.710188i 0.976395 + 0.215993i \(0.0692990\pi\)
−0.869351 + 0.494195i \(0.835463\pi\)
\(444\) −4.87028 + 6.82091i −0.231133 + 0.323706i
\(445\) 2.03645 0.628162i 0.0965370 0.0297777i
\(446\) 10.1459 + 12.0515i 0.480424 + 0.570657i
\(447\) −4.36092 2.10011i −0.206265 0.0993318i
\(448\) 1.67276 21.0998i 0.0790305 0.996872i
\(449\) −37.6374 + 18.1252i −1.77622 + 0.855383i −0.815068 + 0.579366i \(0.803300\pi\)
−0.961153 + 0.276017i \(0.910985\pi\)
\(450\) 18.1807 + 8.16781i 0.857044 + 0.385034i
\(451\) −0.972601 12.9785i −0.0457980 0.611132i
\(452\) −3.13782 1.31068i −0.147591 0.0616493i
\(453\) 1.76929 5.73589i 0.0831284 0.269496i
\(454\) 24.1542 + 2.98696i 1.13361 + 0.140185i
\(455\) 1.81693 + 0.588598i 0.0851789 + 0.0275939i
\(456\) −6.07628 + 0.485220i −0.284548 + 0.0227225i
\(457\) 6.38832 4.35548i 0.298833 0.203741i −0.404616 0.914487i \(-0.632595\pi\)
0.703449 + 0.710746i \(0.251642\pi\)
\(458\) −12.1540 0.586737i −0.567917 0.0274164i
\(459\) −12.4149 + 7.16775i −0.579478 + 0.334562i
\(460\) 1.26738 + 0.768823i 0.0590920 + 0.0358466i
\(461\) 17.1104 3.90534i 0.796911 0.181890i 0.195368 0.980730i \(-0.437410\pi\)
0.601543 + 0.798840i \(0.294553\pi\)
\(462\) 3.78056 + 5.39908i 0.175887 + 0.251188i
\(463\) 26.7014 + 6.09441i 1.24092 + 0.283231i 0.792099 0.610392i \(-0.208988\pi\)
0.448818 + 0.893623i \(0.351845\pi\)
\(464\) 14.7426 + 14.9191i 0.684408 + 0.692604i
\(465\) −0.107580 + 0.713746i −0.00498890 + 0.0330992i
\(466\) 1.04466 0.753646i 0.0483931 0.0349120i
\(467\) −1.40072 1.29968i −0.0648175 0.0601419i 0.647099 0.762406i \(-0.275982\pi\)
−0.711916 + 0.702264i \(0.752173\pi\)
\(468\) −5.13088 + 20.4283i −0.237175 + 0.944296i
\(469\) −3.96235 1.61988i −0.182964 0.0747989i
\(470\) −0.120552 + 0.187319i −0.00556063 + 0.00864038i
\(471\) −0.949242 0.548045i −0.0437388 0.0252526i
\(472\) −10.1634 + 33.5296i −0.467807 + 1.54332i
\(473\) 6.49068 6.02248i 0.298442 0.276914i
\(474\) 1.65367 + 0.331495i 0.0759557 + 0.0152261i
\(475\) 16.6802 20.9163i 0.765339 0.959704i
\(476\) −32.2831 + 3.69102i −1.47969 + 0.169178i
\(477\) 10.7935 + 13.5346i 0.494199 + 0.619707i
\(478\) −14.9825 29.1076i −0.685284 1.33135i
\(479\) −2.51807 + 6.41594i −0.115054 + 0.293152i −0.976788 0.214208i \(-0.931283\pi\)
0.861735 + 0.507359i \(0.169378\pi\)
\(480\) −0.304800 + 0.317630i −0.0139122 + 0.0144978i
\(481\) 36.1853 14.2017i 1.64991 0.647542i
\(482\) −21.6455 7.83844i −0.985928 0.357031i
\(483\) 3.11225 + 2.55447i 0.141612 + 0.116233i
\(484\) 7.63389 15.0107i 0.346995 0.682304i
\(485\) 0.0685521 0.914765i 0.00311279 0.0415373i
\(486\) 6.76790 12.4763i 0.306998 0.565936i
\(487\) 8.50254 12.4709i 0.385287 0.565112i −0.583779 0.811912i \(-0.698427\pi\)
0.969066 + 0.246800i \(0.0793791\pi\)
