Properties

Label 196.2.p.a.103.13
Level $196$
Weight $2$
Character 196.103
Analytic conductor $1.565$
Analytic rank $0$
Dimension $312$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(3,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.p (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(312\)
Relative dimension: \(26\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 103.13
Character \(\chi\) \(=\) 196.103
Dual form 196.2.p.a.59.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.109851 + 1.40994i) q^{2} +(-1.32314 - 0.902103i) q^{3} +(-1.97587 - 0.309768i) q^{4} +(0.323554 + 0.0242470i) q^{5} +(1.41726 - 1.76645i) q^{6} +(-1.28165 - 2.31460i) q^{7} +(0.653806 - 2.75182i) q^{8} +(-0.159109 - 0.405403i) q^{9} +O(q^{10})\) \(q+(-0.109851 + 1.40994i) q^{2} +(-1.32314 - 0.902103i) q^{3} +(-1.97587 - 0.309768i) q^{4} +(0.323554 + 0.0242470i) q^{5} +(1.41726 - 1.76645i) q^{6} +(-1.28165 - 2.31460i) q^{7} +(0.653806 - 2.75182i) q^{8} +(-0.159109 - 0.405403i) q^{9} +(-0.0697296 + 0.453528i) q^{10} +(-2.61131 - 1.02486i) q^{11} +(2.33491 + 2.19230i) q^{12} +(2.01211 - 1.60461i) q^{13} +(3.40424 - 1.55279i) q^{14} +(-0.406234 - 0.323961i) q^{15} +(3.80809 + 1.22412i) q^{16} +(-0.295026 - 0.317962i) q^{17} +(0.589072 - 0.179800i) q^{18} +(3.19321 - 5.53080i) q^{19} +(-0.631787 - 0.148135i) q^{20} +(-0.392197 + 4.21872i) q^{21} +(1.73185 - 3.56920i) q^{22} +(-3.32097 + 3.57916i) q^{23} +(-3.34751 + 3.05125i) q^{24} +(-4.84006 - 0.729521i) q^{25} +(2.04137 + 3.01323i) q^{26} +(-1.22423 + 5.36370i) q^{27} +(1.81539 + 4.97035i) q^{28} +(-0.987821 - 4.32793i) q^{29} +(0.501391 - 0.537178i) q^{30} +(1.28102 + 2.21879i) q^{31} +(-2.14426 + 5.23471i) q^{32} +(2.53060 + 3.71170i) q^{33} +(0.480717 - 0.381041i) q^{34} +(-0.358561 - 0.779973i) q^{35} +(0.188797 + 0.850308i) q^{36} +(-8.40044 - 2.59119i) q^{37} +(7.44732 + 5.10980i) q^{38} +(-4.10983 + 0.307989i) q^{39} +(0.278265 - 0.874510i) q^{40} +(3.27984 + 6.81065i) q^{41} +(-5.90507 - 1.01641i) q^{42} +(2.17288 - 4.51203i) q^{43} +(4.84212 + 2.83389i) q^{44} +(-0.0416505 - 0.135028i) q^{45} +(-4.68158 - 5.07555i) q^{46} +(5.45444 - 0.822124i) q^{47} +(-3.93436 - 5.05497i) q^{48} +(-3.71473 + 5.93302i) q^{49} +(1.56027 - 6.74405i) q^{50} +(0.103526 + 0.686853i) q^{51} +(-4.47272 + 2.54720i) q^{52} +(5.41768 - 1.67113i) q^{53} +(-7.42801 - 2.31530i) q^{54} +(-0.820048 - 0.394914i) q^{55} +(-7.20732 + 2.01359i) q^{56} +(-9.21441 + 4.43743i) q^{57} +(6.21063 - 0.917341i) q^{58} +(-0.182304 - 2.43268i) q^{59} +(0.702311 + 0.765941i) q^{60} +(2.02445 - 6.56311i) q^{61} +(-3.26908 + 1.56242i) q^{62} +(-0.734423 + 0.887859i) q^{63} +(-7.14508 - 3.59832i) q^{64} +(0.689933 - 0.470389i) q^{65} +(-5.51127 + 3.16026i) q^{66} +(-0.882664 + 0.509607i) q^{67} +(0.484437 + 0.719641i) q^{68} +(7.62288 - 1.73987i) q^{69} +(1.13910 - 0.419869i) q^{70} +(11.9497 + 2.72743i) q^{71} +(-1.21962 + 0.172785i) q^{72} +(1.03556 - 6.87048i) q^{73} +(4.57623 - 11.5595i) q^{74} +(5.74597 + 5.33149i) q^{75} +(-8.02261 + 9.93896i) q^{76} +(0.974644 + 7.35764i) q^{77} +(0.0172239 - 5.82845i) q^{78} +(9.00457 + 5.19879i) q^{79} +(1.20244 + 0.488403i) q^{80} +(5.50068 - 5.10389i) q^{81} +(-9.96291 + 3.87622i) q^{82} +(-3.97658 + 4.98647i) q^{83} +(2.08175 - 8.21414i) q^{84} +(-0.0877471 - 0.110031i) q^{85} +(6.12301 + 3.55929i) q^{86} +(-2.59721 + 6.61758i) q^{87} +(-4.52753 + 6.51580i) q^{88} +(12.6725 - 4.97359i) q^{89} +(0.194956 - 0.0438917i) q^{90} +(-6.29285 - 2.60068i) q^{91} +(7.67050 - 6.04320i) q^{92} +(0.306607 - 4.09138i) q^{93} +(0.559969 + 7.78075i) q^{94} +(1.16728 - 1.71208i) q^{95} +(7.55940 - 4.99192i) q^{96} +8.05557i q^{97} +(-7.95714 - 5.88930i) q^{98} +1.22170i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9} - 20 q^{10} + 9 q^{12} - 28 q^{13} - 51 q^{14} - 17 q^{16} - 22 q^{17} - 12 q^{18} - 14 q^{20} - 34 q^{21} - 18 q^{22} - 44 q^{24} - 48 q^{25} - 2 q^{26} - 36 q^{28} - 11 q^{30} - 13 q^{32} - 34 q^{33} - 98 q^{34} - 4 q^{36} - 58 q^{37} - 18 q^{38} + 30 q^{40} - 28 q^{41} - 26 q^{42} + 16 q^{44} - 28 q^{45} - 14 q^{46} - 24 q^{49} + 96 q^{50} - 14 q^{52} - 22 q^{53} - 17 q^{54} + 40 q^{56} + 34 q^{57} - 12 q^{58} + 98 q^{60} - 38 q^{61} - 4 q^{64} - 32 q^{65} - 176 q^{66} - 21 q^{68} + 28 q^{69} + 50 q^{70} - 120 q^{72} - 58 q^{73} - 14 q^{74} - 91 q^{76} - 18 q^{77} - 112 q^{78} + 66 q^{80} - 170 q^{81} + 114 q^{82} + 140 q^{84} - 24 q^{85} + 97 q^{86} + 127 q^{88} - 82 q^{89} + 266 q^{90} + 34 q^{92} + 226 q^{94} + 122 q^{96} + 183 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.109851 + 1.40994i −0.0776766 + 0.996979i
\(3\) −1.32314 0.902103i −0.763916 0.520829i 0.117555 0.993066i \(-0.462494\pi\)
−0.881472 + 0.472237i \(0.843447\pi\)
\(4\) −1.97587 0.309768i −0.987933 0.154884i
\(5\) 0.323554 + 0.0242470i 0.144698 + 0.0108436i 0.146882 0.989154i \(-0.453076\pi\)
−0.00218437 + 0.999998i \(0.500695\pi\)
\(6\) 1.41726 1.76645i 0.578594 0.721152i
\(7\) −1.28165 2.31460i −0.484419 0.874836i
\(8\) 0.653806 2.75182i 0.231155 0.972917i
\(9\) −0.159109 0.405403i −0.0530363 0.135134i
\(10\) −0.0697296 + 0.453528i −0.0220504 + 0.143418i
\(11\) −2.61131 1.02486i −0.787339 0.309008i −0.0626064 0.998038i \(-0.519941\pi\)
−0.724732 + 0.689031i \(0.758037\pi\)
\(12\) 2.33491 + 2.19230i 0.674030 + 0.632862i
\(13\) 2.01211 1.60461i 0.558060 0.445038i −0.303400 0.952863i \(-0.598122\pi\)
0.861460 + 0.507825i \(0.169550\pi\)
\(14\) 3.40424 1.55279i 0.909821 0.415001i
\(15\) −0.406234 0.323961i −0.104889 0.0836463i
\(16\) 3.80809 + 1.22412i 0.952022 + 0.306030i
\(17\) −0.295026 0.317962i −0.0715543 0.0771172i 0.696260 0.717790i \(-0.254846\pi\)
−0.767814 + 0.640673i \(0.778656\pi\)
\(18\) 0.589072 0.179800i 0.138846 0.0423793i
\(19\) 3.19321 5.53080i 0.732572 1.26885i −0.223209 0.974771i \(-0.571653\pi\)
0.955780 0.294081i \(-0.0950136\pi\)
\(20\) −0.631787 0.148135i −0.141272 0.0331241i
\(21\) −0.392197 + 4.21872i −0.0855844 + 0.920601i
\(22\) 1.73185 3.56920i 0.369232 0.760957i
\(23\) −3.32097 + 3.57916i −0.692470 + 0.746306i −0.977204 0.212301i \(-0.931904\pi\)
0.284734 + 0.958607i \(0.408095\pi\)
\(24\) −3.34751 + 3.05125i −0.683307 + 0.622834i
\(25\) −4.84006 0.729521i −0.968011 0.145904i
\(26\) 2.04137 + 3.01323i 0.400345 + 0.590943i
