Properties

Label 196.2.p.a.103.18
Level $196$
Weight $2$
Character 196.103
Analytic conductor $1.565$
Analytic rank $0$
Dimension $312$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(3,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.p (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(312\)
Relative dimension: \(26\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 103.18
Character \(\chi\) \(=\) 196.103
Dual form 196.2.p.a.59.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.631090 - 1.26559i) q^{2} +(-0.268294 - 0.182920i) q^{3} +(-1.20345 - 1.59741i) q^{4} +(3.60103 + 0.269860i) q^{5} +(-0.400820 + 0.224112i) q^{6} +(1.91709 + 1.82340i) q^{7} +(-2.78115 + 0.514970i) q^{8} +(-1.05750 - 2.69447i) q^{9} +O(q^{10})\) \(q+(0.631090 - 1.26559i) q^{2} +(-0.268294 - 0.182920i) q^{3} +(-1.20345 - 1.59741i) q^{4} +(3.60103 + 0.269860i) q^{5} +(-0.400820 + 0.224112i) q^{6} +(1.91709 + 1.82340i) q^{7} +(-2.78115 + 0.514970i) q^{8} +(-1.05750 - 2.69447i) q^{9} +(2.61410 - 4.38713i) q^{10} +(-0.946254 - 0.371377i) q^{11} +(0.0306813 + 0.648709i) q^{12} +(-2.72262 + 2.17122i) q^{13} +(3.51753 - 1.27553i) q^{14} +(-0.916771 - 0.731100i) q^{15} +(-1.10342 + 3.84480i) q^{16} +(-1.83141 - 1.97379i) q^{17} +(-4.07748 - 0.362087i) q^{18} +(2.18150 - 3.77847i) q^{19} +(-3.90258 - 6.07706i) q^{20} +(-0.180808 - 0.839879i) q^{21} +(-1.06718 + 0.963200i) q^{22} +(-4.02678 + 4.33983i) q^{23} +(0.840365 + 0.370564i) q^{24} +(7.95041 + 1.19833i) q^{25} +(1.02966 + 4.81596i) q^{26} +(-0.425920 + 1.86608i) q^{27} +(0.605584 - 5.25674i) q^{28} +(1.26899 + 5.55980i) q^{29} +(-1.50384 + 0.698868i) q^{30} +(2.93635 + 5.08591i) q^{31} +(4.16959 + 3.82289i) q^{32} +(0.185942 + 0.272727i) q^{33} +(-3.65380 + 1.07218i) q^{34} +(6.41142 + 7.08344i) q^{35} +(-3.03151 + 4.93192i) q^{36} +(-2.33916 - 0.721535i) q^{37} +(-3.40528 - 5.14545i) q^{38} +(1.12762 - 0.0845035i) q^{39} +(-10.1540 + 1.10390i) q^{40} +(-2.01156 - 4.17704i) q^{41} +(-1.17705 - 0.301210i) q^{42} +(-1.13347 + 2.35367i) q^{43} +(0.545529 + 1.95849i) q^{44} +(-3.08096 - 9.98823i) q^{45} +(2.95120 + 7.83508i) q^{46} +(-1.76704 + 0.266339i) q^{47} +(0.999329 - 0.829700i) q^{48} +(0.350456 + 6.99122i) q^{49} +(6.53402 - 9.30572i) q^{50} +(0.130311 + 0.864558i) q^{51} +(6.74485 + 1.73618i) q^{52} +(7.54844 - 2.32839i) q^{53} +(2.09290 + 1.71670i) q^{54} +(-3.30727 - 1.59270i) q^{55} +(-6.27071 - 4.08390i) q^{56} +(-1.27644 + 0.614702i) q^{57} +(7.83729 + 1.90271i) q^{58} +(-1.04136 - 13.8960i) q^{59} +(-0.0645764 + 2.34430i) q^{60} +(-1.60668 + 5.20873i) q^{61} +(8.28979 - 0.506557i) q^{62} +(2.88576 - 7.09378i) q^{63} +(7.46961 - 2.86442i) q^{64} +(-10.3901 + 7.08388i) q^{65} +(0.462507 - 0.0632116i) q^{66} +(-12.0921 + 6.98137i) q^{67} +(-0.948936 + 5.30087i) q^{68} +(1.87420 - 0.427774i) q^{69} +(13.0109 - 3.64396i) q^{70} +(6.12274 + 1.39748i) q^{71} +(4.32864 + 6.94915i) q^{72} +(0.391304 - 2.59613i) q^{73} +(-2.38939 + 2.50507i) q^{74} +(-1.91385 - 1.77579i) q^{75} +(-8.66109 + 1.06246i) q^{76} +(-1.13688 - 2.43736i) q^{77} +(0.604683 - 1.48044i) q^{78} +(-8.77147 - 5.06421i) q^{79} +(-5.01098 + 13.5475i) q^{80} +(-5.90997 + 5.48365i) q^{81} +(-6.55591 - 0.0902778i) q^{82} +(9.43230 - 11.8277i) q^{83} +(-1.12404 + 1.29958i) q^{84} +(-6.06231 - 7.60190i) q^{85} +(2.26346 + 2.91988i) q^{86} +(0.676535 - 1.72378i) q^{87} +(2.82292 + 0.545564i) q^{88} +(-3.57183 + 1.40184i) q^{89} +(-14.5854 - 2.40423i) q^{90} +(-9.17849 - 0.801998i) q^{91} +(11.7785 + 1.20963i) q^{92} +(0.142508 - 1.90164i) q^{93} +(-0.778087 + 2.40444i) q^{94} +(8.87530 - 13.0177i) q^{95} +(-0.419395 - 1.78836i) q^{96} +13.8685i q^{97} +(9.06921 + 3.96856i) q^{98} +2.94238i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9} - 20 q^{10} + 9 q^{12} - 28 q^{13} - 51 q^{14} - 17 q^{16} - 22 q^{17} - 12 q^{18} - 14 q^{20} - 34 q^{21} - 18 q^{22} - 44 q^{24} - 48 q^{25} - 2 q^{26} - 36 q^{28} - 11 q^{30} - 13 q^{32} - 34 q^{33} - 98 q^{34} - 4 q^{36} - 58 q^{37} - 18 q^{38} + 30 q^{40} - 28 q^{41} - 26 q^{42} + 16 q^{44} - 28 q^{45} - 14 q^{46} - 24 q^{49} + 96 q^{50} - 14 q^{52} - 22 q^{53} - 17 q^{54} + 40 q^{56} + 34 q^{57} - 12 q^{58} + 98 q^{60} - 38 q^{61} - 4 q^{64} - 32 q^{65} - 176 q^{66} - 21 q^{68} + 28 q^{69} + 50 q^{70} - 120 q^{72} - 58 q^{73} - 14 q^{74} - 91 q^{76} - 18 q^{77} - 112 q^{78} + 66 q^{80} - 170 q^{81} + 114 q^{82} + 140 q^{84} - 24 q^{85} + 97 q^{86} + 127 q^{88} - 82 q^{89} + 266 q^{90} + 34 q^{92} + 226 q^{94} + 122 q^{96} + 183 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.631090 1.26559i 0.446248 0.894909i
\(3\) −0.268294 0.182920i −0.154900 0.105609i 0.483390 0.875405i \(-0.339405\pi\)
−0.638290 + 0.769796i \(0.720358\pi\)
\(4\) −1.20345 1.59741i −0.601725 0.798703i
\(5\) 3.60103 + 0.269860i 1.61043 + 0.120685i 0.849298 0.527914i \(-0.177026\pi\)
0.761130 + 0.648599i \(0.224645\pi\)
\(6\) −0.400820 + 0.224112i −0.163634 + 0.0914934i
\(7\) 1.91709 + 1.82340i 0.724591 + 0.689179i
\(8\) −2.78115 + 0.514970i −0.983286 + 0.182069i
\(9\) −1.05750 2.69447i −0.352500 0.898156i
\(10\) 2.61410 4.38713i 0.826652 1.38733i
\(11\) −0.946254 0.371377i −0.285306 0.111974i 0.218372 0.975866i \(-0.429925\pi\)
−0.503679 + 0.863891i \(0.668020\pi\)
\(12\) 0.0306813 + 0.648709i 0.00885692 + 0.187266i
\(13\) −2.72262 + 2.17122i −0.755119 + 0.602187i −0.923528 0.383530i \(-0.874708\pi\)
0.168410 + 0.985717i \(0.446137\pi\)
\(14\) 3.51753 1.27553i 0.940100 0.340899i
\(15\) −0.916771 0.731100i −0.236709 0.188769i
\(16\) −1.10342 + 3.84480i −0.275854 + 0.961200i
\(17\) −1.83141 1.97379i −0.444183 0.478715i 0.470782 0.882250i \(-0.343972\pi\)
−0.914964 + 0.403535i \(0.867781\pi\)
\(18\) −4.07748 0.362087i −0.961071 0.0853448i
\(19\) 2.18150 3.77847i 0.500471 0.866841i −0.499529 0.866297i \(-0.666494\pi\)
1.00000 0.000543834i \(-0.000173108\pi\)
\(20\) −3.90258 6.07706i −0.872643 1.35887i
\(21\) −0.180808 0.839879i −0.0394556 0.183277i
\(22\) −1.06718 + 0.963200i −0.227524 + 0.205355i
\(23\) −4.02678 + 4.33983i −0.839641 + 0.904918i −0.996575 0.0826915i \(-0.973648\pi\)
0.156934 + 0.987609i \(0.449839\pi\)
\(24\) 0.840365 + 0.370564i 0.171539 + 0.0756411i
\(25\) 7.95041 + 1.19833i 1.59008 + 0.239666i
\(26\) 1.02966 + 4.81596i 0.201932 + 0.944488i
\(27\) −0.425920 + 1.86608i −0.0819682 + 0.359126i
\(28\) 0.605584 5.25674i 0.114445 0.993430i