\(488\) −13.5309 + 17.1383i −0.612514 + 0.775814i
\(489\) 1.20044i 0.0542858i
\(490\) −1.08310 1.59411i −0.0489293 0.0720147i
\(491\) 41.7664i 1.88489i −0.334359 0.942446i \(-0.608520\pi\)
0.334359 0.942446i \(-0.391480\pi\)
\(492\) 2.34179 0.301215i 0.105576 0.0135798i
\(493\) 18.1385 26.6043i 0.816916 1.19820i
\(494\) 24.8509 + 13.4807i 1.11810 + 0.606524i
\(495\) −0.182095 + 2.42989i −0.00818457 + 0.109215i
\(496\) −32.6980 17.5312i −1.46819 0.787174i
\(497\) 5.22436 + 11.2512i 0.234345 + 0.504684i
\(498\) 0.0902456 0.249210i 0.00404400 0.0111674i
\(499\) 29.2093 11.4638i 1.30759 0.513191i 0.393731 0.919226i \(-0.371184\pi\)
0.913858 + 0.406035i \(0.133089\pi\)
\(500\) −0.205964 3.87340i −0.00921098 0.173224i
\(501\) 0.278170 0.708766i 0.0124277 0.0316653i
\(502\) −1.07421 + 0.552929i −0.0479445 + 0.0246784i
\(503\) −15.6121 19.5770i −0.696111 0.872896i 0.300615 0.953746i \(-0.402808\pi\)
−0.996726 + 0.0808497i \(0.974237\pi\)
\(504\) 16.7384 13.0984i 0.745589 0.583448i
\(505\) 0.0266056 0.0333624i 0.00118393 0.00148461i
\(506\) 4.66345 23.2638i 0.207316 1.03420i
\(507\) −0.219443 + 0.203613i −0.00974580 + 0.00904278i
\(508\) 4.24986 + 7.74389i 0.188557 + 0.343580i
\(509\) 25.2495 + 14.5778i 1.11916 + 0.646149i 0.941187 0.337886i \(-0.109712\pi\)
0.177976 + 0.984035i \(0.443045\pi\)
\(510\) 0.568294 + 0.365733i 0.0251645 + 0.0161949i
\(511\) 35.3964 19.7767i 1.56585 0.874870i
\(512\) −10.1154 20.2405i −0.447043 0.894513i
\(513\) −9.22650 8.56094i −0.407360 0.377975i
\(514\) 10.2075 + 14.1490i 0.450232 + 0.624087i
\(515\) −0.0744547 + 0.493975i −0.00328087 + 0.0217671i
\(516\) 1.15354 + 1.11783i 0.0507820 + 0.0492096i
\(517\) 3.47610 + 0.793397i 0.152879 + 0.0348936i
\(518\) −37.6245 11.0935i −1.65312 0.487418i
\(519\) −1.25876 + 0.287305i −0.0552536 + 0.0126113i
\(520\) 1.98832 0.464054i 0.0871937 0.0203501i
\(521\) 28.9879 16.7362i 1.26998 0.733225i 0.294998 0.955498i \(-0.404681\pi\)
0.974985 + 0.222273i \(0.0713476\pi\)
\(522\) −1.01558 + 21.0373i −0.0444509 + 0.920778i
\(523\) 10.4464 7.12227i 0.456791 0.311435i −0.312975 0.949762i \(-0.601325\pi\)
0.769766 + 0.638327i \(0.220373\pi\)
\(524\) 11.5098 + 9.59414i 0.502807 + 0.419122i
\(525\) 0.465841 5.22714i 0.0203310 0.228131i
\(526\) −0.858116 + 6.93918i −0.0374156 + 0.302563i
\(527\) −16.7883 + 54.4263i −0.731310 + 2.37085i
\(528\) 6.44138 + 2.85610i 0.280325 + 0.124296i
\(529\) 0.635653 + 8.48221i 0.0276371 + 0.368792i
\(530\) 0.687694 1.53073i 0.0298715 0.0664907i
\(531\) −31.6980 + 15.2649i −1.37558 + 0.662442i
\(532\) −11.4513 26.1298i −0.496477 1.13287i
\(533\) −9.86635 4.75138i −0.427359 0.205805i
\(534\) 4.73399 3.98544i 0.204860 0.172467i
\(535\) −1.63991 + 0.505845i −0.0708994 + 0.0218696i
\(536\) −4.52174 + 0.704154i −0.195309 + 0.0304148i