\(27\) −1.22423 + 5.36370i −0.235603 + 1.03224i
\(28\) 1.81539 + 4.97035i 0.343076 + 0.939308i
\(29\) −0.987821 4.32793i −0.183434 0.803676i −0.979980 0.199098i \(-0.936199\pi\)
0.796546 0.604578i \(-0.206658\pi\)
\(30\) 0.501391 0.537178i 0.0915410 0.0980749i
\(31\) 1.28102 + 2.21879i 0.230078 + 0.398506i 0.957831 0.287333i \(-0.0927686\pi\)
−0.727753 + 0.685839i \(0.759435\pi\)
\(32\) −2.14426 + 5.23471i −0.379055 + 0.925374i
\(33\) 2.53060 + 3.71170i 0.440520 + 0.646125i
\(34\) 0.480717 0.381041i 0.0824423 0.0653479i
\(35\) −0.358561 0.779973i −0.0606079 0.131839i
\(36\) 0.188797 + 0.850308i 0.0314662 + 0.141718i
\(37\) −8.40044 2.59119i −1.38102 0.425989i −0.486762 0.873535i \(-0.661822\pi\)
−0.894261 + 0.447545i \(0.852298\pi\)
\(38\) 7.44732 + 5.10980i 1.20811 + 0.828919i
\(39\) −4.10983 + 0.307989i −0.658099 + 0.0493177i
\(40\) 0.278265 0.874510i 0.0439975 0.138272i
\(41\) 3.27984 + 6.81065i 0.512224 + 1.06364i 0.983374 + 0.181592i \(0.0581249\pi\)
−0.471150 + 0.882053i \(0.656161\pi\)
\(42\) −5.90507 1.01641i −0.911171 0.156835i
\(43\) 2.17288 4.51203i 0.331361 0.688079i −0.667015 0.745044i \(-0.732428\pi\)
0.998376 + 0.0569657i \(0.0181426\pi\)
\(44\) 4.84212 + 2.83389i 0.729977 + 0.427225i
\(45\) −0.0416505 0.135028i −0.00620889 0.0201287i
\(46\) −4.68158 5.07555i −0.690262 0.748349i
\(47\) 5.45444 0.822124i 0.795612 0.119919i 0.261356 0.965242i \(-0.415830\pi\)
0.534255 + 0.845323i \(0.320592\pi\)
\(48\) −3.93436 5.05497i −0.567876 0.729622i
\(49\) −3.71473 + 5.93302i −0.530676 + 0.847575i
\(50\) 1.56027 6.74405i 0.220655 0.953753i
\(51\) 0.103526 + 0.686853i 0.0144966 + 0.0961787i
\(52\) −4.47272 + 2.54720i −0.620255 + 0.353233i
\(53\) 5.41768 1.67113i 0.744175 0.229548i 0.100596 0.994927i \(-0.467925\pi\)
0.643579 + 0.765380i \(0.277449\pi\)
\(54\) −7.42801 2.31530i −1.01082 0.315072i
\(55\) −0.820048 0.394914i −0.110575 0.0532502i
\(56\) −7.20732 + 2.01359i −0.963119 + 0.269077i
\(57\) −9.21441 + 4.43743i −1.22048 + 0.587751i
\(58\) 6.21063 0.917341i 0.815496 0.120453i
\(59\) −0.182304 2.43268i −0.0237340 0.316708i −0.996417 0.0845721i \(-0.973048\pi\)
0.972683 0.232136i \(-0.0745714\pi\)
\(60\) 0.702311 + 0.765941i 0.0906679 + 0.0988826i
\(61\) 2.02445 6.56311i 0.259204 0.840320i −0.728643 0.684894i \(-0.759849\pi\)
0.987847 0.155426i \(-0.0496752\pi\)
\(62\) −3.26908 + 1.56242i −0.415174 + 0.198428i
\(63\) −0.734423 + 0.887859i −0.0925286 + 0.111860i
\(64\) −7.14508 3.59832i −0.893135 0.449790i
\(65\) 0.689933 0.470389i 0.0855757 0.0583445i
\(66\) −5.51127 + 3.16026i −0.678391 + 0.389001i
\(67\) −0.882664 + 0.509607i −0.107835 + 0.0622583i −0.552947 0.833216i \(-0.686497\pi\)
0.445113 + 0.895475i \(0.353164\pi\)
\(68\) 0.484437 + 0.719641i 0.0587466 + 0.0872692i
\(69\) 7.62288 1.73987i 0.917687 0.209456i
\(70\) 1.13910 0.419869i 0.136149 0.0501840i
\(71\) 11.9497 + 2.72743i 1.41816 + 0.323687i 0.861799 0.507251i \(-0.169338\pi\)
0.556366 + 0.830937i \(0.312195\pi\)
\(72\) −1.21962 + 0.172785i −0.143734 + 0.0203629i
\(73\) 1.03556 6.87048i 0.121203 0.804128i −0.842798 0.538230i \(-0.819093\pi\)
0.964001 0.265899i \(-0.0856686\pi\)
\(74\) 4.57623 11.5595i 0.531975 1.34376i
\(75\) 5.74597 + 5.33149i 0.663488 + 0.615627i
\(76\) −8.02261 + 9.93896i −0.920256 + 1.14008i
\(77\) 0.974644 + 7.35764i 0.111071 + 0.838481i
\(78\) 0.0172239 5.82845i 0.00195022 0.659942i
\(79\) 9.00457 + 5.19879i 1.01309 + 0.584910i 0.912096 0.409977i \(-0.134463\pi\)
0.100997 + 0.994887i \(0.467797\pi\)
\(80\) 1.20244 + 0.488403i 0.134437 + 0.0546051i
\(81\) 5.50068 5.10389i 0.611187 0.567098i
\(82\) −9.96291 + 3.87622i −1.10022 + 0.428056i
\(83\) −3.97658 + 4.98647i −0.436486 + 0.547336i −0.950613 0.310378i \(-0.899544\pi\)
0.514127 + 0.857714i \(0.328116\pi\)
\(84\) 2.08175 8.21414i 0.227138 0.896236i
\(85\) −0.0877471 0.110031i −0.00951751 0.0119346i
\(86\) 6.12301 + 3.55929i 0.660261 + 0.383808i
\(87\) −2.59721 + 6.61758i −0.278450 + 0.709479i
\(88\) −4.52753 + 6.51580i −0.482636 + 0.694586i
\(89\) 12.6725 4.97359i 1.34328 0.527200i 0.418681 0.908133i \(-0.362493\pi\)
0.924602 + 0.380934i \(0.124397\pi\)
\(90\) 0.194956 0.0438917i 0.0205502 0.00462660i
\(91\) −6.29285 2.60068i −0.659670 0.272626i
\(92\) 7.67050 6.04320i 0.799705 0.630047i
\(93\) 0.306607 4.09138i 0.0317936 0.424257i
\(94\) 0.559969 + 7.78075i 0.0577564 + 0.802523i
\(95\) 1.16728 1.71208i 0.119760 0.175656i
\(96\) 7.55940 4.99192i 0.771528 0.509485i
\(97\) 8.05557i 0.817919i 0.912553 + 0.408960i \(0.134108\pi\)
−0.912553 + 0.408960i \(0.865892\pi\)
\(98\) −7.95714 5.88930i −0.803793 0.594909i
\(99\) 1.22170i 0.122785i
\(100\) 9.33732 + 2.94073i 0.933732 + 0.294073i
\(101\) 8.36578 12.2704i 0.832427 1.22095i −0.140557 0.990073i \(-0.544889\pi\)
0.972984 0.230873i \(-0.0741582\pi\)
\(102\) −0.979794 + 0.0705144i −0.0970141 + 0.00698197i
\(103\) 0.641180 8.55595i 0.0631773 0.843043i −0.872145 0.489247i \(-0.837272\pi\)
0.935323 0.353796i \(-0.115109\pi\)
\(104\) −3.10006 6.58608i −0.303986 0.645819i
\(105\) −0.229188 + 1.35547i −0.0223665 + 0.132281i
\(106\) 1.76106 + 7.82218i 0.171049 + 0.759757i
\(107\) 2.95157 1.15841i 0.285339 0.111987i −0.218355 0.975869i \(-0.570069\pi\)
0.503694 + 0.863882i \(0.331974\pi\)
\(108\) 4.08041 10.2187i 0.392638 0.983296i
\(109\) 6.02790 15.3588i 0.577368 1.47111i −0.281829 0.959465i \(-0.590941\pi\)
0.859197 0.511645i \(-0.170964\pi\)
\(110\) 0.646889 1.11284i 0.0616784 0.106105i
\(111\) 8.77744 + 11.0066i 0.833118 + 1.04470i
\(112\) −2.04730 10.3831i −0.193452 0.981110i
\(113\) −11.0022 + 13.7963i −1.03500 + 1.29785i −0.0814256 + 0.996679i \(0.525947\pi\)
−0.953572 + 0.301166i \(0.902624\pi\)
\(114\) −5.24429 13.4792i −0.491173 1.26245i
\(115\) −1.16130 + 1.07753i −0.108291 + 0.100480i
\(116\) 0.611149 + 8.85740i 0.0567438 + 0.822389i
\(117\) −0.970657 0.560409i −0.0897373 0.0518099i
\(118\) 3.44996 + 0.0101951i 0.317595 + 0.000938537i
\(119\) −0.357834 + 1.09038i −0.0328026 + 0.0999554i
\(120\) −1.15708 + 0.906077i −0.105627 + 0.0827131i
\(121\) −2.29499 2.12944i −0.208636 0.193586i
\(122\) 9.03121 + 3.57532i 0.817647 + 0.323695i
\(123\) 1.80422 11.9702i 0.162681 1.07932i
\(124\) −1.84381 4.78085i −0.165579 0.429333i
\(125\) −3.12996 0.714393i −0.279952 0.0638972i
\(126\) −1.17115 1.13302i −0.104334 0.100938i