\(29\) 1.26899 + 5.55980i 0.235645 + 1.03243i 0.944870 + 0.327446i \(0.106188\pi\)
−0.709225 + 0.704983i \(0.750955\pi\)
\(30\) −1.50384 + 0.698868i −0.274562 + 0.127595i
\(31\) 2.93635 + 5.08591i 0.527384 + 0.913456i 0.999491 + 0.0319145i \(0.0101604\pi\)
−0.472106 + 0.881542i \(0.656506\pi\)
\(32\) 4.16959 + 3.82289i 0.737087 + 0.675798i
\(33\) 0.185942 + 0.272727i 0.0323684 + 0.0474757i
\(34\) −3.65380 + 1.07218i −0.626622 + 0.183877i
\(35\) 6.41142 + 7.08344i 1.08373 + 1.19732i
\(36\) −3.03151 + 4.93192i −0.505252 + 0.821986i
\(37\) −2.33916 0.721535i −0.384555 0.118620i 0.0964488 0.995338i \(-0.469252\pi\)
−0.481004 + 0.876718i \(0.659728\pi\)
\(38\) −3.40528 5.14545i −0.552410 0.834702i
\(39\) 1.12762 0.0845035i 0.180564 0.0135314i
\(40\) −10.1540 + 1.10390i −1.60548 + 0.174542i
\(41\) −2.01156 4.17704i −0.314152 0.652344i 0.682779 0.730625i \(-0.260771\pi\)
−0.996931 + 0.0782809i \(0.975057\pi\)
\(42\) −1.17705 0.301210i −0.181623 0.0464777i
\(43\) −1.13347 + 2.35367i −0.172852 + 0.358931i −0.969340 0.245724i \(-0.920974\pi\)
0.796488 + 0.604654i \(0.206689\pi\)
\(44\) 0.545529 + 1.95849i 0.0822416 + 0.295253i
\(45\) −3.08096 9.98823i −0.459282 1.48896i
\(46\) 2.95120 + 7.83508i 0.435131 + 1.15522i
\(47\) −1.76704 + 0.266339i −0.257750 + 0.0388495i −0.276646 0.960972i \(-0.589223\pi\)
0.0188961 + 0.999821i \(0.493985\pi\)
\(48\) 0.999329 0.829700i 0.144241 0.119757i
\(49\) 0.350456 + 6.99122i 0.0500652 + 0.998746i
\(50\) 6.53402 9.30572i 0.924050 1.31603i
\(51\) 0.130311 + 0.864558i 0.0182472 + 0.121062i
\(52\) 6.74485 + 1.73618i 0.935343 + 0.240765i
\(53\) 7.54844 2.32839i 1.03686 0.319828i 0.270824 0.962629i \(-0.412704\pi\)
0.766034 + 0.642800i \(0.222228\pi\)
\(54\) 2.09290 + 1.71670i 0.284807 + 0.233614i
\(55\) −3.30727 1.59270i −0.445952 0.214759i
\(56\) −6.27071 4.08390i −0.837959 0.545734i
\(57\) −1.27644 + 0.614702i −0.169069 + 0.0814192i
\(58\) 7.83729 + 1.90271i 1.02909 + 0.249839i
\(59\) −1.04136 13.8960i −0.135574 1.80910i −0.487551 0.873094i \(-0.662110\pi\)
0.351978 0.936008i \(-0.385509\pi\)
\(60\) −0.0645764 + 2.34430i −0.00833678 + 0.302648i
\(61\) −1.60668 + 5.20873i −0.205714 + 0.666909i 0.792647 + 0.609681i \(0.208702\pi\)
−0.998361 + 0.0572282i \(0.981774\pi\)
\(62\) 8.28979 0.506557i 1.05280 0.0643328i
\(63\) 2.88576 7.09378i 0.363572 0.893732i
\(64\) 7.46961 2.86442i 0.933701 0.358053i
\(65\) −10.3901 + 7.08388i −1.28874 + 0.878647i
\(66\) 0.462507 0.0632116i 0.0569307 0.00778081i
\(67\) −12.0921 + 6.98137i −1.47728 + 0.852910i −0.999671 0.0256611i \(-0.991831\pi\)
−0.477612 + 0.878571i \(0.658498\pi\)
\(68\) −0.948936 + 5.30087i −0.115075 + 0.642825i
\(69\) 1.87420 0.427774i 0.225627 0.0514979i
\(70\) 13.0109 3.64396i 1.55510 0.435537i
\(71\) 6.12274 + 1.39748i 0.726636 + 0.165850i 0.569810 0.821776i \(-0.307017\pi\)
0.156826 + 0.987626i \(0.449874\pi\)
\(72\) 4.32864 + 6.94915i 0.510135 + 0.818965i
\(73\) 0.391304 2.59613i 0.0457987 0.303854i −0.954190 0.299200i \(-0.903280\pi\)
0.999989 0.00465465i \(-0.00148163\pi\)
\(74\) −2.38939 + 2.50507i −0.277761 + 0.291208i
\(75\) −1.91385 1.77579i −0.220992 0.205051i
\(76\) −8.66109 + 1.06246i −0.993495 + 0.121872i
\(77\) −1.13688 2.43736i −0.129560 0.277763i
\(78\) 0.604683 1.48044i 0.0684669 0.167627i
\(79\) −8.77147 5.06421i −0.986867 0.569768i −0.0825308 0.996589i \(-0.526300\pi\)
−0.904336 + 0.426820i \(0.859634\pi\)
\(80\) −5.01098 + 13.5475i −0.560245 + 1.51465i
\(81\) −5.90997 + 5.48365i −0.656663 + 0.609295i
\(82\) −6.55591 0.0902778i −0.723979 0.00996952i
\(83\) 9.43230 11.8277i 1.03533 1.29826i 0.0819010 0.996640i \(-0.473901\pi\)
0.953428 0.301621i \(-0.0975277\pi\)
\(84\) −1.12404 + 1.29958i −0.122642 + 0.141796i
\(85\) −6.06231 7.60190i −0.657550 0.824542i
\(86\) 2.26346 + 2.91988i 0.244076 + 0.314859i
\(87\) 0.676535 1.72378i 0.0725322 0.184809i
\(88\) 2.82292 + 0.545564i 0.300925 + 0.0581573i
\(89\) −3.57183 + 1.40184i −0.378613 + 0.148595i −0.547013 0.837124i \(-0.684235\pi\)
0.168400 + 0.985719i \(0.446140\pi\)
\(90\) −14.5854 2.40423i −1.53744 0.253428i
\(91\) −9.17849 0.801998i −0.962167 0.0840722i
\(92\) 11.7785 + 1.20963i 1.22799 + 0.126112i
\(93\) 0.142508 1.90164i 0.0147774 0.197190i
\(94\) −0.778087 + 2.40444i −0.0802536 + 0.247999i
\(95\) 8.87530 13.0177i 0.910587 1.33559i
\(96\) −0.419395 1.78836i −0.0428044 0.182524i
\(97\) 13.8685i 1.40813i 0.710135 + 0.704066i \(0.248634\pi\)
−0.710135 + 0.704066i \(0.751366\pi\)
\(98\) 9.06921 + 3.96856i 0.916128 + 0.400885i
\(99\) 2.94238i 0.295721i
\(100\) −7.65370 14.1422i −0.765370 1.41422i
\(101\) 4.31836 6.33388i 0.429693 0.630244i −0.548939 0.835862i \(-0.684968\pi\)
0.978632 + 0.205618i \(0.0659205\pi\)
\(102\) 1.17642 + 0.380693i 0.116483 + 0.0376942i
\(103\) 0.300946 4.01584i 0.0296531 0.395693i −0.962554 0.271091i \(-0.912616\pi\)
0.992207 0.124602i \(-0.0397653\pi\)
\(104\) 6.45391 7.44055i 0.632857 0.729606i
\(105\) −0.424446 3.07322i −0.0414217 0.299916i
\(106\) 1.81696 11.0227i 0.176479 1.07062i
\(107\) 11.7570 4.61427i 1.13659 0.446079i 0.278938 0.960309i \(-0.410018\pi\)
0.857652 + 0.514231i \(0.171922\pi\)
\(108\) 3.49345 1.56536i 0.336158 0.150627i
\(109\) 4.59354 11.7042i 0.439981 1.12105i −0.523202 0.852209i \(-0.675263\pi\)
0.963183 0.268846i \(-0.0866421\pi\)
\(110\) −4.10289 + 3.18052i −0.391195 + 0.303250i
\(111\) 0.495599 + 0.621462i 0.0470402 + 0.0589865i
\(112\) −9.12593 + 5.35886i −0.862320 + 0.506364i
\(113\) −10.8117 + 13.5575i −1.01708 + 1.27538i −0.0562022 + 0.998419i \(0.517899\pi\)
−0.960881 + 0.276962i \(0.910672\pi\)
\(114\) −0.0275876 + 2.00339i −0.00258381 + 0.187634i
\(115\) −15.6717 + 14.5412i −1.46139 + 1.35597i
\(116\) 7.35410 8.71803i 0.682811 0.809449i
\(117\) 8.72945 + 5.03995i 0.807038 + 0.465943i
\(118\) −18.2438 7.45168i −1.67948 0.685983i
\(119\) 0.0880262 7.12332i 0.00806935 0.652994i
\(120\) 2.92617 + 1.56119i 0.267122 + 0.142517i
\(121\) −7.30609 6.77907i −0.664190 0.616279i
\(122\) 5.57817 + 5.32058i 0.505024 + 0.481703i
\(123\) −0.224375 + 1.48863i −0.0202312 + 0.134225i
\(124\) 4.59051 10.8112i 0.412240 0.970873i
\(125\) 10.7033 + 2.44296i 0.957334 + 0.218505i
\(126\) −7.15666 8.12901i −0.637566 0.724190i
\(127\) −17.2681 + 3.94134i −1.53230 + 0.349737i −0.903760 0.428041i \(-0.859204\pi\)
−0.628539 + 0.777778i \(0.716347\pi\)
\(128\) 1.08881 11.2612i 0.0962380 0.995358i