\(537\) −1.00025 6.63622i −0.0431639 0.286374i
\(538\) −19.4799 19.9067i −0.839836 0.858241i
\(539\) −18.0882 + 24.9881i −0.779114 + 1.07631i
\(540\) −0.908761 0.0197014i −0.0391068 0.000847813i
\(541\) 18.5357 2.79381i 0.796912 0.120115i 0.262050 0.965054i \(-0.415602\pi\)
0.534862 + 0.844939i \(0.320363\pi\)
\(542\) −34.4730 + 6.13642i −1.48074 + 0.263582i
\(543\) 1.22093 + 3.95817i 0.0523953 + 0.169861i
\(544\) −27.5182 + 21.1991i −1.17983 + 0.908904i
\(545\) 0.492373 1.02242i 0.0210910 0.0437958i
\(546\) 5.52471 0.483407i 0.236436 0.0206879i
\(547\) −1.22035 2.53409i −0.0521784 0.108350i 0.873249 0.487273i \(-0.162009\pi\)
−0.925428 + 0.378924i \(0.876294\pi\)
\(548\) 4.45177 1.63675i 0.190170 0.0699186i
\(549\) −21.8656 + 1.63860i −0.933199 + 0.0699336i
\(550\) −28.4769 + 12.0587i −1.21426 + 0.514183i
\(551\) 27.0146 + 8.33290i 1.15086 + 0.354994i
\(552\) 4.25935 + 0.620726i 0.181290 + 0.0264198i
\(553\) 1.06642 + 7.82116i 0.0453487 + 0.332590i
\(554\) 0.585272 + 5.75430i 0.0248658 + 0.244477i
\(555\) 0.459575 + 0.674072i 0.0195079 + 0.0286128i
\(556\) 28.7493 + 32.3638i 1.21924 + 1.37253i
\(557\) −2.95318 5.11505i −0.125130 0.216732i 0.796654 0.604436i \(-0.206601\pi\)
−0.921784 + 0.387704i \(0.873268\pi\)
\(558\) −9.25196 36.0888i −0.391667 1.52776i
\(559\) −1.65781 7.26333i −0.0701178 0.307206i
\(560\) −1.87152 0.861575i −0.0790863 0.0364082i
\(561\) 2.40703 10.5459i 0.101625 0.445248i
\(562\) 3.50364 0.0930853i 0.147792 0.00392657i
\(563\) −1.71325 0.258230i −0.0722048 0.0108831i 0.112841 0.993613i \(-0.464005\pi\)
−0.185045 + 0.982730i \(0.559243\pi\)
\(564\) −0.110246 + 0.637366i −0.00464217 + 0.0268380i
\(565\) −0.225146 + 0.242650i −0.00947198 + 0.0102084i
\(566\) −8.03097 13.0941i −0.337567 0.550387i
\(567\) 19.8062 + 3.27124i 0.831783 + 0.137379i
\(568\) 10.9935 + 7.41682i 0.461277 + 0.311203i
\(569\) 4.44875 7.70545i 0.186501 0.323029i −0.757580 0.652742i \(-0.773619\pi\)
0.944081 + 0.329713i \(0.106952\pi\)
\(570\) −0.159774 + 0.571437i −0.00669218 + 0.0239349i
\(571\) −3.16463 3.41066i −0.132436 0.142732i 0.663352 0.748308i \(-0.269133\pi\)
−0.795788 + 0.605576i \(0.792943\pi\)
\(572\) −17.8201 27.3947i −0.745095 1.14543i
\(573\) −1.94772 1.55326i −0.0813673 0.0648883i
\(574\) 4.91842 + 9.89545i 0.205291 + 0.413028i
\(575\) −14.7697 + 11.7785i −0.615941 + 0.491196i
\(576\) 8.09410 21.2312i 0.337254 0.884632i
\(577\) −21.2859 8.35411i −0.886145 0.347786i −0.121770 0.992558i \(-0.538857\pi\)
−0.764375 + 0.644772i \(0.776952\pi\)
\(578\) 21.9892 + 19.3420i 0.914630 + 0.804520i
\(579\) −0.264169 0.673093i −0.0109785 0.0279728i
\(580\) 1.85824 0.845768i 0.0771594 0.0351186i
\(581\) 1.24035 + 0.0174715i 0.0514586 + 0.000724841i