\(127\) −6.86346 + 1.56654i −0.609034 + 0.139008i −0.515905 0.856646i \(-0.672544\pi\)
−0.0931292 + 0.995654i \(0.529687\pi\)
\(128\) 5.85831 9.67885i 0.517806 0.855498i
\(129\) −6.94535 + 4.00990i −0.611504 + 0.353052i
\(130\) 0.587430 + 1.02444i 0.0515210 + 0.0898491i
\(131\) −14.5953 + 9.95088i −1.27519 + 0.869413i −0.995871 0.0907844i \(-0.971063\pi\)
−0.279324 + 0.960197i \(0.590110\pi\)
\(132\) −3.85035 8.11772i −0.335130 0.706557i
\(133\) −16.8942 0.302430i −1.46491 0.0262240i
\(134\) −0.621553 1.30049i −0.0536940 0.112345i
\(135\) −0.526157 + 1.70576i −0.0452844 + 0.146808i
\(136\) −1.06787 + 0.603974i −0.0915688 + 0.0517904i
\(137\) 0.772969 + 10.3146i 0.0660392 + 0.881232i 0.927599 + 0.373577i \(0.121869\pi\)
−0.861560 + 0.507655i \(0.830512\pi\)
\(138\) 1.61573 + 10.9389i 0.137540 + 0.931184i
\(139\) 12.9510 6.23687i 1.09849 0.529004i 0.205305 0.978698i \(-0.434181\pi\)
0.893183 + 0.449694i \(0.148467\pi\)
\(140\) 0.466859 + 1.65219i 0.0394567 + 0.139636i
\(141\) −7.95863 3.83268i −0.670238 0.322770i
\(142\) −5.15821 + 16.5487i −0.432867 + 1.38874i
\(143\) −6.89874 + 2.12798i −0.576902 + 0.177951i
\(144\) −0.109639 1.73858i −0.00913662 0.144882i
\(145\) −0.214674 1.42427i −0.0178277 0.118279i
\(146\) 9.57321 + 2.21481i 0.792284 + 0.183299i
\(147\) 10.2673 4.49916i 0.846833 0.371084i
\(148\) 15.7955 + 7.72203i 1.29838 + 0.634747i
\(149\) 2.76780 0.417179i 0.226747 0.0341766i −0.0346858 0.999398i \(-0.511043\pi\)
0.261433 + 0.965222i \(0.415805\pi\)
\(150\) −8.14828 + 7.51581i −0.665304 + 0.613663i
\(151\) −2.74206 8.88954i −0.223146 0.723420i −0.996042 0.0888877i \(-0.971669\pi\)
0.772896 0.634533i \(-0.218807\pi\)
\(152\) −13.1320 12.4032i −1.06515 1.00603i
\(153\) −0.0819616 + 0.170195i −0.00662621 + 0.0137595i
\(154\) −10.4809 + 0.565943i −0.844576 + 0.0456050i
\(155\) 0.360679 + 0.748958i 0.0289705 + 0.0601578i
\(156\) 8.21587 + 0.664548i 0.657796 + 0.0532064i
\(157\) −11.9883 + 0.898398i −0.956770 + 0.0717000i −0.543955 0.839115i \(-0.683074\pi\)
−0.412815 + 0.910815i \(0.635455\pi\)
\(158\) −8.31915 + 12.1248i −0.661836 + 0.964598i
\(159\) −8.67589 2.67616i −0.688043 0.212233i
\(160\) −0.820708 + 1.64172i −0.0648827 + 0.129789i
\(161\) 12.5406 + 3.09948i 0.988341 + 0.244273i
\(162\) 6.59192 + 8.31630i 0.517910 + 0.653390i
\(163\) −6.04539 8.86696i −0.473511 0.694514i 0.512966 0.858409i \(-0.328547\pi\)
−0.986478 + 0.163895i \(0.947594\pi\)
\(164\) −4.37080 14.4729i −0.341302 1.13014i
\(165\) 0.728786 + 1.26229i 0.0567359 + 0.0982695i
\(166\) −6.59379 6.15451i −0.511778 0.477682i
\(167\) −5.31218 23.2742i −0.411069 1.80101i −0.579131 0.815235i \(-0.696608\pi\)
0.168062 0.985777i \(-0.446249\pi\)
\(168\) 11.3528 + 3.83748i 0.875885 + 0.296068i
\(169\) −1.41894 + 6.21676i −0.109149 + 0.478213i
\(170\) 0.164777 0.111631i 0.0126378 0.00856172i
\(171\) −2.75027 0.414536i −0.210318 0.0317004i
\(172\) −5.69100 + 8.24208i −0.433935 + 0.628453i
\(173\) 0.831907 0.896582i 0.0632487 0.0681659i −0.700635 0.713520i \(-0.747100\pi\)
0.763883 + 0.645354i \(0.223290\pi\)
\(174\) −9.04508 4.38886i −0.685706 0.332718i
\(175\) 4.51472 + 12.1378i 0.341281 + 0.917530i
\(176\) −8.68953 7.09932i −0.654998 0.535131i
\(177\) −1.95331 + 3.38324i −0.146820 + 0.254300i
\(178\) 5.62038 + 18.4138i 0.421265 + 1.38018i
\(179\) 10.6604 + 11.4891i 0.796793 + 0.858738i 0.992540 0.121916i \(-0.0389039\pi\)
−0.195748 + 0.980654i \(0.562713\pi\)
\(180\) 0.0404686 + 0.279698i 0.00301635 + 0.0208475i
\(181\) 20.0404 + 15.9817i 1.48959 + 1.18791i 0.934421 + 0.356170i \(0.115918\pi\)
0.555169 + 0.831738i \(0.312654\pi\)
\(182\) 4.35809 8.58686i 0.323043 0.636500i
\(183\) −8.59923 + 6.85766i −0.635674 + 0.506933i
\(184\) 7.67794 + 11.4788i 0.566025 + 0.846229i
\(185\) −2.65516 1.04207i −0.195211 0.0766148i
\(186\) 5.73493 + 0.881741i 0.420505 + 0.0646524i
\(187\) 0.444536 + 1.13266i 0.0325077 + 0.0828282i
\(188\) −11.0319 0.0652023i −0.804584 0.00475537i
\(189\) 13.9838 4.04080i 1.01717 0.293925i
\(190\) 2.28571 + 1.83387i 0.165823 + 0.133043i
\(191\) 1.00074 + 0.0749955i 0.0724114 + 0.00542648i 0.110886 0.993833i \(-0.464631\pi\)
−0.0384751 + 0.999260i \(0.512250\pi\)
\(192\) 6.20790 + 11.2067i 0.448016 + 0.808772i
\(193\) −4.45048 3.03428i −0.320352 0.218413i 0.392457 0.919770i \(-0.371625\pi\)
−0.712809 + 0.701358i \(0.752578\pi\)
\(194\) −11.3579 0.884915i −0.815448 0.0635332i
\(195\) −1.33722 −0.0957602
\(196\) 9.17767 10.5722i 0.655548 0.755154i
\(197\) 4.43186 0.315757 0.157878 0.987459i \(-0.449535\pi\)
0.157878 + 0.987459i \(0.449535\pi\)
\(198\) −1.72252 0.134205i −0.122414 0.00953753i
\(199\) −13.8341 9.43193i −0.980673 0.668612i −0.0369393 0.999318i \(-0.511761\pi\)
−0.943734 + 0.330706i \(0.892713\pi\)
\(200\) −5.17197 + 12.8420i −0.365713 + 0.908068i
\(201\) 1.62761 + 0.121972i 0.114803 + 0.00860326i
\(202\) 16.3815 + 13.1432i 1.15260 + 0.924751i
\(203\) −8.75137 + 7.83331i −0.614226 + 0.549791i
\(204\) 0.00821063 1.38920i 0.000574859 0.0972633i
\(205\) 0.896065 + 2.28314i 0.0625839 + 0.159461i
\(206\) 11.9929 + 1.84391i 0.835588 + 0.128471i
\(207\) 1.97940 + 0.776856i 0.137578 + 0.0539952i
\(208\) 9.62653 3.64742i 0.667480 0.252903i
\(209\) −14.0067 + 11.1700i −0.968867 + 0.772646i
\(210\) −1.88596 0.472042i −0.130144 0.0325740i
\(211\) 0.173155 + 0.138087i 0.0119205 + 0.00950629i 0.629432 0.777056i \(-0.283288\pi\)
−0.617511 + 0.786562i \(0.711859\pi\)
\(212\) −11.2223 + 1.62371i −0.770748 + 0.111517i
\(213\) −13.3507 14.3886i −0.914773 0.985891i
\(214\) 1.30905 + 4.28880i 0.0894849 + 0.293176i
\(215\) 0.812447 1.40720i 0.0554084 0.0959702i
\(216\) 13.9595 + 6.87568i 0.949827 + 0.467831i
\(217\) 3.49379 5.80876i 0.237174 0.394324i
\(218\) 20.9929 + 10.1862i 1.42182 + 0.689894i
\(219\) −7.56806 + 8.15643i −0.511402 + 0.551161i
\(220\) 1.49797 + 1.03432i 0.100993 + 0.0697340i
\(221\) −1.10383 0.166376i −0.0742517 0.0111916i
\(222\) −16.4828 + 11.1666i −1.10625 + 0.749452i
\(223\) 3.71159 16.2616i 0.248547 1.08895i −0.684447 0.729062i \(-0.739956\pi\)
0.932994 0.359892i \(-0.117187\pi\)
\(224\) 14.8644 1.74598i 0.993172 0.116658i
\(225\) 0.474346 + 2.07825i 0.0316231 + 0.138550i
\(226\) −18.2433 17.0280i −1.21353 1.13268i
\(227\) 7.02786 + 12.1726i 0.466456 + 0.807925i 0.999266 0.0383097i \(-0.0121973\pi\)
−0.532810 + 0.846235i \(0.678864\pi\)