\(129\) 0.734634 0.424141i 0.0646809 0.0373435i
\(130\) 2.40819 + 17.6203i 0.211212 + 1.54540i
\(131\) 3.32882 2.26955i 0.290841 0.198292i −0.409106 0.912487i \(-0.634159\pi\)
0.699947 + 0.714195i \(0.253207\pi\)
\(132\) 0.211884 0.625238i 0.0184421 0.0544200i
\(133\) 11.0718 3.26592i 0.960045 0.283192i
\(134\) 1.20437 + 19.7095i 0.104042 + 1.70264i
\(135\) −2.03733 + 6.60485i −0.175345 + 0.568455i
\(136\) 6.10988 + 4.54629i 0.523918 + 0.389841i
\(137\) −1.44678 19.3059i −0.123606 1.64941i −0.622405 0.782696i \(-0.713844\pi\)
0.498798 0.866718i \(-0.333775\pi\)
\(138\) 0.641402 2.64194i 0.0545998 0.224897i
\(139\) 16.9559 8.16553i 1.43818 0.692591i 0.457682 0.889116i \(-0.348680\pi\)
0.980499 + 0.196525i \(0.0629657\pi\)
\(140\) 3.59930 18.7662i 0.304197 1.58603i
\(141\) 0.522806 + 0.251770i 0.0440282 + 0.0212029i
\(142\) 5.63264 6.86696i 0.472680 0.576263i
\(143\) 3.38263 1.04340i 0.282870 0.0872538i
\(144\) 11.5266 1.09276i 0.960546 0.0910634i
\(145\) 3.06929 + 20.3634i 0.254891 + 1.69109i
\(146\) −3.03870 2.13363i −0.251485 0.176580i
\(147\) 1.18481 1.93981i 0.0977212 0.159993i
\(148\) 1.66248 + 4.60492i 0.136655 + 0.378522i
\(149\) 0.0774860 0.0116791i 0.00634790 0.000956792i −0.145868 0.989304i \(-0.546597\pi\)
0.152215 + 0.988347i \(0.451359\pi\)
\(150\) −3.45524 + 1.30147i −0.282119 + 0.106264i
\(151\) −0.342471 1.11026i −0.0278699 0.0903519i 0.940569 0.339602i \(-0.110292\pi\)
−0.968439 + 0.249250i \(0.919816\pi\)
\(152\) −4.12129 + 11.6319i −0.334281 + 0.943473i
\(153\) −3.38160 + 7.02197i −0.273386 + 0.567693i
\(154\) −3.80218 0.0993600i −0.306388 0.00800666i
\(155\) 9.20139 + 19.1069i 0.739074 + 1.53470i
\(156\) −1.49202 1.69957i −0.119457 0.136075i
\(157\) 14.4473 1.08268i 1.15302 0.0864070i 0.515535 0.856869i \(-0.327593\pi\)
0.637486 + 0.770462i \(0.279974\pi\)
\(158\) −11.9448 + 7.90513i −0.950278 + 0.628899i
\(159\) −2.45111 0.756067i −0.194386 0.0599600i
\(160\) 13.9832 + 14.8915i 1.10547 + 1.17728i
\(161\) −15.6329 + 0.977437i −1.23205 + 0.0770328i
\(162\) 3.21035 + 10.9403i 0.252229 + 0.859551i
\(163\) 1.47156 + 2.15839i 0.115262 + 0.169058i 0.879534 0.475835i \(-0.157854\pi\)
−0.764273 + 0.644893i \(0.776902\pi\)
\(164\) −4.25162 + 8.24013i −0.331996 + 0.643446i
\(165\) 0.595984 + 1.03227i 0.0463973 + 0.0803625i
\(166\) −9.01645 19.4018i −0.699812 1.50587i
\(167\) 2.67430 + 11.7169i 0.206943 + 0.906678i 0.966587 + 0.256339i \(0.0825162\pi\)
−0.759644 + 0.650340i \(0.774627\pi\)
\(168\) 0.935368 + 2.24272i 0.0721652 + 0.173030i
\(169\) −0.194298 + 0.851274i −0.0149460 + 0.0654826i
\(170\) −13.4468 + 2.87494i −1.03132 + 0.220497i
\(171\) −12.4879 1.88225i −0.954975 0.143939i
\(172\) 5.12383 1.02191i 0.390688 0.0779202i
\(173\) 13.4292 14.4733i 1.02101 1.10038i 0.0260917 0.999660i \(-0.491694\pi\)
0.994914 0.100723i \(-0.0321157\pi\)
\(174\) −1.75465 1.94408i −0.133020 0.147380i
\(175\) 13.0566 + 16.7940i 0.986986 + 1.26951i
\(176\) 2.47198 3.22837i 0.186333 0.243348i
\(177\) −2.26246 + 3.91869i −0.170057 + 0.294547i
\(178\) −0.479989 + 5.40517i −0.0359767 + 0.405135i
\(179\) −12.9024 13.9054i −0.964368 1.03934i −0.999202 0.0399484i \(-0.987281\pi\)
0.0348338 0.999393i \(-0.488910\pi\)
\(180\) −12.2475 + 16.9419i −0.912873 + 1.26277i
\(181\) −1.34053 1.06903i −0.0996405 0.0794606i 0.572402 0.819973i \(-0.306012\pi\)
−0.672043 + 0.740512i \(0.734583\pi\)
\(182\) −6.80746 + 11.1101i −0.504602 + 0.823535i
\(183\) 1.38384 1.10358i 0.102297 0.0815787i
\(184\) 8.96419 14.1434i 0.660849 1.04267i
\(185\) −8.22866 3.22951i −0.604983 0.237438i
\(186\) −2.31676 1.38046i −0.169873 0.101220i
\(187\) 0.999959 + 2.54785i 0.0731242 + 0.186318i
\(188\) 2.55200 + 2.50216i 0.186124 + 0.182489i
\(189\) −4.21912 + 2.80081i −0.306896 + 0.203729i
\(190\) −10.8740 19.4478i −0.788880 1.41090i
\(191\) −4.27298 0.320216i −0.309182 0.0231700i −0.0807644 0.996733i \(-0.525736\pi\)
−0.228418 + 0.973563i \(0.573355\pi\)
\(192\) −2.52801 0.597832i −0.182443 0.0431448i
\(193\) 5.76372 + 3.92964i 0.414882 + 0.282862i 0.752718 0.658343i \(-0.228743\pi\)
−0.337836 + 0.941205i \(0.609695\pi\)
\(194\) 17.5519 + 8.75227i 1.26015 + 0.628376i
\(195\) 4.08339 0.292418
\(196\) 10.7461 8.97341i 0.767576 0.640958i
\(197\) −6.92527 −0.493405 −0.246702 0.969091i \(-0.579347\pi\)
−0.246702 + 0.969091i \(0.579347\pi\)
\(198\) 3.72386 + 1.85691i 0.264643 + 0.131965i
\(199\) −4.51093 3.07550i −0.319772 0.218017i 0.392787 0.919630i \(-0.371511\pi\)
−0.712558 + 0.701613i \(0.752464\pi\)
\(200\) −22.7284 + 0.761483i −1.60714 + 0.0538450i
\(201\) 4.52126 + 0.338822i 0.318905 + 0.0238986i
\(202\) −5.29083 9.46254i −0.372262 0.665782i
\(203\) −7.70495 + 12.9725i −0.540782 + 0.910491i
\(204\) 1.22423 1.24861i 0.0857131 0.0874204i
\(205\) −6.11645 15.5845i −0.427192 1.08847i
\(206\) −4.89249 2.91523i −0.340876 0.203114i
\(207\) 15.9519 + 6.26064i 1.10873 + 0.435145i
\(208\) −5.34371 12.8637i −0.370520 0.891935i
\(209\) −3.46749 + 2.76523i −0.239852 + 0.191275i
\(210\) −4.15731 1.40230i −0.286882 0.0967682i
\(211\) 12.6871 + 10.1176i 0.873418 + 0.696528i 0.953866 0.300231i \(-0.0970638\pi\)
−0.0804484 + 0.996759i \(0.525635\pi\)
\(212\) −12.8036 9.25583i −0.879352 0.635693i
\(213\) −1.38707 1.49490i −0.0950404 0.102429i
\(214\) 1.57992 17.7916i 0.108001 1.21621i
\(215\) −4.71680 + 8.16974i −0.321683 + 0.557171i
\(216\) 0.223574 5.40917i 0.0152123 0.368048i
\(217\) −3.64438 + 15.1043i −0.247397 + 1.02534i
\(218\) −11.9137 13.1999i −0.806901 0.894012i
\(219\) −0.579869 + 0.624950i −0.0391839 + 0.0422302i
\(220\) 1.43595 + 7.19978i 0.0968116 + 0.485409i
\(221\) 9.27177 + 1.39749i 0.623687 + 0.0940056i
\(222\) 1.09929 0.235028i 0.0737792 0.0157741i
\(223\) −5.37572 + 23.5526i −0.359985 + 1.57720i 0.393242 + 0.919435i \(0.371353\pi\)
−0.753227 + 0.657761i \(0.771504\pi\)
\(224\) 1.02284 + 14.9316i 0.0683415 + 0.997662i
\(225\) −5.17870 22.6894i −0.345247 1.51262i
\(226\) 10.3351 + 22.2393i 0.687479 + 1.47933i
\(227\) 6.40622 + 11.0959i 0.425196 + 0.736461i 0.996439 0.0843201i \(-0.0268718\pi\)
−0.571243 + 0.820781i \(0.693538\pi\)
\(228\) 2.51806 + 1.29923i 0.166763 + 0.0860438i
\(229\) −6.57722 9.64701i −0.434635 0.637492i 0.544963 0.838460i \(-0.316544\pi\)
−0.979598 + 0.200968i \(0.935591\pi\)
\(230\) 8.51298 + 29.0107i 0.561329 + 1.91291i
\(231\) −0.140822 + 0.861887i −0.00926539 + 0.0567080i
\(232\) −6.39238 14.8092i −0.419680 0.972269i