\(582\) −0.852459 2.52360i −0.0353356 0.104606i
\(583\) −26.7850 2.00726i −1.10932 0.0831321i
\(584\) 21.4894 37.6443i 0.889237 1.55773i
\(585\) 1.69401 + 1.15496i 0.0700387 + 0.0477516i
\(586\) −19.9323 15.0471i −0.823397 0.621591i
\(587\) 28.2761 1.16708 0.583539 0.812085i \(-0.301668\pi\)
0.583539 + 0.812085i \(0.301668\pi\)
\(588\) −4.70104 3.03612i −0.193868 0.125207i
\(589\) −50.0074 −2.06052
\(590\) 2.72192 + 2.05481i 0.112060 + 0.0845952i
\(591\) −3.08900 2.10604i −0.127064 0.0866310i
\(592\) −40.5692 + 10.6121i −1.66738 + 0.436154i
\(593\) −0.991362 0.0742923i −0.0407103 0.00305082i 0.0543594 0.998521i \(-0.482688\pi\)
−0.0950697 + 0.995471i \(0.530307\pi\)
\(594\) 4.65617 + 13.7840i 0.191045 + 0.565564i
\(595\) −0.747181 + 3.07342i −0.0306314 + 0.125998i
\(596\) −10.0322 22.0419i −0.410936 0.902872i
\(597\) 2.37487 + 6.05107i 0.0971970 + 0.247654i
\(598\) −14.9900 13.1854i −0.612986 0.539190i
\(599\) −34.0410 13.3601i −1.39088 0.545879i −0.452584 0.891722i \(-0.649498\pi\)
−0.938292 + 0.345843i \(0.887593\pi\)
\(600\) −2.45884 5.04266i −0.100382 0.205866i
\(601\) −18.2701 + 14.5699i −0.745252 + 0.594319i −0.920746 0.390162i \(-0.872419\pi\)
0.175494 + 0.984480i \(0.443848\pi\)
\(602\) −3.17711 + 6.81351i −0.129489 + 0.277698i
\(603\) −3.59276 2.86513i −0.146308 0.116677i
\(604\) 25.1753 16.3764i 1.02437 0.666347i
\(605\) −1.11497 1.20166i −0.0453302 0.0488543i
\(606\) 0.0333652 0.119332i 0.00135537 0.00484753i
\(607\) 13.0059 22.5269i 0.527894 0.914339i −0.471577 0.881825i \(-0.656315\pi\)
0.999471 0.0325144i \(-0.0103515\pi\)
\(608\) −24.9072 17.6012i −1.01012 0.713821i
\(609\) 5.32169 1.55979i 0.215646 0.0632057i
\(610\) 1.11127 + 1.81188i 0.0449942 + 0.0733609i
\(611\) 2.04054 2.19918i 0.0825516 0.0889695i
\(612\) −34.3713 5.94522i −1.38938 0.240321i
\(613\) −26.5082 3.99546i −1.07065 0.161375i −0.410015 0.912079i \(-0.634477\pi\)
−0.660639 + 0.750704i \(0.729715\pi\)
\(614\) 10.6233 0.282242i 0.428723 0.0113904i
\(615\) 0.0511419 0.224067i 0.00206224 0.00903526i
\(616\) −2.76684 + 32.8614i −0.111479 + 1.32403i
\(617\) −7.57972 33.2089i −0.305148 1.33694i −0.862244 0.506493i \(-0.830942\pi\)
0.557096 0.830448i \(-0.311915\pi\)
\(618\) 0.360229 + 1.40513i 0.0144905 + 0.0565228i
\(619\) 12.0083 + 20.7989i 0.482653 + 0.835979i 0.999802 0.0199165i \(-0.00634004\pi\)
−0.517149 + 0.855895i \(0.673007\pi\)
\(620\) −2.70001 + 2.39847i −0.108435 + 0.0963247i
\(621\) 5.00664 + 7.34339i 0.200909 + 0.294680i
\(622\) 3.78934 + 37.2562i 0.151939 + 1.49384i
\(623\) 24.8757 + 14.8330i 0.996624 + 0.594272i
\(624\) 4.79111 3.49214i 0.191798 0.139798i
\(625\) 23.3474 + 7.20173i 0.933897 + 0.288069i
\(626\) 36.5980 15.4976i 1.46275 0.619408i
\(627\) 9.47073 0.709733i 0.378225 0.0283440i