\(228\) 19.5810 5.91343i 1.29678 0.391626i
\(229\) 7.98099 + 11.7060i 0.527399 + 0.773552i 0.993819 0.111011i \(-0.0354090\pi\)
−0.466420 + 0.884563i \(0.654457\pi\)
\(230\) −1.39168 1.75573i −0.0917645 0.115769i
\(231\) 5.34776 10.6144i 0.351857 0.698378i
\(232\) −12.5555 0.111313i −0.824312 0.00730805i
\(233\) −25.4093 7.83773i −1.66462 0.513467i −0.687504 0.726181i \(-0.741294\pi\)
−0.977114 + 0.212714i \(0.931770\pi\)
\(234\) 0.896772 1.30701i 0.0586238 0.0854418i
\(235\) 1.78474 0.133748i 0.116423 0.00872473i
\(236\) −0.393357 + 4.86312i −0.0256054 + 0.316562i
\(237\) −7.22447 15.0018i −0.469280 0.974470i
\(238\) −1.49807 0.624305i −0.0971054 0.0404677i
\(239\) 3.72072 7.72616i 0.240674 0.499764i −0.745287 0.666744i \(-0.767687\pi\)
0.985960 + 0.166980i \(0.0534016\pi\)
\(240\) −1.15041 1.73095i −0.0742585 0.111732i
\(241\) 8.99671 + 29.1666i 0.579529 + 1.87879i 0.464863 + 0.885383i \(0.346103\pi\)
0.114666 + 0.993404i \(0.463420\pi\)
\(242\) 3.25449 3.00188i 0.209207 0.192968i
\(243\) 4.43815 0.668943i 0.284707 0.0429127i
\(244\) −6.03308 + 12.3407i −0.386229 + 0.790033i
\(245\) −1.34577 + 1.82958i −0.0859783 + 0.116888i
\(246\) 16.6791 + 3.85878i 1.06342 + 0.246027i
\(247\) −2.44966 16.2524i −0.155868 1.03412i
\(248\) 6.94326 2.07448i 0.440897 0.131730i
\(249\) 9.75988 3.01052i 0.618507 0.190784i
\(250\) 1.35108 4.33458i 0.0854499 0.274143i
\(251\) −17.5508 8.45200i −1.10779 0.533485i −0.211693 0.977336i \(-0.567898\pi\)
−0.896101 + 0.443851i \(0.853612\pi\)
\(252\) 1.72615 1.52679i 0.108737 0.0961787i
\(253\) 12.3402 5.94274i 0.775823 0.373617i
\(254\) −1.45477 9.84916i −0.0912803 0.617991i
\(255\) 0.0168422 + 0.224744i 0.00105470 + 0.0140740i
\(256\) 13.0031 + 9.32310i 0.812692 + 0.582694i
\(257\) −2.89364 + 9.38097i −0.180501 + 0.585169i 0.819428 + 0.573183i \(0.194291\pi\)
−0.999928 + 0.0119858i \(0.996185\pi\)
\(258\) −4.89076 10.2330i −0.304485 0.637080i
\(259\) 4.76888 + 22.7646i 0.296324 + 1.41453i
\(260\) −1.50893 + 0.715705i −0.0935797 + 0.0443862i
\(261\) −1.59738 + 1.08908i −0.0988755 + 0.0674122i
\(262\) −12.4268 21.6716i −0.767733 1.33887i
\(263\) −10.2462 + 5.91566i −0.631809 + 0.364775i −0.781452 0.623965i \(-0.785521\pi\)
0.149643 + 0.988740i \(0.452187\pi\)
\(264\) 11.8685 4.53703i 0.730454 0.279235i
\(265\) 1.79343 0.409339i 0.110169 0.0251455i
\(266\) 2.28225 23.7865i 0.139934 1.45845i
\(267\) −21.2542 4.85114i −1.30074 0.296885i
\(268\) 1.90189 0.733493i 0.116176 0.0448052i
\(269\) 4.01084 26.6102i 0.244545 1.62245i −0.443147 0.896449i \(-0.646138\pi\)
0.687692 0.726002i \(-0.258624\pi\)
\(270\) −2.34722 0.929230i −0.142847 0.0565511i
\(271\) −4.26861 3.96069i −0.259300 0.240595i 0.539800 0.841793i \(-0.318500\pi\)
−0.799100 + 0.601198i \(0.794690\pi\)
\(272\) −0.734261 1.57198i −0.0445211 0.0953150i
\(273\) 5.98025 + 9.11787i 0.361941 + 0.551839i
\(274\) −14.6278 0.0432273i −0.883699 0.00261146i
\(275\) 11.8912 + 6.86539i 0.717067 + 0.413999i
\(276\) −15.6007 + 1.07643i −0.939054 + 0.0647936i
\(277\) 0.0461258 0.0427985i 0.00277143 0.00257151i −0.678786 0.734336i \(-0.737494\pi\)
0.681557 + 0.731765i \(0.261303\pi\)
\(278\) 7.37093 + 18.9452i 0.442079 + 1.13626i
\(279\) 0.695682 0.872358i 0.0416494 0.0522267i
\(280\) −2.38078 + 0.476747i −0.142279 + 0.0284911i
\(281\) −12.4213 15.5758i −0.740992 0.929174i 0.258328 0.966057i \(-0.416829\pi\)
−0.999320 + 0.0368830i \(0.988257\pi\)
\(282\) 6.27811 10.8002i 0.373856 0.643141i
\(283\) 5.63043 14.3461i 0.334695 0.852788i −0.660127 0.751154i \(-0.729498\pi\)
0.994822 0.101634i \(-0.0324071\pi\)
\(284\) −22.7661 9.09066i −1.35092 0.539432i
\(285\) −3.08895 + 1.21232i −0.182974 + 0.0718118i
\(286\) −2.24249 9.96058i −0.132601 0.588982i
\(287\) 11.5603 16.3204i 0.682383 0.963362i
\(288\) 2.46334 + 0.0364001i 0.145153 + 0.00214490i
\(289\) 1.25635 16.7649i 0.0739030 0.986168i
\(290\) 2.03172 0.146220i 0.119306 0.00858631i
\(291\) 7.26695 10.6587i 0.425996 0.624821i
\(292\) −4.17437 + 13.2544i −0.244287 + 0.775652i
\(293\) 1.53780i 0.0898392i −0.998991 0.0449196i \(-0.985697\pi\)
0.998991 0.0449196i \(-0.0143032\pi\)
\(294\) 5.21567 + 14.9705i 0.304184 + 0.873099i
\(295\) 0.791523i 0.0460842i
\(296\) −12.6228 + 21.4224i −0.733683 + 1.24515i
\(297\) 8.69389 12.7516i 0.504470 0.739922i
\(298\) 0.284151 + 3.94827i 0.0164604 + 0.228717i
\(299\) −0.939033 + 12.5305i −0.0543057 + 0.724659i
\(300\) −9.70175 12.3142i −0.560131 0.710962i
\(301\) −13.2284 + 0.753514i −0.762474 + 0.0434318i
\(302\) 12.8349 2.88961i 0.738568 0.166279i
\(303\) −22.1382 + 8.68862i −1.27181 + 0.499148i
\(304\) 18.9304 17.1529i 1.08573 0.983786i
\(305\) 0.814154 2.07443i 0.0466183 0.118782i
\(306\) −0.230961 0.134257i −0.0132032 0.00767497i
\(307\) 7.98188 + 10.0090i 0.455550 + 0.571242i 0.955567 0.294774i \(-0.0952444\pi\)
−0.500017 + 0.866016i \(0.666673\pi\)
\(308\) 0.353396 14.8396i 0.0201366 0.845566i
\(309\) −8.56672 + 10.7423i −0.487343 + 0.611109i
\(310\) −1.09561 + 0.426262i −0.0622263 + 0.0242101i
\(311\) 3.29414 3.05651i 0.186793 0.173319i −0.581233 0.813737i \(-0.697429\pi\)
0.768026 + 0.640418i \(0.221239\pi\)
\(312\) −1.83950 + 11.5109i −0.104141 + 0.651676i
\(313\) 12.3942 + 7.15578i 0.700560 + 0.404468i 0.807556 0.589791i \(-0.200790\pi\)
−0.106996 + 0.994259i \(0.534123\pi\)
\(314\) 0.0502418 17.0015i 0.00283531 0.959449i
\(315\) −0.259153 + 0.269463i −0.0146016 + 0.0151825i
\(316\) −16.1814 13.0614i −0.910275 0.734763i
\(317\) 12.1199 + 11.2457i 0.680723 + 0.631619i 0.942773 0.333436i \(-0.108208\pi\)
−0.262050 + 0.965054i \(0.584398\pi\)
\(318\) 4.72628 11.9385i 0.265037 0.669478i
\(319\) −1.85603 + 12.3139i −0.103917 + 0.689447i
\(320\) −2.22457 1.33750i −0.124357 0.0747682i
\(321\) −4.95035 1.12989i −0.276302 0.0630640i
\(322\) −5.74769 + 17.3411i −0.320306 + 0.966381i
\(323\) −2.70066 + 0.616409i −0.150269 + 0.0342979i
\(324\) −12.4496 + 8.38066i −0.691646 + 0.465592i
\(325\) −10.9093 + 6.29851i −0.605141 + 0.349378i
\(326\) 13.1660 7.54959i 0.729196 0.418133i
\(327\) −21.8310 + 14.8841i −1.20726 + 0.823094i
\(328\) 20.8861 4.57269i 1.15324 0.252485i
\(329\) −8.89358 11.5712i −0.490319 0.637939i
\(330\) −1.85982 + 0.888880i −0.102380 + 0.0489313i
\(331\) 6.88703 22.3272i 0.378545 1.22721i −0.543261 0.839564i \(-0.682811\pi\)