\(233\) 18.2589 + 5.63211i 1.19618 + 0.368972i 0.827970 0.560772i \(-0.189496\pi\)
0.368207 + 0.929744i \(0.379972\pi\)
\(234\) 11.8876 7.86726i 0.777116 0.514299i
\(235\) −6.43504 + 0.482240i −0.419776 + 0.0314579i
\(236\) −20.9443 + 18.3866i −1.36336 + 1.19687i
\(237\) 1.42699 + 2.96317i 0.0926928 + 0.192479i
\(238\) −8.95967 4.60687i −0.580769 0.298619i
\(239\) 3.62867 7.53502i 0.234719 0.487400i −0.750024 0.661410i \(-0.769958\pi\)
0.984744 + 0.174010i \(0.0556726\pi\)
\(240\) 3.82251 2.71809i 0.246742 0.175452i
\(241\) 1.42088 + 4.60637i 0.0915266 + 0.296722i 0.989749 0.142820i \(-0.0456170\pi\)
−0.898222 + 0.439542i \(0.855141\pi\)
\(242\) −13.1903 + 4.96834i −0.847907 + 0.319377i
\(243\) 8.26674 1.24601i 0.530311 0.0799316i
\(244\) 10.2540 3.70192i 0.656446 0.236991i
\(245\) −0.624645 + 25.2701i −0.0399071 + 1.61445i
\(246\) 1.74240 + 1.22343i 0.111091 + 0.0780028i
\(247\) 2.26448 + 15.0239i 0.144086 + 0.955945i
\(248\) −10.7855 12.6325i −0.684882 0.802168i
\(249\) −4.69415 + 1.44795i −0.297480 + 0.0917604i
\(250\) 9.84655 12.0043i 0.622751 0.759219i
\(251\) −7.21740 3.47572i −0.455558 0.219385i 0.192010 0.981393i \(-0.438500\pi\)
−0.647568 + 0.762008i \(0.724214\pi\)
\(252\) −14.8045 + 3.92728i −0.932597 + 0.247395i
\(253\) 5.42207 2.61113i 0.340883 0.164160i
\(254\) −5.90962 + 24.3418i −0.370803 + 1.52734i
\(255\) 0.235945 + 3.14846i 0.0147754 + 0.197164i
\(256\) −13.5650 8.48482i −0.847809 0.530301i
\(257\) 8.63183 27.9837i 0.538439 1.74558i −0.119831 0.992794i \(-0.538235\pi\)
0.658270 0.752782i \(-0.271289\pi\)
\(258\) −0.0731696 1.19742i −0.00455534 0.0745480i
\(259\) −3.16873 5.64846i −0.196895 0.350978i
\(260\) 23.8199 + 8.07219i 1.47724 + 0.500616i
\(261\) 13.6388 9.29875i 0.844218 0.575578i
\(262\) −0.771543 5.64523i −0.0476661 0.348763i
\(263\) 5.00223 2.88804i 0.308451 0.178084i −0.337782 0.941224i \(-0.609677\pi\)
0.646233 + 0.763140i \(0.276343\pi\)
\(264\) −0.657579 0.662740i −0.0404712 0.0407888i
\(265\) 27.8105 6.34756i 1.70838 0.389927i
\(266\) 2.85396 16.0735i 0.174988 0.985527i
\(267\) 1.21473 + 0.277253i 0.0743400 + 0.0169676i
\(268\) 25.7043 + 10.9142i 1.57014 + 0.666693i
\(269\) −2.28061 + 15.1309i −0.139051 + 0.922544i 0.805125 + 0.593105i \(0.202098\pi\)
−0.944177 + 0.329440i \(0.893140\pi\)
\(270\) 7.07331 + 6.74668i 0.430468 + 0.410590i
\(271\) −8.10601 7.52127i −0.492405 0.456885i 0.394461 0.918913i \(-0.370931\pi\)
−0.886865 + 0.462028i \(0.847122\pi\)
\(272\) 9.60964 4.86350i 0.582670 0.294893i
\(273\) 2.31583 + 1.89410i 0.140161 + 0.114636i
\(274\) −25.3464 10.3527i −1.53123 0.625431i
\(275\) −7.07807 4.08653i −0.426824 0.246427i
\(276\) −2.93884 2.47906i −0.176897 0.149222i
\(277\) −12.4187 + 11.5229i −0.746169 + 0.692344i −0.958576 0.284837i \(-0.908060\pi\)
0.212407 + 0.977181i \(0.431870\pi\)
\(278\) 0.366466 26.6124i 0.0219791 1.59611i
\(279\) 10.5986 13.2903i 0.634523 0.795667i
\(280\) −21.4789 16.3984i −1.28361 0.979993i
\(281\) 3.71664 + 4.66052i 0.221716 + 0.278023i 0.880232 0.474544i \(-0.157387\pi\)
−0.658516 + 0.752567i \(0.728815\pi\)
\(282\) 0.648576 0.502770i 0.0386221 0.0299395i
\(283\) 2.08570 5.31429i 0.123982 0.315902i −0.855384 0.517994i \(-0.826679\pi\)
0.979366 + 0.202092i \(0.0647741\pi\)
\(284\) −5.13608 11.4623i −0.304770 0.680162i
\(285\) −4.76238 + 1.86910i −0.282099 + 0.110716i
\(286\) 0.814221 4.93951i 0.0481459 0.292080i
\(287\) 3.76006 11.6756i 0.221950 0.689190i
\(288\) 5.89130 15.2776i 0.347148 0.900238i
\(289\) 0.728624 9.72281i 0.0428602 0.571930i
\(290\) 27.7088 + 8.96669i 1.62712 + 0.526542i
\(291\) 2.53682 3.72083i 0.148711 0.218119i
\(292\) −4.61800 + 2.49925i −0.270248 + 0.146257i
\(293\) 8.98210i 0.524740i −0.964967 0.262370i \(-0.915496\pi\)
0.964967 0.262370i \(-0.0845041\pi\)
\(294\) −1.70729 2.72368i −0.0995710 0.158848i
\(295\) 50.3208i 2.92979i
\(296\) 6.87712 + 0.802101i 0.399725 + 0.0466212i
\(297\) 1.09605 1.60760i 0.0635990 0.0932827i
\(298\) 0.0341196 0.105436i 0.00197650 0.00610776i
\(299\) 1.54066 20.5587i 0.0890988 1.18894i
\(300\) −0.533440 + 5.19427i −0.0307982 + 0.299891i
\(301\) −6.46462 + 2.44543i −0.372614 + 0.140952i
\(302\) −1.62127 0.267247i −0.0932936 0.0153784i
\(303\) −2.31718 + 0.909427i −0.133119 + 0.0522452i
\(304\) 12.1204 + 12.5567i 0.695150 + 0.720174i
\(305\) −7.19132 + 18.3232i −0.411774 + 1.04918i
\(306\) 6.75286 + 8.71123i 0.386035 + 0.497988i
\(307\) −16.2678 20.3992i −0.928452 1.16424i −0.986141 0.165908i \(-0.946945\pi\)
0.0576889 0.998335i \(-0.481627\pi\)
\(308\) −2.52527 + 4.74931i −0.143891 + 0.270617i
\(309\) −0.815318 + 1.02238i −0.0463818 + 0.0581610i
\(310\) 29.9884 + 0.412955i 1.70323 + 0.0234543i
\(311\) 4.69079 4.35241i 0.265990 0.246803i −0.535890 0.844288i \(-0.680024\pi\)
0.801880 + 0.597485i \(0.203833\pi\)
\(312\) −3.09257 + 0.815708i −0.175082 + 0.0461804i
\(313\) −2.06748 1.19366i −0.116861 0.0674695i 0.440430 0.897787i \(-0.354826\pi\)
−0.557291 + 0.830317i \(0.688159\pi\)
\(314\) 7.74733 18.9677i 0.437207 1.07041i
\(315\) 12.3060 24.7661i 0.693366 1.39541i
\(316\) 2.46642 + 20.1061i 0.138747 + 1.13106i
\(317\) −0.891158 0.826874i −0.0500524 0.0464419i 0.654750 0.755845i \(-0.272774\pi\)
−0.704802 + 0.709404i \(0.748964\pi\)
\(318\) −2.50374 + 2.62496i −0.140403 + 0.147200i
\(319\) 0.863999 5.73226i 0.0483747 0.320945i
\(320\) 27.6713 8.29911i 1.54687 0.463934i
\(321\) −3.99837 0.912601i −0.223167 0.0509364i
\(322\) −8.62874 + 20.4018i −0.480861 + 1.13695i
\(323\) −11.4531 + 2.61411i −0.637270 + 0.145453i
\(324\) 15.8720 + 2.84132i 0.881777 + 0.157851i
\(325\) −24.2478 + 13.9995i −1.34502 + 0.776550i
\(326\) 3.66033 0.500264i 0.202727 0.0277070i
\(327\) −3.37334 + 2.29990i −0.186546 + 0.127185i
\(328\) 7.74550 + 10.5811i 0.427673 + 0.584243i
\(329\) −3.87322 2.71142i −0.213538 0.149486i
\(330\) 1.68256 0.102815i 0.0926218 0.00565976i
\(331\) −5.78107 + 18.7418i −0.317756 + 1.03014i 0.645995 + 0.763341i \(0.276442\pi\)
−0.963752 + 0.266800i \(0.914034\pi\)
\(332\) −30.2450 0.833133i −1.65991 0.0457241i
\(333\) 0.529509 + 7.06581i 0.0290169 + 0.387204i
\(334\) 16.5165 + 4.00983i 0.903743 + 0.219408i
\(335\) −45.4279 + 21.8769i −2.48199 + 1.19526i
\(336\) 3.42867 + 0.231564i 0.187049 + 0.0126329i
\(337\) 2.62493 + 1.26410i 0.142989 + 0.0688599i 0.504010 0.863698i \(-0.331857\pi\)
−0.361021 + 0.932558i \(0.617572\pi\)
\(338\) 0.954747 + 0.783133i 0.0519314 + 0.0425968i