\(628\) −1.89246 5.14727i −0.0755175 0.205399i
\(629\) 27.9317 + 58.0008i 1.11371 + 2.31265i
\(630\) −0.634439 1.96923i −0.0252766 0.0784559i
\(631\) −12.8293 + 26.6402i −0.510725 + 1.06053i 0.473036 + 0.881043i \(0.343158\pi\)
−0.983760 + 0.179487i \(0.942556\pi\)
\(632\) 5.29351 + 6.57173i 0.210565 + 0.261409i
\(633\) −0.881335 2.85722i −0.0350299 0.113564i
\(634\) −34.8848 + 6.20973i −1.38545 + 0.246620i
\(635\) 0.850248 0.128154i 0.0337411 0.00508565i
\(636\) 0.105615 4.87165i 0.00418789 0.193174i
\(637\) 10.5986 + 23.6932i 0.419931 + 0.938757i
\(638\) −22.8559 23.3567i −0.904872 0.924702i
\(639\) 1.98476 + 13.1680i 0.0785157 + 0.520918i
\(640\) −2.18898 + 0.244276i −0.0865272 + 0.00965586i
\(641\) 26.5549 8.19111i 1.04886 0.323529i 0.278028 0.960573i \(-0.410319\pi\)
0.770828 + 0.637044i \(0.219843\pi\)
\(642\) −3.81218 + 3.20939i −0.150455 + 0.126665i
\(643\) 22.3272 + 10.7522i 0.880499 + 0.424026i 0.818807 0.574069i \(-0.194636\pi\)
0.0616919 + 0.998095i \(0.480350\pi\)
\(644\) 3.77768 + 19.7879i 0.148861 + 0.779753i
\(645\) 0.140874 0.0678415i 0.00554692 0.00267126i
\(646\) −19.1872 + 42.7086i −0.754909 + 1.68035i
\(647\) −1.45719 19.4448i −0.0572880 0.764456i −0.949685 0.313205i \(-0.898597\pi\)
0.892397 0.451250i \(-0.149022\pi\)
\(648\) 19.9386 7.93795i 0.783261 0.311832i
\(649\) 16.0901 52.1628i 0.631591 2.04757i
\(650\) −3.19342 + 25.8237i −0.125256 + 1.01289i
\(651\) −8.18199 + 5.41117i −0.320677 + 0.212080i
\(652\) −3.84574 + 4.61361i −0.150611 + 0.180683i
\(653\) 16.4595 11.2219i 0.644108 0.439146i −0.196711 0.980462i \(-0.563026\pi\)
0.840819 + 0.541316i \(0.182074\pi\)
\(654\) 0.158891 3.29134i 0.00621312 0.128702i
\(655\) 1.26315 0.729281i 0.0493555 0.0284954i
\(656\) 9.96506 + 6.34450i 0.389070 + 0.247711i
\(657\) 42.4355 9.68562i 1.65557 0.377872i
\(658\) −2.98764 + 0.488511i −0.116470 + 0.0190441i
\(659\) −3.79879 0.867049i −0.147980 0.0337754i 0.147889 0.989004i \(-0.452752\pi\)
−0.295869 + 0.955228i \(0.595609\pi\)
\(660\) 0.477306 0.492557i 0.0185791 0.0191728i
\(661\) −1.89468 + 12.5704i −0.0736946 + 0.488932i 0.921288 + 0.388882i \(0.127138\pi\)
−0.994982 + 0.100050i \(0.968100\pi\)
\(662\) −9.06236 12.5618i −0.352219 0.488227i
\(663\) −6.67195 6.19066i −0.259117 0.240425i
\(664\) 1.14521 0.668666i 0.0444426 0.0259493i
\(665\) −2.77191 + 0.168503i −0.107490 + 0.00653427i
\(666\) −35.4098 22.7884i −1.37210 0.883033i
\(667\) −17.2884 9.98145i −0.669409 0.386483i
\(668\) 3.33968 1.83282i 0.129216 0.0709141i
\(669\) 3.26415 3.02869i 0.126199 0.117096i
\(670\) −0.0875539 + 0.436766i −0.00338250 + 0.0168737i
\(671\) 21.2120 26.5990i 0.818880 1.02684i
\(672\) −5.97977 0.184685i −0.230675 0.00712436i
\(673\) −15.0825 18.9129i −0.581388 0.729038i 0.400961 0.916095i \(-0.368676\pi\)