0.921806 0.387650i \(-0.126713\pi\)
\(332\) 9.40183 8.62078i 0.515992 0.473126i
\(333\) 0.286108 + 3.81784i 0.0156786 + 0.209217i
\(334\) 33.3988 4.93316i 1.82750 0.269931i
\(335\) −0.297946 + 0.143483i −0.0162785 + 0.00783932i
\(336\) −6.65774 + 15.5852i −0.363209 + 0.850241i
\(337\) 30.4120 + 14.6457i 1.65665 + 0.797800i 0.999011 + 0.0444660i \(0.0141586\pi\)
0.657638 + 0.753334i \(0.271556\pi\)
\(338\) −8.60940 2.68353i −0.468289 0.145965i
\(339\) 27.0031 8.32935i 1.46661 0.452388i
\(340\) 0.139292 + 0.244588i 0.00755418 + 0.0132647i
\(341\) −1.07118 7.10681i −0.0580076 0.384855i
\(342\) 0.886592 3.83218i 0.0479414 0.207221i
\(343\) 18.4936 + 0.994035i 0.998559 + 0.0536728i
\(344\) −10.9957 8.92938i −0.592847 0.481440i
\(345\) 2.50860 0.378110i 0.135058 0.0203568i
\(346\) 1.17274 + 1.27143i 0.0630470 + 0.0683525i
\(347\) 10.1148 + 32.7915i 0.542994 + 1.76034i 0.643543 + 0.765410i \(0.277464\pi\)
−0.100550 + 0.994932i \(0.532060\pi\)
\(348\) 7.18164 12.2709i 0.384976 0.657790i
\(349\) 5.40347 11.2204i 0.289241 0.600615i −0.704827 0.709380i \(-0.748975\pi\)
0.994068 + 0.108765i \(0.0346895\pi\)
\(350\) −17.6095 + 5.03214i −0.941267 + 0.268979i
\(351\) 6.14334 + 12.7568i 0.327907 + 0.680906i
\(352\) 10.9642 11.4719i 0.584392 0.611452i
\(353\) 4.86426 0.364526i 0.258898 0.0194017i 0.0553514 0.998467i \(-0.482372\pi\)
0.203547 + 0.979065i \(0.434753\pi\)
\(354\) −4.55559 3.12571i −0.242127 0.166129i
\(355\) 3.80023 + 1.17221i 0.201695 + 0.0622147i
\(356\) −26.5798 + 5.90162i −1.40873 + 0.312785i
\(357\) 1.45710 1.11993i 0.0771181 0.0592729i
\(358\) −17.3701 + 13.7684i −0.918036 + 0.727681i
\(359\) 12.4421 + 18.2492i 0.656667 + 0.963154i 0.999716 + 0.0238363i \(0.00758804\pi\)
−0.343049 + 0.939318i \(0.611460\pi\)
\(360\) −0.398803 + 0.0263330i −0.0210188 + 0.00138787i
\(361\) −10.8931 18.8675i −0.573323 0.993025i
\(362\) −24.7347 + 26.5001i −1.30003 + 1.39282i
\(363\) 1.11562 + 4.88787i 0.0585551 + 0.256547i
\(364\) 11.6282 + 7.08793i 0.609484 + 0.371508i
\(365\) 0.501647 2.19786i 0.0262574 0.115041i
\(366\) −8.72426 12.8777i −0.456024 0.673130i
\(367\) 16.6152 + 2.50434i 0.867307 + 0.130725i 0.567599 0.823305i \(-0.307873\pi\)
0.299708 + 0.954031i \(0.403111\pi\)
\(368\) −17.0279 + 9.56448i −0.887639 + 0.498583i
\(369\) 2.23921 2.41329i 0.116568 0.125631i
\(370\) 1.76094 3.62915i 0.0915467 0.188670i
\(371\) −10.8116 10.3979i −0.561309 0.539834i
\(372\) −1.87319 + 7.98904i −0.0971205 + 0.414213i
\(373\) −11.4975 + 19.9143i −0.595318 + 1.03112i 0.398184 + 0.917306i \(0.369641\pi\)
−0.993502 + 0.113816i \(0.963693\pi\)
\(374\) −1.64581 + 0.502345i −0.0851030 + 0.0259756i
\(375\) 3.49692 + 3.76879i 0.180580 + 0.194619i
\(376\) 1.30380 15.5472i 0.0672384 0.801784i
\(377\) −8.93223 7.12321i −0.460033 0.366864i
\(378\) 4.16114 + 20.1603i 0.214026 + 1.03693i
\(379\) −10.1114 + 8.06357i −0.519388 + 0.414198i −0.847784 0.530342i \(-0.822063\pi\)
0.328396 + 0.944540i \(0.393492\pi\)
\(380\) −2.83673 + 3.02126i −0.145521 + 0.154987i
\(381\) 10.4945 + 4.11879i 0.537650 + 0.211012i
\(382\) −0.215672 + 1.40275i −0.0110348 + 0.0717711i
\(383\) −5.60580 14.2834i −0.286443 0.729845i −0.999584 0.0288249i \(-0.990823\pi\)
0.713141 0.701020i \(-0.247272\pi\)
\(384\) −16.4827 + 7.52170i −0.841129 + 0.383840i
\(385\) 0.136949 + 2.40422i 0.00697956 + 0.122531i
\(386\) 4.76705 5.94159i 0.242637 0.302419i
\(387\) −2.17492 0.162987i −0.110557 0.00828512i
\(388\) 2.49536 15.9167i 0.126682 0.808049i
\(389\) 22.0218 + 15.0142i 1.11655 + 0.761252i 0.973551 0.228471i \(-0.0733725\pi\)
0.143001 + 0.989723i \(0.454325\pi\)
\(390\) 0.146895 1.88540i 0.00743833 0.0954708i
\(391\) 2.11781 0.107102
\(392\) 13.8979 + 14.1013i 0.701951 + 0.712225i
\(393\) 28.2883 1.42696
\(394\) −0.486845 + 6.24865i −0.0245269 + 0.314803i
\(395\) 2.78741 + 1.90042i 0.140250 + 0.0956205i
\(396\) 0.378442 2.41391i 0.0190174 0.121303i
\(397\) −17.0918 1.28085i −0.857811 0.0642840i −0.361441 0.932395i \(-0.617715\pi\)
−0.496370 + 0.868111i \(0.665334\pi\)
\(398\) 14.8182 18.4691i 0.742767 0.925775i
\(399\) 22.0805 + 15.6404i 1.10541 + 0.783000i
\(400\) −17.5383 8.70288i −0.876917 0.435144i
\(401\) 2.59459 + 6.61090i 0.129567 + 0.330132i 0.980905 0.194485i \(-0.0623036\pi\)
−0.851338 + 0.524618i \(0.824208\pi\)
\(402\) −0.350769 + 2.28143i −0.0174947 + 0.113787i
\(403\) 6.13784 + 2.40892i 0.305748 + 0.119997i
\(404\) −20.3306 + 21.6531i −1.01149 + 1.07728i
\(405\) 1.90352 1.51801i 0.0945866 0.0754303i
\(406\) −10.0832 13.1994i −0.500418 0.655076i
\(407\) 19.2805 + 15.3757i 0.955699 + 0.762144i
\(408\) 1.95779 + 0.164182i 0.0969248 + 0.00812821i
\(409\) 8.81344 + 9.49863i 0.435797 + 0.469677i 0.912316 0.409487i \(-0.134292\pi\)
−0.476519 + 0.879164i \(0.658102\pi\)
\(410\) −3.31752 + 1.01259i −0.163841 + 0.0500084i
\(411\) 8.28204 14.3449i 0.408523 0.707582i
\(412\) −3.91724 + 16.7068i −0.192989 + 0.823084i
\(413\) −5.39703 + 3.53981i −0.265570 + 0.174183i
\(414\) −1.31276 + 2.70549i −0.0645187 + 0.132968i
\(415\) −1.40754 + 1.51697i −0.0690935 + 0.0744651i
\(416\) 4.08515 + 13.9735i 0.200291 + 0.685108i
\(417\) −22.7623 3.43086i −1.11467 0.168010i
\(418\) −14.2104 20.9757i −0.695053 1.02596i
\(419\) −0.955920 + 4.18816i −0.0466997 + 0.204605i −0.992895 0.118990i \(-0.962034\pi\)
0.946196 + 0.323595i \(0.104891\pi\)
\(420\) 0.872727 2.60724i 0.0425847 0.127220i
\(421\) −6.63466 29.0684i −0.323354 1.41671i −0.831543 0.555460i \(-0.812542\pi\)
0.508189 0.861245i \(-0.330315\pi\)
\(422\) −0.213716 + 0.228970i −0.0104035 + 0.0111461i
\(423\) −1.20114 2.08044i −0.0584015 0.101154i
\(424\) −1.05655 16.0011i −0.0513108 0.777082i
\(425\) 1.19598 + 1.75418i 0.0580136 + 0.0850904i
\(426\) 21.7537 17.2430i 1.05397 0.835428i
\(427\) −17.7856 + 3.72584i −0.860706 + 0.180306i
\(428\) −6.19075 + 1.37455i −0.299241 + 0.0664416i
\(429\) 11.0477 + 3.40776i 0.533387 + 0.164528i
\(430\) 1.89482 + 1.30008i 0.0913763 + 0.0626956i
\(431\) −25.6682 + 1.92357i −1.23639 + 0.0926549i −0.676835 0.736135i \(-0.736649\pi\)
−0.559560 + 0.828790i \(0.689030\pi\)
\(432\) −11.2278 + 18.9268i −0.540196 + 0.910617i
\(433\) −14.9846 31.1159i −0.720115 1.49533i −0.862789 0.505564i \(-0.831284\pi\)
0.142674 0.989770i \(-0.454430\pi\)
\(434\) 7.80621 + 5.56413i 0.374710 + 0.267087i