\(339\) 5.38066 1.65971i 0.292237 0.0901432i
\(340\) −4.84763 + 18.8325i −0.262900 + 1.02134i
\(341\) −0.889742 5.90306i −0.0481823 0.319668i
\(342\) −10.2632 + 14.6167i −0.554968 + 0.790383i
\(343\) −12.0759 + 14.0418i −0.652038 + 0.758187i
\(344\) 1.94027 7.12960i 0.104612 0.384402i
\(345\) 6.86448 1.03465i 0.369571 0.0557039i
\(346\) −9.84221 26.1299i −0.529121 1.40475i
\(347\) 7.13671 + 23.1366i 0.383119 + 1.24204i 0.917819 + 0.396999i \(0.129948\pi\)
−0.534701 + 0.845042i \(0.679576\pi\)
\(348\) −3.56776 + 0.993786i −0.191252 + 0.0532725i
\(349\) 2.52692 5.24720i 0.135263 0.280876i −0.822325 0.569018i \(-0.807323\pi\)
0.957588 + 0.288142i \(0.0930376\pi\)
\(350\) 29.4943 5.92578i 1.57654 0.316746i
\(351\) −2.89204 6.00538i −0.154365 0.320543i
\(352\) −2.52576 5.16592i −0.134624 0.275344i
\(353\) −4.78133 + 0.358311i −0.254485 + 0.0190710i −0.201362 0.979517i \(-0.564537\pi\)
−0.0531230 + 0.998588i \(0.516918\pi\)
\(354\) 3.53165 + 5.33640i 0.187705 + 0.283627i
\(355\) 21.6710 + 6.68463i 1.15018 + 0.354783i
\(356\) 6.53783 + 4.01862i 0.346504 + 0.212987i
\(357\) −1.32661 + 1.89504i −0.0702118 + 0.100296i
\(358\) −25.7412 + 7.55355i −1.36046 + 0.399218i
\(359\) −9.94963 14.5934i −0.525121 0.770212i 0.468441 0.883495i \(-0.344816\pi\)
−0.993563 + 0.113283i \(0.963863\pi\)
\(360\) 13.7123 + 26.1922i 0.722699 + 1.38045i
\(361\) −0.0179026 0.0310083i −0.000942244 0.00163201i
\(362\) −2.19895 + 1.02190i −0.115574 + 0.0537100i
\(363\) 0.720156 + 3.15521i 0.0377984 + 0.165606i
\(364\) 9.76474 + 15.6269i 0.511811 + 0.819074i
\(365\) 2.10969 9.24315i 0.110426 0.483808i
\(366\) −0.523350 2.44784i −0.0273559 0.127950i
\(367\) 25.3258 + 3.81725i 1.32200 + 0.199259i 0.771848 0.635807i \(-0.219333\pi\)
0.550150 + 0.835066i \(0.314571\pi\)
\(368\) −12.2426 20.2708i −0.638188 1.05669i
\(369\) −9.12768 + 9.83730i −0.475168 + 0.512109i
\(370\) −9.28027 + 8.37602i −0.482458 + 0.435448i
\(371\) 18.7166 + 9.30007i 0.971717 + 0.482836i
\(372\) −3.20919 + 2.06088i −0.166389 + 0.106852i
\(373\) −1.60741 + 2.78412i −0.0832285 + 0.144156i −0.904635 0.426187i \(-0.859856\pi\)
0.821406 + 0.570343i \(0.193190\pi\)
\(374\) 3.85561 + 0.342385i 0.199369 + 0.0177043i
\(375\) −2.42477 2.61328i −0.125215 0.134949i
\(376\) 4.77726 1.65070i 0.246368 0.0851286i
\(377\) −15.5265 12.3820i −0.799656 0.637704i
\(378\) 0.882042 + 7.10725i 0.0453674 + 0.365558i
\(379\) −5.33103 + 4.25136i −0.273837 + 0.218378i −0.750773 0.660560i \(-0.770319\pi\)
0.476936 + 0.878938i \(0.341747\pi\)
\(380\) −31.4755 + 1.48866i −1.61466 + 0.0763667i
\(381\) 5.35388 + 2.10124i 0.274288 + 0.107650i
\(382\) −3.10190 + 5.20577i −0.158707 + 0.266350i
\(383\) 7.21861 + 18.3927i 0.368854 + 0.939825i 0.987987 + 0.154538i \(0.0493890\pi\)
−0.619133 + 0.785286i \(0.712516\pi\)
\(384\) −2.35202 + 2.82215i −0.120026 + 0.144017i
\(385\) −3.43621 9.08379i −0.175125 0.462953i
\(386\) 8.61075 4.81457i 0.438276 0.245055i
\(387\) 7.54052 + 0.565084i 0.383306 + 0.0287248i
\(388\) 22.1536 16.6900i 1.12468 0.847308i
\(389\) −24.8143 16.9181i −1.25814 0.857783i −0.263854 0.964563i \(-0.584994\pi\)
−0.994283 + 0.106780i \(0.965946\pi\)
\(390\) 2.57699 5.16791i 0.130491 0.261688i
\(391\) 15.9406 0.806151
\(392\) −4.57494 19.2632i −0.231070 0.972937i
\(393\) −1.30825 −0.0659925
\(394\) −4.37047 + 8.76457i −0.220181 + 0.441553i
\(395\) −30.2197 20.6034i −1.52052 1.03667i
\(396\) 4.70018 3.54101i 0.236193 0.177943i
\(397\) −3.08908 0.231494i −0.155036 0.0116184i −0.00301415 0.999995i \(-0.500959\pi\)
−0.152022 + 0.988377i \(0.548578\pi\)
\(398\) −6.73914 + 3.76808i −0.337802 + 0.188877i
\(399\) −3.56789 1.14902i −0.178618 0.0575229i
\(400\) −13.3799 + 29.2455i −0.668997 + 1.46227i
\(401\) 1.43344 + 3.65234i 0.0715825 + 0.182389i 0.962187 0.272389i \(-0.0878137\pi\)
−0.890605 + 0.454778i \(0.849719\pi\)
\(402\) 3.28214 5.50825i 0.163698 0.274727i
\(403\) −19.0372 7.47154i −0.948309 0.372184i
\(404\) −15.3147 + 0.724323i −0.761935 + 0.0360364i
\(405\) −22.7618 + 18.1519i −1.13104 + 0.901976i
\(406\) 11.5554 + 17.9382i 0.573484 + 0.890256i
\(407\) 1.94548 + 1.55147i 0.0964337 + 0.0769033i
\(408\) −0.807637 2.33736i −0.0399840 0.115717i
\(409\) 10.5158 + 11.3333i 0.519973 + 0.560397i 0.937374 0.348325i \(-0.113249\pi\)
−0.417401 + 0.908722i \(0.637059\pi\)
\(410\) −23.5836 2.09427i −1.16471 0.103428i
\(411\) −3.14327 + 5.44430i −0.155046 + 0.268547i
\(412\) −6.77710 + 4.35213i −0.333884 + 0.214414i
\(413\) 23.3415 28.5386i 1.14856 1.40429i
\(414\) 17.9905 16.2375i 0.884184 0.798031i
\(415\) 37.1578 40.0465i 1.82400 1.96581i
\(416\) −19.6525 1.35518i −0.963545 0.0664431i
\(417\) −6.04280 0.910806i −0.295917 0.0446024i
\(418\) 1.31136 + 6.13355i 0.0641407 + 0.300002i
\(419\) −1.51303 + 6.62902i −0.0739164 + 0.323849i −0.998345 0.0575058i \(-0.981685\pi\)
0.924429 + 0.381355i \(0.124542\pi\)
\(420\) −4.39838 + 4.37648i −0.214619 + 0.213550i
\(421\) 5.33882 + 23.3909i 0.260198 + 1.14000i 0.921037 + 0.389475i \(0.127343\pi\)
−0.660839 + 0.750528i \(0.729799\pi\)
\(422\) 20.8115 9.67159i 1.01309 0.470806i
\(423\) 2.58629 + 4.47959i 0.125750 + 0.217805i
\(424\) −19.7943 + 10.3628i −0.961297 + 0.503263i
\(425\) −12.1952 17.8871i −0.591555 0.867651i
\(426\) −2.76731 + 0.812045i −0.134076 + 0.0393437i
\(427\) −12.5777 + 7.05598i −0.608678 + 0.341463i
\(428\) −21.5198 13.2276i −1.04020 0.639381i
\(429\) −1.09840 0.338811i −0.0530312 0.0163579i
\(430\) 7.36283 + 11.1254i 0.355067 + 0.536514i
\(431\) −2.22820 + 0.166980i −0.107329 + 0.00804316i −0.128286 0.991737i \(-0.540948\pi\)
0.0209575 + 0.999780i \(0.493329\pi\)
\(432\) −6.70472 3.69663i −0.322581 0.177854i
\(433\) 8.55861 + 17.7721i 0.411301 + 0.854075i 0.998988 + 0.0449864i \(0.0143244\pi\)
−0.587687 + 0.809089i \(0.699961\pi\)
\(434\) 16.8159 + 14.1445i 0.807190 + 0.678956i
\(435\) 2.90140 6.02482i 0.139112 0.288868i
\(436\) −24.2244 + 6.74761i −1.16014 + 0.323152i
\(437\) 7.61352 + 24.6824i 0.364204 + 1.18072i
\(438\) 0.424983 + 1.12828i 0.0203065 + 0.0539112i
\(439\) −8.54427 + 1.28784i −0.407796 + 0.0614653i −0.349737 0.936848i \(-0.613729\pi\)
−0.0580587 + 0.998313i \(0.518491\pi\)
\(440\) 10.0182 + 2.72638i 0.477599 + 0.129975i
\(441\) 18.4670 8.33752i 0.879382 0.397025i
\(442\) 7.61998 10.8523i 0.362445 0.516193i
\(443\) 5.09326 + 33.7916i 0.241988 + 1.60549i 0.698393 + 0.715714i \(0.253899\pi\)