−0.982349 + 0.187058i \(0.940105\pi\)
\(674\) 4.20334 2.16358i 0.161907 0.0833380i
\(675\) 4.23214 10.7833i 0.162895 0.415050i
\(676\) −1.49567 + 0.0795306i −0.0575258 + 0.00305887i
\(677\) 9.04295 3.54910i 0.347549 0.136403i −0.185144 0.982711i \(-0.559275\pi\)
0.532693 + 0.846308i \(0.321180\pi\)
\(678\) −0.327270 + 0.903745i −0.0125687 + 0.0347081i
\(679\) 9.85532 7.63477i 0.378212 0.292996i
\(680\) 1.01244 + 3.22619i 0.0388252 + 0.123719i
\(681\) 0.514086 6.86000i 0.0196998 0.262876i
\(682\) 50.8111 + 27.5631i 1.94566 + 1.05544i
\(683\) −13.2415 + 19.4217i −0.506670 + 0.743149i −0.991307 0.131567i \(-0.957999\pi\)
0.484637 + 0.874715i \(0.338952\pi\)
\(684\) −3.90708 30.3755i −0.149391 1.16144i
\(685\) 0.461699i 0.0176406i
\(686\) 6.22817 25.4403i 0.237792 0.971316i
\(687\) 3.43935i 0.131219i
\(688\) 0.852298 + 7.99159i 0.0324935 + 0.304677i
\(689\) −12.7312 + 18.6733i −0.485021 + 0.711395i
\(690\) 0.199783 0.368291i 0.00760562 0.0140206i
\(691\) 1.12843 15.0579i 0.0429277 0.572830i −0.933723 0.357996i \(-0.883460\pi\)
0.976651 0.214834i \(-0.0689209\pi\)
\(692\) −5.75817 2.92839i −0.218893 0.111321i
\(693\) −26.1787 + 20.2803i −0.994447 + 0.770383i
\(694\) −30.2068 10.9387i −1.14664 0.415228i
\(695\) 3.92250 1.53947i 0.148789 0.0583954i
\(696\) 4.01110 4.36552i 0.152040 0.165475i
\(697\) 6.62564 16.8818i 0.250964 0.639446i
\(698\) 6.75085 + 13.1154i 0.255523 + 0.496423i
\(699\) −0.227010 0.284662i −0.00858631 0.0107669i
\(700\) 18.5360 18.5969i 0.700596 0.702896i
\(701\) −1.23888 + 1.55350i −0.0467918 + 0.0586751i −0.804677 0.593713i \(-0.797661\pi\)
0.757885 + 0.652388i \(0.226233\pi\)
\(702\) 12.0030 + 2.40612i 0.453024 + 0.0908132i
\(703\) −41.4332 + 38.4444i −1.56268 + 1.44996i
\(704\) 15.6061 + 31.6124i 0.588176 + 1.19144i
\(705\) 0.0545276 + 0.0314815i 0.00205363 + 0.00118566i
\(706\) 14.4386 22.4354i 0.543403 0.844367i
\(707\) 0.578851 0.0351881i 0.0217699 0.00132338i
\(708\) 9.60471 + 2.41237i 0.360967 + 0.0906626i
\(709\) −28.7151 26.6437i −1.07842 1.00062i −0.999993 0.00370477i \(-0.998821\pi\)
−0.0784240 0.996920i \(-0.524989\pi\)
\(710\) 1.04689 0.755250i 0.0392890 0.0283440i
\(711\) −1.26294 + 8.37906i −0.0473640 + 0.314239i
\(712\) 30.9617 0.151277i 1.16034 0.00566935i
\(713\) 34.4267 + 7.85767i 1.28929 + 0.294272i
\(714\) 1.48206 + 9.06397i 0.0554646 + 0.339211i
\(715\) −3.10140 + 0.707875i −0.115986 + 0.0264730i
\(716\) 17.4156 28.7091i 0.650851 1.07291i
\(717\) −8.01356 + 4.62663i −0.299272 + 0.172785i
\(718\) −9.38485 0.453057i −0.350239 0.0169079i
\(719\) 34.0296 23.2010i 1.26909 0.865252i 0.273763 0.961797i \(-0.411732\pi\)
0.995329 + 0.0965454i \(0.0307793\pi\)
\(720\) −1.66783 1.45265i −0.0621563 0.0541371i
\(721\) −5.66265 + 3.74500i −0.210888 + 0.139471i