\(435\) −1.00079 + 2.07817i −0.0479843 + 0.0996404i
\(436\) −16.6680 + 28.4797i −0.798252 + 1.36393i
\(437\) 9.19104 + 29.7966i 0.439667 + 1.42537i
\(438\) −10.6687 11.5665i −0.509771 0.552669i
\(439\) 27.4680 4.14014i 1.31098 0.197598i 0.543899 0.839151i \(-0.316948\pi\)
0.767079 + 0.641553i \(0.221709\pi\)
\(440\) −1.62289 + 1.99843i −0.0773681 + 0.0952714i
\(441\) 2.99631 + 0.561966i 0.142682 + 0.0267603i
\(442\) 0.355837 1.53806i 0.0169254 0.0731580i
\(443\) −5.61834 37.2752i −0.266935 1.77100i −0.573555 0.819167i \(-0.694436\pi\)
0.306619 0.951832i \(-0.400802\pi\)
\(444\) −13.9336 24.4665i −0.661258 1.16113i
\(445\) 4.22083 1.30195i 0.200087 0.0617185i
\(446\) 22.5201 + 7.01948i 1.06636 + 0.332382i
\(447\) −4.03853 1.94485i −0.191016 0.0919885i
\(448\) 0.828849 + 21.1498i 0.0391595 + 0.999233i
\(449\) −7.93063 + 3.81919i −0.374270 + 0.180239i −0.611556 0.791201i \(-0.709456\pi\)
0.237287 + 0.971440i \(0.423742\pi\)
\(450\) −2.98231 + 0.440502i −0.140587 + 0.0207654i
\(451\) −1.58468 21.1461i −0.0746196 0.995730i
\(452\) 26.0125 23.8515i 1.22352 1.12188i
\(453\) −4.39114 + 14.2357i −0.206314 + 0.668853i
\(454\) −17.9347 + 8.57169i −0.841717 + 0.402290i
\(455\) −1.97302 0.994044i −0.0924964 0.0466015i
\(456\) 6.18658 + 28.2577i 0.289713 + 1.32329i
\(457\) 0.367781 0.250749i 0.0172041 0.0117295i −0.554687 0.832059i \(-0.687162\pi\)
0.571892 + 0.820329i \(0.306210\pi\)
\(458\) −17.3814 + 9.96681i −0.812181 + 0.465718i
\(459\) 2.06663 1.19317i 0.0964622 0.0556925i
\(460\) 2.62835 1.76931i 0.122547 0.0824946i
\(461\) −7.14998 + 1.63194i −0.333008 + 0.0760068i −0.385756 0.922601i \(-0.626059\pi\)
0.0527478 + 0.998608i \(0.483202\pi\)
\(462\) 14.3783 + 8.70603i 0.668937 + 0.405041i
\(463\) 19.2117 + 4.38494i 0.892842 + 0.203785i 0.644243 0.764821i \(-0.277173\pi\)
0.248599 + 0.968606i \(0.420030\pi\)
\(464\) 1.53619 17.6903i 0.0713157 0.821253i
\(465\) 0.198407 1.31635i 0.00920093 0.0610441i
\(466\) 13.8420 34.9646i 0.641217 1.61970i
\(467\) 4.23062 + 3.92544i 0.195770 + 0.181648i 0.771966 0.635663i \(-0.219273\pi\)
−0.576197 + 0.817311i \(0.695464\pi\)
\(468\) 1.74429 + 1.40797i 0.0806299 + 0.0650835i
\(469\) 2.31080 + 1.38987i 0.106703 + 0.0641785i
\(470\) −0.00747966 + 2.53107i −0.000345011 + 0.116749i
\(471\) 16.6727 + 9.62596i 0.768235 + 0.443541i
\(472\) −6.81350 1.08883i −0.313617 0.0501175i
\(473\) −10.2983 + 9.55540i −0.473515 + 0.439358i
\(474\) 21.9452 8.53812i 1.00798 0.392169i
\(475\) −19.4901 + 24.4398i −0.894268 + 1.12138i
\(476\) 1.04480 2.04361i 0.0478883 0.0936686i
\(477\) −1.53948 1.93045i −0.0704881 0.0883893i
\(478\) 10.4847 + 6.09473i 0.479559 + 0.278766i
\(479\) −9.11656 + 23.2286i −0.416546 + 1.06134i 0.556523 + 0.830832i \(0.312135\pi\)
−0.973070 + 0.230511i \(0.925960\pi\)
\(480\) 2.56691 1.43186i 0.117163 0.0653552i
\(481\) −21.0605 + 8.26563i −0.960275 + 0.376880i
\(482\) −42.1115 + 9.48083i −1.91813 + 0.431840i
\(483\) −13.7970 15.4140i −0.627785 0.701361i
\(484\) 3.87496 + 4.91840i 0.176135 + 0.223564i
\(485\) −0.195323 + 2.60641i −0.00886917 + 0.118351i
\(486\) 0.455633 + 6.33101i 0.0206680 + 0.287180i
\(487\) −6.37880 + 9.35598i −0.289051 + 0.423960i −0.943109 0.332485i \(-0.892113\pi\)
0.654058 + 0.756445i \(0.273065\pi\)
\(488\) −16.7369 9.86193i −0.757645 0.446429i
\(489\) 17.1858i 0.777169i
\(490\) −2.43176 2.09844i −0.109856 0.0947979i
\(491\) 17.5121i 0.790311i −0.918614 0.395156i \(-0.870691\pi\)
0.918614 0.395156i \(-0.129309\pi\)
\(492\) −7.27287 + 23.0926i −0.327886 + 1.04110i
\(493\) −1.08469 + 1.59094i −0.0488518 + 0.0716524i
\(494\) 23.1841 1.66852i 1.04310 0.0750704i
\(495\) −0.0296225 + 0.395284i −0.00133143 + 0.0177667i
\(496\) 2.16217 + 10.0175i 0.0970843 + 0.449797i
\(497\) −9.00241 31.1543i −0.403813 1.39746i
\(498\) 3.17252 + 14.0916i 0.142164 + 0.631458i
\(499\) −40.0936 + 15.7356i −1.79484 + 0.704422i −0.800354 + 0.599528i \(0.795355\pi\)
−0.994483 + 0.104893i \(0.966550\pi\)
\(500\) 5.96308 + 2.38110i 0.266677 + 0.106486i
\(501\) −13.9669 + 35.5872i −0.623997 + 1.58992i
\(502\) 13.8448 23.8171i 0.617923 1.06301i
\(503\) 13.2908 + 16.6661i 0.592606 + 0.743104i 0.984205 0.177032i \(-0.0566495\pi\)
−0.391599 + 0.920136i \(0.628078\pi\)
\(504\) 1.96306 + 2.60149i 0.0874418 + 0.115880i
\(505\) 3.00430 3.76727i 0.133690 0.167641i
\(506\) 7.02332 + 18.0518i 0.312224 + 0.802500i
\(507\) 7.48561 6.94563i 0.332448 0.308466i
\(508\) 14.0465 0.969194i 0.623215 0.0430010i
\(509\) −33.0528 19.0831i −1.46504 0.845841i −0.465803 0.884888i \(-0.654234\pi\)
−0.999237 + 0.0390471i \(0.987568\pi\)
\(510\) −0.318726 0.000941880i −0.0141134 4.17072e-5i
\(511\) −17.2296 + 6.40867i −0.762193 + 0.283503i
\(512\) −14.5734 + 17.3094i −0.644061 + 0.764974i
\(513\) 25.7563 + 23.8984i 1.13717 + 1.05514i
\(514\) −12.9087 5.11038i −0.569380 0.225409i
\(515\) 0.414912 2.75276i 0.0182832 0.121301i
\(516\) 14.9652 5.77157i 0.658806 0.254079i
\(517\) −15.0858 3.44323i −0.663472 0.151433i
\(518\) −32.6207 + 4.22311i −1.43327 + 0.185553i
\(519\) −1.90954 + 0.435840i −0.0838195 + 0.0191312i
\(520\) −0.843344 2.20612i −0.0369831 0.0967447i
\(521\) −18.1119 + 10.4569i −0.793496 + 0.458125i −0.841192 0.540737i \(-0.818146\pi\)
0.0476958 + 0.998862i \(0.484812\pi\)
\(522\) −1.36006 2.37185i −0.0595282 0.103813i
\(523\) 11.6723 7.95803i 0.510394 0.347980i −0.280580 0.959831i \(-0.590527\pi\)
0.790974 + 0.611850i \(0.209574\pi\)
\(524\) 31.9207 15.1405i 1.39446 0.661414i
\(525\) 4.97590 20.1327i 0.217166 0.878665i
\(526\) −7.21517 15.0964i −0.314596 0.658235i
\(527\) 0.327558 1.06192i 0.0142686 0.0462578i
\(528\) 5.09317 + 17.2322i 0.221652 + 0.749937i
\(529\) −0.0627145 0.836867i −0.00272672 0.0363855i
\(530\) 0.380132 + 2.57360i 0.0165119 + 0.111790i
\(531\) −0.957209 + 0.460968i −0.0415393 + 0.0200043i
\(532\) 33.2869 + 5.83083i 1.44317 + 0.252798i
\(533\) 17.5278 + 8.44095i 0.759214 + 0.365618i
\(534\) 9.17462 29.4343i 0.397024 1.27375i
\(535\) 0.983080 0.303240i 0.0425023 0.0131102i
\(536\) 0.825257 + 2.76212i 0.0356457 + 0.119305i
\(537\) −3.74078 24.8185i −0.161427 1.07100i
\(538\) 37.0782 + 8.57821i 1.59855 + 0.369833i
\(539\) 15.7808 11.6859i 0.679729 0.503345i
\(540\) 1.56800 3.20736i 0.0674762 0.138023i
\(541\) 3.02017 0.455218i 0.129847 0.0195714i −0.0837970 0.996483i \(-0.526705\pi\)