−0.456405 + 0.889772i \(0.650863\pi\)
\(444\) 0.396298 1.53957i 0.0188075 0.0730648i
\(445\) −13.2406 + 4.08417i −0.627663 + 0.193608i
\(446\) 26.4154 + 21.6673i 1.25080 + 1.02597i
\(447\) −0.0229254 0.0110403i −0.00108433 0.000522187i
\(448\) 19.5429 + 8.12871i 0.923314 + 0.384045i
\(449\) −6.81365 + 3.28128i −0.321556 + 0.154853i −0.587697 0.809081i \(-0.699965\pi\)
0.266142 + 0.963934i \(0.414251\pi\)
\(450\) −31.9837 7.76491i −1.50773 0.366041i
\(451\) 0.352185 + 4.69959i 0.0165838 + 0.221295i
\(452\) 34.6682 + 0.954976i 1.63066 + 0.0449183i
\(453\) −0.111206 + 0.360521i −0.00522492 + 0.0169388i
\(454\) 18.0858 1.10515i 0.848809 0.0518674i
\(455\) −32.8355 5.36492i −1.53935 0.251511i
\(456\) 3.23342 2.36691i 0.151419 0.110841i
\(457\) 6.23225 4.24908i 0.291533 0.198764i −0.408718 0.912661i \(-0.634024\pi\)
0.700251 + 0.713897i \(0.253072\pi\)
\(458\) −16.3600 + 2.23595i −0.764453 + 0.104479i
\(459\) 4.46328 2.57688i 0.208328 0.120278i
\(460\) 42.0883 + 7.53443i 1.96237 + 0.351295i
\(461\) 1.91325 0.436686i 0.0891088 0.0203385i −0.177734 0.984079i \(-0.556877\pi\)
0.266843 + 0.963740i \(0.414020\pi\)
\(462\) 1.00193 + 0.722152i 0.0466139 + 0.0335975i
\(463\) 8.24963 + 1.88292i 0.383393 + 0.0875069i 0.409873 0.912142i \(-0.365573\pi\)
−0.0264806 + 0.999649i \(0.508430\pi\)
\(464\) −22.7765 1.25576i −1.05737 0.0582974i
\(465\) 1.02635 6.80938i 0.0475958 0.315777i
\(466\) 18.6509 19.5539i 0.863988 0.905817i
\(467\) −3.54961 3.29356i −0.164256 0.152408i 0.593762 0.804641i \(-0.297642\pi\)
−0.758019 + 0.652233i \(0.773832\pi\)
\(468\) −2.45461 20.0098i −0.113464 0.924953i
\(469\) −35.9114 8.66475i −1.65823 0.400101i
\(470\) −3.45077 + 8.44848i −0.159172 + 0.389699i
\(471\) −4.07417 2.35222i −0.187728 0.108385i
\(472\) 10.0522 + 38.1106i 0.462690 + 1.75418i
\(473\) 1.94664 1.80622i 0.0895068 0.0830502i
\(474\) 4.65073 + 0.0640426i 0.213615 + 0.00294158i
\(475\) 21.8717 27.4262i 1.00354 1.25840i
\(476\) −11.4848 + 8.43195i −0.526404 + 0.386478i
\(477\) −14.2562 17.8768i −0.652749 0.818521i
\(478\) −7.24625 9.34770i −0.331436 0.427554i
\(479\) −2.42139 + 6.16959i −0.110636 + 0.281896i −0.975459 0.220181i \(-0.929335\pi\)
0.864823 + 0.502077i \(0.167430\pi\)
\(480\) −1.02765 6.55311i −0.0469055 0.299107i
\(481\) 7.93525 3.11435i 0.361816 0.142002i
\(482\) 6.72648 + 1.10878i 0.306383 + 0.0505037i
\(483\) 4.37301 + 2.59733i 0.198979 + 0.118183i
\(484\) −2.03640 + 19.8291i −0.0925637 + 0.901321i
\(485\) −3.74254 + 49.9408i −0.169940 + 2.26769i
\(486\) 3.64012 11.2487i 0.165119 0.510250i
\(487\) −19.6967 + 28.8897i −0.892542 + 1.30912i 0.0579341 + 0.998320i \(0.481549\pi\)
−0.950476 + 0.310798i \(0.899404\pi\)
\(488\) 1.78608 15.3137i 0.0808520 0.693216i
\(489\) 0.848261i 0.0383597i
\(490\) 31.5875 + 16.7383i 1.42698 + 0.756159i
\(491\) 2.92120i 0.131832i 0.997825 + 0.0659160i \(0.0209969\pi\)
−0.997825 + 0.0659160i \(0.979003\pi\)
\(492\) 2.64797 1.43307i 0.119380 0.0646079i
\(493\) 8.64985 12.6870i 0.389570 0.571394i
\(494\) 20.4432 + 6.61550i 0.919782 + 0.297645i
\(495\) −0.794030 + 10.5956i −0.0356890 + 0.476237i
\(496\) −22.7943 + 5.67781i −1.02349 + 0.254941i
\(497\) 9.18969 + 13.8433i 0.412214 + 0.620955i
\(498\) −1.12991 + 6.85467i −0.0506326 + 0.307165i
\(499\) −5.99362 + 2.35232i −0.268311 + 0.105304i −0.495683 0.868504i \(-0.665082\pi\)
0.227371 + 0.973808i \(0.426987\pi\)
\(500\) −8.97850 20.0375i −0.401531 0.896106i
\(501\) 1.42575 3.63275i 0.0636977 0.162299i
\(502\) −8.95367 + 6.94080i −0.399622 + 0.309783i
\(503\) 9.35419 + 11.7298i 0.417083 + 0.523005i 0.945343 0.326077i \(-0.105727\pi\)
−0.528261 + 0.849082i \(0.677156\pi\)
\(504\) −4.37265 + 21.2150i −0.194773 + 0.944989i
\(505\) 17.2598 21.6431i 0.768051 0.963105i
\(506\) 0.117186 8.50999i 0.00520957 0.378315i
\(507\) 0.207844 0.192851i 0.00923066 0.00856480i
\(508\) 27.0773 + 22.8410i 1.20136 + 1.01341i
\(509\) 10.8110 + 6.24176i 0.479191 + 0.276661i 0.720079 0.693892i \(-0.244105\pi\)
−0.240888 + 0.970553i \(0.577439\pi\)
\(510\) 4.13357 + 1.68835i 0.183038 + 0.0747615i
\(511\) 5.48394 4.26352i 0.242595 0.188607i
\(512\) −19.2990 + 11.8130i −0.852905 + 0.522067i
\(513\) 6.12177 + 5.68017i 0.270283 + 0.250786i
\(514\) −29.9685 28.5846i −1.32185 1.26081i
\(515\) 2.16743 14.3799i 0.0955082 0.633655i
\(516\) −1.56162 0.663076i −0.0687465 0.0291903i
\(517\) 1.77098 + 0.404216i 0.0778878 + 0.0177774i
\(518\) −9.14840 + 0.445636i −0.401958 + 0.0195801i
\(519\) −6.25043 + 1.42662i −0.274364 + 0.0626217i
\(520\) 25.2486 25.0520i 1.10722 1.09860i
\(521\) 4.67395 2.69851i 0.204769 0.118224i −0.394109 0.919064i \(-0.628947\pi\)
0.598878 + 0.800840i \(0.295613\pi\)
\(522\) −3.16114 23.1295i −0.138359 1.01235i
\(523\) 15.4331 10.5221i 0.674843 0.460101i −0.176783 0.984250i \(-0.556569\pi\)
0.851626 + 0.524149i \(0.175617\pi\)
\(524\) −7.63147 2.58619i −0.333383 0.112978i
\(525\) −0.431046 6.89405i −0.0188124 0.300881i
\(526\) −0.498223 8.15340i −0.0217236 0.355505i
\(527\) 4.66086 15.1101i 0.203030 0.658208i
\(528\) −1.25375 + 0.413979i −0.0545625 + 0.0180161i
\(529\) −0.900428 12.0154i −0.0391490 0.522408i
\(530\) 9.51749 39.2026i 0.413413 1.70285i
\(531\) −36.3411 + 17.5009i −1.57707 + 0.759476i
\(532\) −18.5413 13.7558i −0.803869 0.596388i
\(533\) 14.5460 + 7.00496i 0.630055 + 0.303419i
\(534\) 1.11749 1.36238i 0.0483586 0.0589558i
\(535\) 43.5824 13.4434i 1.88423 0.581208i
\(536\) 30.0347 25.6433i 1.29730 1.10762i
\(537\) 0.918047 + 6.09084i 0.0396166 + 0.262839i
\(538\) 17.7102 + 12.4353i 0.763542 + 0.536122i
\(539\) 2.26476 6.74562i 0.0975501 0.290555i
\(540\) 13.0024 4.69417i 0.559536 0.202005i
\(541\) 31.6489 4.77031i 1.36069 0.205091i 0.572189 0.820122i \(-0.306094\pi\)
0.788504 + 0.615030i \(0.210856\pi\)
\(542\) −14.6345 + 5.51230i −0.628605 + 0.236774i
\(543\) 0.164108 + 0.532024i 0.00704253 + 0.0228313i
\(544\) −0.0906552 15.2312i −0.00388681 0.653032i
\(545\) 19.6999 40.9073i 0.843852 1.75228i
\(546\) 3.85866 1.73555i 0.165135 0.0742748i
\(547\) −5.08964 10.5687i −0.217617 0.451887i 0.763369 0.645962i \(-0.223544\pi\)
−0.980987 + 0.194075i \(0.937829\pi\)
\(548\) −29.0982 + 25.5448i −1.24302 + 1.09122i
\(549\) 15.7338 1.17909i 0.671503 0.0503222i
\(550\) −9.63878 + 6.37899i −0.410999 + 0.272001i
\(551\) 23.7759 + 7.33388i 1.01289 + 0.312434i
\(552\) −4.99215 + 2.15486i −0.212480 + 0.0917170i
\(553\) −7.58162 25.7024i −0.322403 1.09298i