\(722\) −14.1303 1.74739i −0.525875 0.0650310i
\(723\) −1.91796 + 6.21788i −0.0713298 + 0.231245i
\(724\) −7.98804 + 19.1237i −0.296873 + 0.710725i
\(725\) 1.94442 + 25.9465i 0.0722140 + 0.963629i
\(726\) −4.34192 1.95064i −0.161144 0.0723951i
\(727\) −7.55205 + 3.63687i −0.280090 + 0.134884i −0.568655 0.822576i \(-0.692536\pi\)
0.288565 + 0.957460i \(0.406822\pi\)
\(728\) 22.7815 + 15.8411i 0.844339 + 0.587110i
\(729\) 16.8936 + 8.13554i 0.625690 + 0.301316i
\(730\) −2.71740 3.22779i −0.100576 0.119466i
\(731\) 11.7899 3.63670i 0.436065 0.134508i
\(732\) 5.02296 + 3.58650i 0.185654 + 0.132561i
\(733\) −4.83649 32.0880i −0.178640 1.18520i −0.880909 0.473286i \(-0.843068\pi\)
0.702269 0.711911i \(-0.252170\pi\)
\(734\) −21.8104 + 21.3427i −0.805036 + 0.787772i
\(735\) −0.435294 + 0.327510i −0.0160561 + 0.0120804i
\(736\) 14.3812 + 16.0309i 0.530099 + 0.590906i
\(737\) 7.05037 1.06267i 0.259704 0.0391441i
\(738\) 2.07894 + 11.6790i 0.0765268 + 0.429910i
\(739\) 0.764853 + 2.47959i 0.0281356 + 0.0912133i 0.968552 0.248813i \(-0.0800403\pi\)
−0.940416 + 0.340026i \(0.889564\pi\)
\(740\) −0.393195 + 4.06293i −0.0144541 + 0.149356i
\(741\) 3.46721 7.19974i 0.127371 0.264489i
\(742\) 21.7070 6.99350i 0.796890 0.256739i
\(743\) 12.7510 + 26.4776i 0.467787 + 0.971370i 0.992745 + 0.120242i \(0.0383669\pi\)
−0.524957 + 0.851128i \(0.675919\pi\)
\(744\) −4.50382 + 9.47037i −0.165118 + 0.347200i
\(745\) −2.35077 + 0.176166i −0.0861255 + 0.00645421i
\(746\) 15.8006 + 37.3136i 0.578501 + 1.36615i
\(747\) 1.27249 + 0.392512i 0.0465580 + 0.0143612i
\(748\) 43.0356 32.8194i 1.57354 1.20000i
\(749\) −20.0319 11.9447i −0.731948 0.436450i
\(750\) −1.09075 + 0.110940i −0.0398284 + 0.00405096i
\(751\) 17.9660 + 26.3513i 0.655589 + 0.961573i 0.999743 + 0.0226595i \(0.00721337\pi\)
−0.344154 + 0.938913i \(0.611834\pi\)
\(752\) −2.46557 + 2.09638i −0.0899101 + 0.0764471i
\(753\) 0.170746 + 0.295740i 0.00622231 + 0.0107774i
\(754\) −26.6352 + 6.82836i −0.969997 + 0.248674i
\(755\) −0.650528 2.85015i −0.0236751 0.103727i
\(756\) −8.07310 9.35007i −0.293616 0.340059i
\(757\) −8.49472 + 37.2178i −0.308746 + 1.35270i 0.547789 + 0.836616i \(0.315469\pi\)
−0.856535 + 0.516088i \(0.827388\pi\)
\(758\) 0.778513 + 29.3025i 0.0282769 + 1.06431i
\(759\) −6.63148 0.999535i −0.240707 0.0362808i
\(760\) −2.44471 + 1.68433i −0.0886789 + 0.0610970i
\(761\) −21.5187 + 23.1917i −0.780054 + 0.840698i −0.990586 0.136889i \(-0.956290\pi\)
0.210533 + 0.977587i \(0.432480\pi\)
\(762\) 2.12836 1.30538i 0.0771024 0.0472889i
\(763\) 14.7996 4.33775i 0.535780 0.157037i
\(764\) −2.50959 12.2093i −0.0907936 0.441717i
\(765\) −1.69771 + 2.94051i −0.0613807 + 0.106315i
\(766\) −2.01508 0.563417i −0.0728080 0.0203571i