0.213644 + 0.976911i \(0.431467\pi\)
\(542\) 6.05325 5.58340i 0.260010 0.239828i
\(543\) −12.0992 39.2245i −0.519224 1.68328i
\(544\) 2.29705 0.862581i 0.0984853 0.0369829i
\(545\) 2.32275 4.82325i 0.0994958 0.206605i
\(546\) −13.5126 + 7.43018i −0.578286 + 0.317982i
\(547\) −9.01528 18.7204i −0.385465 0.800427i −0.999934 0.0114858i \(-0.996344\pi\)
0.614469 0.788941i \(-0.289370\pi\)
\(548\) 1.66783 20.6196i 0.0712463 0.880826i
\(549\) −2.98281 + 0.223531i −0.127303 + 0.00954007i
\(550\) −10.9861 + 16.0117i −0.468447 + 0.682742i
\(551\) −27.0912 8.35653i −1.15412 0.356000i
\(552\) 0.196058 22.1144i 0.00834478 0.941250i
\(553\) 0.492380 27.5050i 0.0209381 1.16963i
\(554\) 0.0552764 + 0.0697362i 0.00234847 + 0.00296281i
\(555\) 2.57310 + 3.77404i 0.109222 + 0.160199i
\(556\) −27.5214 + 8.31141i −1.16717 + 0.352482i
\(557\) 4.16650 + 7.21659i 0.176540 + 0.305777i 0.940693 0.339258i \(-0.110176\pi\)
−0.764153 + 0.645035i \(0.776843\pi\)
\(558\) 1.15355 + 1.07670i 0.0488337 + 0.0455804i
\(559\) −2.86796 12.5653i −0.121302 0.531457i
\(560\) −0.410654 3.40913i −0.0173533 0.144062i
\(561\) 0.433590 1.89968i 0.0183062 0.0802047i
\(562\) 23.3254 15.8023i 0.983925 0.666578i
\(563\) −16.5135 2.48902i −0.695963 0.104900i −0.208473 0.978028i \(-0.566849\pi\)
−0.487490 + 0.873129i \(0.662087\pi\)
\(564\) 14.5379 + 10.0382i 0.612158 + 0.422684i
\(565\) −3.89431 + 4.19707i −0.163835 + 0.176572i
\(566\) 19.6087 + 9.51452i 0.824213 + 0.399925i
\(567\) −18.8634 6.19046i −0.792189 0.259975i
\(568\) 15.3182 31.1002i 0.642736 1.30493i
\(569\) 13.3698 23.1571i 0.560490 0.970797i −0.436964 0.899479i \(-0.643946\pi\)
0.997454 0.0713179i \(-0.0227205\pi\)
\(570\) −1.36998 4.48841i −0.0573821 0.187999i
\(571\) −11.5472 12.4449i −0.483235 0.520804i 0.443624 0.896213i \(-0.353693\pi\)
−0.926859 + 0.375409i \(0.877502\pi\)
\(572\) 14.2902 2.06759i 0.597502 0.0864505i
\(573\) −1.25647 1.00200i −0.0524899 0.0418593i
\(574\) 21.7409 + 18.0922i 0.907446 + 0.755152i
\(575\) 18.6848 14.9006i 0.779208 0.621398i
\(576\) −0.321923 + 3.46916i −0.0134135 + 0.144548i
\(577\) 17.1308 + 6.72335i 0.713166 + 0.279897i 0.694057 0.719921i \(-0.255822\pi\)
0.0191091 + 0.999817i \(0.493917\pi\)
\(578\) 23.4994 + 3.61302i 0.977448 + 0.150282i
\(579\) 3.15138 + 8.02957i 0.130967 + 0.333698i
\(580\) −0.0170257 + 2.88066i −0.000706953 + 0.119613i
\(581\) 16.6383 + 2.81325i 0.690271 + 0.116713i
\(582\) 14.2298 + 11.4168i 0.589844 + 0.473243i
\(583\) −15.8599 1.18854i −0.656850 0.0492241i
\(584\) −18.2293 7.34163i −0.754333 0.303799i
\(585\) −0.300471 0.204858i −0.0124230 0.00846984i
\(586\) 2.16821 + 0.168929i 0.0895678 + 0.00697841i
\(587\) −0.140687 −0.00580676 −0.00290338 0.999996i \(-0.500924\pi\)
−0.00290338 + 0.999996i \(0.500924\pi\)
\(588\) −21.6805 + 5.70925i −0.894089 + 0.235446i
\(589\) 16.3622 0.674194
\(590\) 1.11600 + 0.0869498i 0.0459450 + 0.00357967i
\(591\) −5.86397 3.99799i −0.241212 0.164455i
\(592\) −28.8177 20.1506i −1.18440 0.828185i
\(593\) 11.4042 + 0.854624i 0.468313 + 0.0350952i 0.306797 0.951775i \(-0.400743\pi\)
0.161516 + 0.986870i \(0.448362\pi\)
\(594\) 17.0239 + 13.6586i 0.698501 + 0.560421i
\(595\) −0.142217 + 0.344121i −0.00583033 + 0.0141076i
\(596\) −5.59803 0.0330863i −0.229304 0.00135527i
\(597\) 9.79590 + 24.9595i 0.400920 + 1.02153i
\(598\) −17.5641 2.70047i −0.718251 0.110431i
\(599\) 0.952438 + 0.373804i 0.0389156 + 0.0152732i 0.384719 0.923034i \(-0.374298\pi\)
−0.345803 + 0.938307i \(0.612394\pi\)
\(600\) 18.4281 12.3262i 0.752322 0.503213i
\(601\) 22.9737 18.3209i 0.937118 0.747327i −0.0305556 0.999533i \(-0.509728\pi\)
0.967673 + 0.252207i \(0.0811562\pi\)
\(602\) 0.390750 18.7341i 0.0159258 0.763544i
\(603\) 0.347036 + 0.276752i 0.0141324 + 0.0112702i
\(604\) 2.66425 + 18.4139i 0.108407 + 0.749252i
\(605\) −0.690920 0.744635i −0.0280899 0.0302737i
\(606\) −9.81852 32.1681i −0.398850 1.30674i
\(607\) 2.38773 4.13568i 0.0969151 0.167862i −0.813491 0.581577i \(-0.802436\pi\)
0.910406 + 0.413715i \(0.135769\pi\)
\(608\) 22.1050 + 28.5750i 0.896478 + 1.15887i
\(609\) 18.6457 2.46994i 0.755564 0.100087i
\(610\) 2.83539 + 1.37579i 0.114802 + 0.0557040i
\(611\) 9.65576 10.4064i 0.390630 0.420999i
\(612\) 0.214666 0.310894i 0.00867736 0.0125671i
\(613\) 6.55547 + 0.988078i 0.264773 + 0.0399081i 0.280087 0.959975i \(-0.409637\pi\)
−0.0153140 + 0.999883i \(0.504875\pi\)
\(614\) −14.9889 + 10.1545i −0.604901 + 0.409801i
\(615\) 0.874003 3.82926i 0.0352432 0.154410i
\(616\) 20.8842 + 2.12842i 0.841447 + 0.0857565i
\(617\) −6.33896 27.7728i −0.255197 1.11809i −0.926318 0.376743i \(-0.877044\pi\)
0.671121 0.741348i \(-0.265813\pi\)
\(618\) −14.2050 13.2586i −0.571408 0.533340i
\(619\) 12.9733 + 22.4704i 0.521440 + 0.903160i 0.999689 + 0.0249362i \(0.00793828\pi\)
−0.478249 + 0.878224i \(0.658728\pi\)
\(620\) −0.480651 1.59157i −0.0193034 0.0639189i
\(621\) −15.1319 22.1944i −0.607221 0.890630i
\(622\) 3.94764 + 4.98030i 0.158286 + 0.199692i
\(623\) −27.7536 22.9573i −1.11193 0.919767i
\(624\) −16.0276 3.85807i −0.641618 0.154446i
\(625\) 22.3909 + 6.90669i 0.895638 + 0.276268i
\(626\) −11.4507 + 16.6890i −0.457664 + 0.667026i
\(627\) 28.6094 2.14398i 1.14255 0.0856222i
\(628\) 23.9655 + 1.93847i 0.956329 + 0.0773535i
\(629\) 1.65445 + 3.43549i 0.0659671 + 0.136982i
\(630\) −0.351458 0.394991i −0.0140024 0.0157368i
\(631\) −8.78688 + 18.2461i −0.349800 + 0.726367i −0.999426 0.0338871i \(-0.989211\pi\)
0.649626 + 0.760254i \(0.274926\pi\)
\(632\) 20.1934 21.3800i 0.803250 0.850450i
\(633\) −0.104541 0.338912i −0.00415511 0.0134706i
\(634\) −17.1871 + 15.8530i −0.682587 + 0.629604i
\(635\) −2.25868 + 0.340442i −0.0896331 + 0.0135100i
\(636\) 16.3134 + 7.97524i 0.646868 + 0.316239i
\(637\) 2.04571 + 17.8986i 0.0810539 + 0.709168i
\(638\) −17.1580 3.96959i −0.679292 0.157157i
\(639\) −0.795589 5.27839i −0.0314730 0.208810i
\(640\) 2.13016 2.98958i 0.0842020 0.118174i
\(641\) −26.1774 + 8.07467i −1.03395 + 0.318930i −0.764867 0.644188i \(-0.777196\pi\)
−0.269079 + 0.963118i \(0.586719\pi\)
\(642\) 2.13687 6.85558i 0.0843357 0.270568i
\(643\) −19.8762 9.57187i −0.783841 0.377478i −0.00123806 0.999999i \(-0.500394\pi\)
−0.782603 + 0.622521i \(0.786108\pi\)
\(644\) −23.8185 10.0088i −0.938580 0.394404i
\(645\) −2.34442 + 1.12901i −0.0923114 + 0.0444548i