\(554\) 6.74596 + 22.9890i 0.286608 + 0.976711i
\(555\) 1.61696 + 2.37164i 0.0686360 + 0.100671i
\(556\) −33.4492 17.2587i −1.41856 0.731930i
\(557\) −2.51911 4.36323i −0.106738 0.184876i 0.807709 0.589582i \(-0.200707\pi\)
−0.914447 + 0.404706i \(0.867374\pi\)
\(558\) −10.1314 21.8009i −0.428895 0.922906i
\(559\) −2.02432 8.86914i −0.0856197 0.375124i
\(560\) −34.3089 + 16.8347i −1.44981 + 0.711394i
\(561\) 0.197770 0.866486i 0.00834985 0.0365831i
\(562\) 8.24386 1.76255i 0.347746 0.0743485i
\(563\) −11.0879 1.67123i −0.467298 0.0704338i −0.0888271 0.996047i \(-0.528312\pi\)
−0.378471 + 0.925613i \(0.623550\pi\)
\(564\) −0.226992 1.13813i −0.00955808 0.0479238i
\(565\) −42.5920 + 45.9032i −1.79186 + 1.93116i
\(566\) −5.40946 5.99345i −0.227376 0.251923i
\(567\) −21.3288 0.263570i −0.895726 0.0110689i
\(568\) −17.7479 0.733563i −0.744687 0.0307796i
\(569\) −13.7771 + 23.8626i −0.577566 + 1.00037i 0.418191 + 0.908359i \(0.362664\pi\)
−0.995758 + 0.0920151i \(0.970669\pi\)
\(570\) −0.639977 + 7.20680i −0.0268057 + 0.301860i
\(571\) 21.9017 + 23.6044i 0.916557 + 0.987814i 0.999962 0.00870195i \(-0.00276995\pi\)
−0.0834049 + 0.996516i \(0.526579\pi\)
\(572\) −5.73757 4.14775i −0.239900 0.173426i
\(573\) 1.08784 + 0.867525i 0.0454452 + 0.0362414i
\(574\) −12.4036 12.1271i −0.517718 0.506175i
\(575\) −37.2151 + 29.6780i −1.55198 + 1.23766i
\(576\) −15.6172 17.0975i −0.650717 0.712396i
\(577\) 10.2678 + 4.02982i 0.427454 + 0.167764i 0.569308 0.822124i \(-0.307211\pi\)
−0.141854 + 0.989888i \(0.545306\pi\)
\(578\) −11.8453 7.05811i −0.492699 0.293579i
\(579\) −0.827563 2.10860i −0.0343924 0.0876303i
\(580\) 28.8349 29.4093i 1.19731 1.22115i
\(581\) 39.6492 5.47599i 1.64492 0.227182i
\(582\) −3.10810 5.55876i −0.128835 0.230418i
\(583\) −8.00745 0.600076i −0.331635 0.0248526i
\(584\) 0.248655 + 7.42175i 0.0102894 + 0.307114i
\(585\) 30.0749 + 20.5047i 1.24344 + 0.847765i
\(586\) −11.3677 5.66852i −0.469595 0.234164i
\(587\) 27.4194 1.13172 0.565859 0.824502i \(-0.308544\pi\)
0.565859 + 0.824502i \(0.308544\pi\)
\(588\) −4.52452 + 0.441844i −0.186588 + 0.0182213i
\(589\) 25.6226 1.05576
\(590\) −63.6857 31.7570i −2.62190 1.30741i
\(591\) 1.85801 + 1.26677i 0.0764282 + 0.0521079i
\(592\) 5.35522 8.19744i 0.220098 0.336913i
\(593\) −40.4479 3.03115i −1.66099 0.124474i −0.789132 0.614224i \(-0.789469\pi\)
−0.871863 + 0.489750i \(0.837088\pi\)
\(594\) −1.34287 2.40169i −0.0550986 0.0985426i
\(595\) 2.23928 25.6275i 0.0918016 1.05063i
\(596\) −0.111907 0.109721i −0.00458388 0.00449436i
\(597\) 0.647686 + 1.65028i 0.0265080 + 0.0675414i
\(598\) −25.0467 14.9243i −1.02423 0.610298i
\(599\) 26.5372 + 10.4151i 1.08428 + 0.425548i 0.839126 0.543937i \(-0.183067\pi\)
0.245152 + 0.969485i \(0.421162\pi\)
\(600\) 6.23718 + 3.95317i 0.254632 + 0.161388i
\(601\) −0.596081 + 0.475359i −0.0243146 + 0.0193903i −0.635572 0.772042i \(-0.719236\pi\)
0.611257 + 0.791432i \(0.290664\pi\)
\(602\) −0.984840 + 9.72486i −0.0401391 + 0.396356i
\(603\) 31.5985 + 25.1989i 1.28679 + 1.02618i
\(604\) −1.36139 + 1.88321i −0.0553943 + 0.0766268i
\(605\) −24.4800 26.3832i −0.995255 1.07263i
\(606\) −0.311387 + 3.50654i −0.0126492 + 0.142443i
\(607\) −18.1533 + 31.4424i −0.736819 + 1.27621i 0.217101 + 0.976149i \(0.430340\pi\)
−0.953921 + 0.300059i \(0.902994\pi\)
\(608\) 23.5407 7.41506i 0.954700 0.300720i
\(609\) 4.44012 2.07106i 0.179923 0.0839234i
\(610\) 18.6513 + 20.6649i 0.755170 + 0.836696i
\(611\) 4.23271 4.56177i 0.171237 0.184550i
\(612\) 15.2865 3.04880i 0.617921 0.123240i
\(613\) 9.75180 + 1.46985i 0.393871 + 0.0593666i 0.342992 0.939338i \(-0.388560\pi\)
0.0508792 + 0.998705i \(0.483798\pi\)
\(614\) −36.0835 + 7.71469i −1.45621 + 0.311340i
\(615\) −1.20970 + 5.30004i −0.0487798 + 0.213718i
\(616\) 4.41702 + 6.19320i 0.177967 + 0.249531i
\(617\) −4.13381 18.1114i −0.166421 0.729138i −0.987408 0.158192i \(-0.949434\pi\)
0.820987 0.570946i \(-0.193424\pi\)
\(618\) 0.779373 + 1.67707i 0.0313510 + 0.0674618i
\(619\) 10.7176 + 18.5634i 0.430776 + 0.746127i 0.996940 0.0781661i \(-0.0249064\pi\)
−0.566164 + 0.824293i \(0.691573\pi\)
\(620\) 19.4480 37.6926i 0.781052 1.51377i
\(621\) −6.38337 9.36269i −0.256156 0.375712i
\(622\) −2.54807 8.68339i −0.102168 0.348172i
\(623\) −9.40363 3.82541i −0.376748 0.153262i
\(624\) −0.919335 + 4.42872i −0.0368028 + 0.177291i
\(625\) −0.531369 0.163906i −0.0212548 0.00655623i
\(626\) −2.81545 + 1.86328i −0.112528 + 0.0744715i
\(627\) 1.43612 0.107623i 0.0573533 0.00429803i
\(628\) −19.1161 21.7753i −0.762815 0.868929i
\(629\) 2.85980 + 5.93844i 0.114028 + 0.236781i
\(630\) −23.5776 31.2041i −0.939355 1.24320i
\(631\) 6.18007 12.8330i 0.246025 0.510876i −0.740988 0.671518i \(-0.765642\pi\)
0.987013 + 0.160643i \(0.0513567\pi\)
\(632\) 27.0027 + 9.56729i 1.07411 + 0.380566i
\(633\) −1.55316 5.03523i −0.0617327 0.200132i
\(634\) −1.60889 + 0.606011i −0.0638971 + 0.0240678i
\(635\) −63.2466 + 9.53289i −2.50986 + 0.378301i
\(636\) 1.74204 + 4.82531i 0.0690764 + 0.191336i
\(637\) −16.1336 18.2735i −0.639237 0.724023i
\(638\) −6.70944 4.71104i −0.265629 0.186512i
\(639\) −2.70935 17.9754i −0.107180 0.711095i
\(640\) 6.95977 40.2580i 0.275109 1.59134i
\(641\) −8.44069 + 2.60361i −0.333387 + 0.102836i −0.456929 0.889503i \(-0.651051\pi\)
0.123542 + 0.992339i \(0.460575\pi\)
\(642\) −3.67831 + 4.48437i −0.145171 + 0.176984i
\(643\) 9.90250 + 4.76879i 0.390516 + 0.188063i 0.618830 0.785525i \(-0.287607\pi\)
−0.228314 + 0.973588i \(0.573321\pi\)
\(644\) 20.3748 + 23.7958i 0.802880 + 0.937687i
\(645\) 2.75989 1.32910i 0.108671 0.0523331i
\(646\) −3.91958 + 16.1448i −0.154214 + 0.635207i
\(647\) −0.958400 12.7890i −0.0376786 0.502786i −0.983835 0.179076i \(-0.942689\pi\)
0.946157 0.323709i \(-0.104930\pi\)
\(648\) 13.6126 18.2943i 0.534754 0.718669i
\(649\) −4.17526 + 13.5359i −0.163893 + 0.531329i
\(650\) 2.41508 + 39.5227i 0.0947272 + 1.55021i
\(651\) 3.74063 3.38575i 0.146607 0.132698i
\(652\) 1.67687 4.94820i 0.0656713 0.193787i
\(653\) −14.1241 + 9.62967i −0.552720 + 0.376838i −0.807234 0.590231i \(-0.799037\pi\)
0.254515 + 0.967069i \(0.418084\pi\)
\(654\) 0.781860 + 5.72072i 0.0305732 + 0.223698i
\(655\) 12.5996 7.27441i 0.492309 0.284235i
\(656\) 18.2795 3.12502i 0.713693 0.122012i
\(657\) −7.40901 + 1.69106i −0.289053 + 0.0659744i
\(658\) −5.87591 + 3.19077i −0.229067 + 0.124389i
\(659\) 9.76310 + 2.22836i 0.380317 + 0.0868048i 0.408405 0.912801i \(-0.366085\pi\)
−0.0280888 + 0.999605i \(0.508942\pi\)
\(660\) 0.931725 2.19432i 0.0362674 0.0854138i
\(661\) −1.89879 + 12.5976i −0.0738544 + 0.489992i 0.921073 + 0.389391i \(0.127315\pi\)
−0.994927 + 0.100601i \(0.967924\pi\)
\(662\) 20.0711 + 19.1442i 0.780085 + 0.744062i
\(663\) −2.23193 2.07093i −0.0866810 0.0804282i
\(664\) −20.1417 + 37.7520i −0.781650 + 1.46506i
\(665\) 40.7511 8.77285i 1.58026 0.340197i
\(666\) 9.27661 + 3.78902i 0.359461 + 0.146822i
\(667\) −29.2385 16.8809i −1.13212 0.653630i
\(668\) 15.4982 18.3726i 0.599644 0.710857i
\(669\) 5.75050 5.33568i 0.222327 0.206289i
\(670\) −0.981827 + 71.2995i −0.0379313 + 2.75454i
\(671\) 3.45473 4.33209i 0.133368 0.167239i
\(672\) 2.45687 4.19317i 0.0947758 0.161755i
\(673\) 26.4174 + 33.1264i 1.01832 + 1.27693i 0.960405 + 0.278608i \(0.0898729\pi\)
0.0579121 + 0.998322i \(0.481556\pi\)
\(674\) 3.25641 2.52433i 0.125432 0.0972337i
\(675\) −5.62241 + 14.3257i −0.216407 + 0.551395i
\(676\) 1.59366 0.714093i 0.0612946 0.0274651i
\(677\) 2.91245 1.14305i 0.111934 0.0439310i −0.308713 0.951155i \(-0.599898\pi\)
0.420647 + 0.907224i \(0.361803\pi\)
\(678\) 1.29516 7.85715i 0.0497403 0.301752i
\(679\) −25.2877 + 26.5871i −0.970455 + 1.02032i
\(680\) 20.7750 + 18.0201i 0.796684 + 0.691040i
\(681\) 0.310909 4.14879i 0.0119141 0.158982i
\(682\) −8.03237 2.59931i −0.307575 0.0995327i
\(683\) −2.66755 + 3.91258i −0.102071 + 0.149711i −0.873876 0.486148i \(-0.838402\pi\)
0.771805 + 0.635859i \(0.219354\pi\)
\(684\) 12.0219 + 22.2135i 0.459668 + 0.849353i
\(685\) 69.9114i 2.67118i
\(686\) 10.1502 + 24.1448i 0.387538 + 0.921854i
\(687\) 3.79134i 0.144649i
\(688\) −7.79869 6.95502i −0.297322 0.265158i
\(689\) −15.4961 + 22.7286i −0.590354 + 0.865891i
\(690\) 3.02266 9.34060i 0.115071 0.355591i
\(691\) −0.234552 + 3.12988i −0.00892279 + 0.119066i −0.999887 0.0150636i \(-0.995205\pi\)
0.990964 + 0.134130i \(0.0428240\pi\)
\(692\) −39.2811 4.03409i −1.49324 0.153353i
\(693\) −5.36513 + 5.64081i −0.203804 + 0.214277i
\(694\) 33.7855 + 5.56914i 1.28248 + 0.211402i
\(695\) 63.2622 24.8286i 2.39967 0.941801i
\(696\) −0.993850 + 5.14250i −0.0376718 + 0.194926i
\(697\) −4.56062 + 11.6203i −0.172746 + 0.440149i
\(698\) −5.04611 6.50951i −0.190998 0.246389i
\(699\) −3.86852 4.85097i −0.146321 0.183480i
\(700\) 11.1139 41.0675i 0.420068 1.55221i
\(701\) −5.63937 + 7.07155i −0.212996 + 0.267089i −0.876840 0.480783i \(-0.840353\pi\)
0.663844 + 0.747871i \(0.268924\pi\)
\(702\) −9.42550 0.129793i −0.355742 0.00489874i
\(703\) −7.82918 + 7.26442i −0.295283 + 0.273983i
\(704\) −8.13193 0.0635744i −0.306484 0.00239605i
\(705\) 1.81469 + 1.04771i 0.0683454 + 0.0394592i
\(706\) −2.56398 + 6.27734i −0.0964965 + 0.236251i
\(707\) 19.8279 4.26852i 0.745703 0.160534i
\(708\) 8.98250 1.10189i 0.337583 0.0414114i
\(709\) −20.0573 18.6105i −0.753269 0.698932i 0.206897 0.978363i \(-0.433664\pi\)
−0.960166 + 0.279431i \(0.909854\pi\)
\(710\) 22.1364 23.2081i 0.830764 0.870984i
\(711\) −4.36952 + 28.9899i −0.163870 + 1.08720i
\(712\) 9.21190 5.73812i 0.345231 0.215045i
\(713\) −33.8960 7.73654i −1.26942 0.289736i
\(714\) 1.56114 + 2.87490i 0.0584242 + 0.107590i
\(715\) 12.4625 2.84449i 0.466071 0.106378i
\(716\) −6.68529 + 37.3448i −0.249841 + 1.39564i
\(717\) −2.35186 + 1.35784i −0.0878317 + 0.0507096i
\(718\) −24.7484 + 3.38241i −0.923604 + 0.126230i
\(719\) 18.7536 12.7860i 0.699393 0.476838i −0.160682 0.987006i \(-0.551369\pi\)
0.860075 + 0.510168i \(0.170417\pi\)
\(720\) 41.8023 0.824509i 1.55788 0.0307277i
\(721\) 7.89941 7.14998i 0.294189 0.266279i
\(722\) −0.0505420 + 0.00308843i −0.00188098 + 0.000114939i
\(723\) 0.461383 1.49577i 0.0171590 0.0556281i
\(724\) −0.0944252 + 3.42789i −0.00350929 + 0.127397i
\(725\) 3.42649 + 45.7234i 0.127257 + 1.69812i
\(726\) 4.44770 + 1.07980i 0.165070 + 0.0400751i
\(727\) −41.6374 + 20.0515i −1.54425 + 0.743670i −0.995716 0.0924607i \(-0.970527\pi\)
−0.548530 + 0.836131i \(0.684812\pi\)
\(728\) 25.9398 2.49617i 0.961392 0.0925142i
\(729\) 19.3454 + 9.31625i 0.716496 + 0.345046i
\(730\) −10.3667 8.50327i −0.383687 0.314720i
\(731\) 6.72149 2.07331i 0.248603 0.0766840i
\(732\) −3.42824 0.882458i −0.126712 0.0326166i
\(733\) −0.210337 1.39549i −0.00776897 0.0515438i 0.984610 0.174764i \(-0.0559161\pi\)
−0.992379 + 0.123220i \(0.960678\pi\)
\(734\) 20.8140 29.6432i 0.768258 1.09415i
\(735\) 4.79000 6.66557i 0.176682 0.245863i
\(736\) −33.3807 + 2.70142i −1.23043 + 0.0995758i
\(737\) 14.0349 2.11542i 0.516982 0.0779225i
\(738\) 6.68963 + 17.7602i 0.246249 + 0.653760i
\(739\) −15.0672 48.8466i −0.554256 1.79685i −0.602626 0.798024i \(-0.705879\pi\)
0.0483705 0.998829i \(-0.484597\pi\)
\(740\) 4.74394 + 17.0311i 0.174391 + 0.626074i
\(741\) 2.14061 4.44503i 0.0786374 0.163292i
\(742\) 23.5820 17.8184i 0.865721 0.654134i
\(743\) −15.8802 32.9756i −0.582589 1.20976i −0.959027 0.283316i \(-0.908565\pi\)
0.376438 0.926442i \(-0.377149\pi\)
\(744\) 0.582950 + 5.36212i 0.0213720 + 0.196585i
\(745\) 0.282181 0.0211465i 0.0103383 0.000774749i
\(746\) 2.50914 + 3.79135i 0.0918660 + 0.138811i
\(747\) −41.8441 12.9072i −1.53100 0.472250i
\(748\) 2.86656 4.66356i 0.104812 0.170517i
\(749\) 30.9528 + 12.5916i 1.13099 + 0.460089i
\(750\) −4.83760 + 1.41956i −0.176644 + 0.0518348i
\(751\) −1.29477 1.89908i −0.0472470 0.0692986i 0.801888 0.597474i \(-0.203829\pi\)
−0.849135 + 0.528175i \(0.822876\pi\)
\(752\) 0.925763 7.08781i 0.0337591 0.258466i
\(753\) 1.30061 + 2.25272i 0.0473968 + 0.0820936i
\(754\) −25.4692 + 11.8361i −0.927532 + 0.431045i
\(755\) −0.933631 4.09050i −0.0339783 0.148869i
\(756\) 9.55153 + 3.36901i 0.347386 + 0.122530i
\(757\) −4.78122 + 20.9479i −0.173776 + 0.761365i 0.810645 + 0.585538i \(0.199117\pi\)
−0.984421 + 0.175826i \(0.943740\pi\)
\(758\) 2.01612 + 9.42991i 0.0732289 + 0.342510i
\(759\) −1.93234 0.291253i −0.0701393 0.0105718i
\(760\) −17.9798 + 40.7747i −0.652198 + 1.47905i
\(761\) 21.7654 23.4576i 0.788997 0.850336i −0.202659 0.979249i \(-0.564958\pi\)
0.991656 + 0.128913i \(0.0411488\pi\)
\(762\) 6.03810 5.44976i 0.218737 0.197424i
\(763\) 30.1475 14.0620i 1.09141 0.509080i
\(764\) 4.63081 + 7.21105i 0.167537 + 0.260887i
\(765\) −14.0722 + 24.3737i −0.508781 + 0.881234i
\(766\) 27.8333 + 2.47165i 1.00566 + 0.0893042i
\(767\) 33.0064 +