\(646\) −0.572429 3.87549i −0.0225219 0.152479i
\(647\) 0.839488 + 11.2022i 0.0330037 + 0.440404i 0.989089 + 0.147316i \(0.0470636\pi\)
−0.956086 + 0.293087i \(0.905317\pi\)
\(648\) −10.4486 18.4739i −0.410461 0.725722i
\(649\) −2.01711 + 6.53931i −0.0791785 + 0.256690i
\(650\) −7.68211 16.0734i −0.301317 0.630451i
\(651\) −9.86287 + 4.53406i −0.386556 + 0.177704i
\(652\) 9.19818 + 19.3926i 0.360228 + 0.759472i
\(653\) 26.7162 18.2148i 1.04549 0.712800i 0.0864994 0.996252i \(-0.472432\pi\)
0.958987 + 0.283452i \(0.0914796\pi\)
\(654\) −18.5876 32.4155i −0.726832 1.26754i
\(655\) −4.96363 + 2.86575i −0.193945 + 0.111974i
\(656\) 4.15286 + 29.9505i 0.162142 + 1.16937i
\(657\) −2.95008 + 0.673336i −0.115093 + 0.0262693i
\(658\) 17.2916 11.2683i 0.674097 0.439285i
\(659\) −16.8638 3.84906i −0.656921 0.149938i −0.118949 0.992900i \(-0.537952\pi\)
−0.537972 + 0.842962i \(0.680810\pi\)
\(660\) −1.04897 2.71988i −0.0408309 0.105871i
\(661\) −6.17484 + 40.9674i −0.240174 + 1.59345i 0.465590 + 0.885000i \(0.345842\pi\)
−0.705764 + 0.708447i \(0.749396\pi\)
\(662\) 30.7235 + 12.1630i 1.19410 + 0.472728i
\(663\) 1.31044 + 1.21591i 0.0508931 + 0.0472219i
\(664\) 11.1220 + 14.2030i 0.431616 + 0.551184i
\(665\) −5.45883 0.507485i −0.211684 0.0196794i
\(666\) −5.41436 0.0160002i −0.209802 0.000619996i
\(667\) 18.7709 + 10.8374i 0.726810 + 0.419624i
\(668\) 3.28656 + 47.6322i 0.127161 + 1.84295i
\(669\) −19.5806 + 18.1681i −0.757028 + 0.702419i
\(670\) −0.169573 0.435848i −0.00655117 0.0168383i
\(671\) −12.0127 + 15.0635i −0.463747 + 0.581520i
\(672\) −21.2428 11.0991i −0.819459 0.428156i
\(673\) 8.66067 + 10.8601i 0.333844 + 0.418628i 0.920214 0.391416i \(-0.128015\pi\)
−0.586369 + 0.810044i \(0.699443\pi\)
\(674\) −23.9903 + 41.2703i −0.924073 + 1.58967i
\(675\) 9.83826 25.0675i 0.378675 0.964848i
\(676\) 4.72938 11.8439i 0.181899 0.455536i
\(677\) −10.0195 + 3.93237i −0.385081 + 0.151133i −0.549981 0.835177i \(-0.685365\pi\)
0.164900 + 0.986310i \(0.447270\pi\)
\(678\) 8.77757 + 38.9878i 0.337100 + 1.49732i
\(679\) 18.6454 10.3244i 0.715545 0.396216i
\(680\) −0.360157 + 0.169525i −0.0138114 + 0.00650101i
\(681\) 1.68209 22.4459i 0.0644579 0.860131i
\(682\) 10.1378 0.729606i 0.388198 0.0279381i
\(683\) 2.45241 3.59702i 0.0938387 0.137636i −0.776448 0.630181i \(-0.782981\pi\)
0.870287 + 0.492545i \(0.163933\pi\)
\(684\) 5.30575 + 1.67101i 0.202870 + 0.0638928i
\(685\) 3.35605i 0.128228i
\(686\) −3.43307 + 25.9656i −0.131075 + 0.991372i
\(687\) 22.6883i 0.865613i
\(688\) 13.7978 14.5224i 0.526036 0.553660i
\(689\) 8.21947 12.0558i 0.313137 0.459288i
\(690\) 0.257540 + 3.57851i 0.00980439 + 0.136232i
\(691\) −3.68409 + 49.1608i −0.140149 + 1.87016i 0.276388 + 0.961046i \(0.410863\pi\)
−0.416537 + 0.909119i \(0.636757\pi\)
\(692\) −1.92147 + 1.51383i −0.0730433 + 0.0575471i
\(693\) 2.82774 1.56579i 0.107417 0.0594795i
\(694\) −47.3452 + 10.6591i −1.79720 + 0.404616i
\(695\) 4.34156 1.70394i 0.164685 0.0646341i
\(696\) 16.5123 + 11.4737i 0.625899 + 0.434908i
\(697\) 1.19789 3.05218i 0.0453735 0.115610i
\(698\) 15.2265 + 8.85115i 0.576333 + 0.335021i
\(699\) 26.5497 + 33.2922i 1.00420 + 1.25923i
\(700\) −5.16059 25.3811i −0.195052 0.959316i
\(701\) −1.03090 + 1.29271i −0.0389367 + 0.0488250i −0.800919 0.598773i \(-0.795655\pi\)
0.761982 + 0.647598i \(0.224226\pi\)
\(702\) −18.6611 + 7.26039i −0.704319 + 0.274026i
\(703\) −41.1557 + 38.1869i −1.55222 + 1.44025i
\(704\) 14.9702 + 16.7190i 0.564211 + 0.630122i
\(705\) −2.48211 1.43305i −0.0934818 0.0539717i
\(706\) −0.0203856 + 6.89836i −0.000767224 + 0.259623i
\(707\) −39.1230 3.63710i −1.47137 0.136787i
\(708\) 4.90750 6.07975i 0.184435 0.228491i
\(709\) −16.0924 14.9315i −0.604362 0.560766i 0.317513 0.948254i \(-0.397152\pi\)
−0.921875 + 0.387488i \(0.873343\pi\)
\(710\) −2.07021 + 5.22932i −0.0776937 + 0.196253i
\(711\) 0.674897 4.47765i 0.0253106 0.167925i
\(712\) −5.40110 38.1243i −0.202415 1.42877i
\(713\) −12.1956 2.78357i −0.456730 0.104246i
\(714\) 1.41897 + 2.17746i 0.0531036 + 0.0814892i
\(715\) −2.28371 + 0.521242i −0.0854059 + 0.0194933i
\(716\) −17.5045 26.0032i −0.654173 0.971786i
\(717\) −11.8928 + 6.86633i −0.444146 + 0.256428i
\(718\) −27.0970 + 15.5379i −1.01125 + 0.579869i
\(719\) 29.1133 19.8491i 1.08574 0.740246i 0.118208 0.992989i \(-0.462285\pi\)
0.967534 + 0.252743i \(0.0813326\pi\)
\(720\) 0.00668106 0.565182i 0.000248989 0.0210631i
\(721\) −20.6254 + 9.48168i −0.768128 + 0.353116i
\(722\) 27.7986 13.2861i 1.03456 0.494456i
\(723\) 14.4074 46.7075i 0.535815 1.73707i
\(724\) −34.6465 37.7855i −1.28763 1.40429i
\(725\) 1.62380 + 21.6680i 0.0603062 + 0.804731i
\(726\) −7.01416 + 1.03602i −0.260320 + 0.0384505i
\(727\) 30.5126 14.6941i 1.13165 0.544974i 0.228178 0.973620i \(-0.426723\pi\)
0.903473 + 0.428645i \(0.141009\pi\)
\(728\) −11.2709 + 15.6165i −0.417728 + 0.578785i
\(729\) −26.7578 12.8859i −0.991031 0.477256i
\(730\) 3.04374 + 0.948730i 0.112654 + 0.0351141i
\(731\) −2.07571 + 0.640273i −0.0767730 + 0.0236813i
\(732\) 19.1152 10.8860i 0.706518 0.402360i
\(733\) 3.34355 + 22.1830i 0.123497 + 0.819347i 0.961723 + 0.274024i \(0.0883549\pi\)
−0.838226 + 0.545323i \(0.816407\pi\)
\(734\) −5.35617 + 23.1513i −0.197700 + 0.854532i
\(735\) 3.43112 1.20677i 0.126559 0.0445123i
\(736\) −11.6148 25.0590i −0.428128 0.923685i
\(737\) 2.82718 0.426129i 0.104141 0.0156967i
\(738\) 3.15662 + 3.42225i 0.116197 + 0.125975i
\(739\) 2.38810 + 7.74202i 0.0878476 + 0.284795i 0.988827 0.149067i \(-0.0476269\pi\)
−0.900980 + 0.433861i \(0.857151\pi\)
\(740\) 4.92344 + 2.88148i 0.180989 + 0.105925i
\(741\) −11.4201 + 23.7141i −0.419528 + 0.871159i
\(742\) 15.8481 14.1015i 0.581804 0.517681i
\(743\) 3.74567 + 7.77796i 0.137415 + 0.285346i 0.958308 0.285736i \(-0.0922382\pi\)
−0.820893 + 0.571082i \(0.806524\pi\)
\(744\) −11.0583 3.51870i −0.405417 0.129002i
\(745\) 0.905648 0.0678689i 0.0331804 0.00248653i
\(746\) −26.8149 18.3984i −0.981764 0.673614i
\(747\) 2.65424 + 0.818724i 0.0971135 + 0.0299555i
\(748\) −0.527482 2.37568i −0.0192866 0.0868636i
\(749\) −6.46414 5.34703i −0.236195 0.195376i
\(750\) −5.69791 + 4.51645i −0.208058 + 0.164917i
\(751\) 19.7777 + 29.0085i 0.721697 + 1.05854i 0.995314 + 0.0966964i \(0.0308276\pi\)
−0.273617 + 0.961839i \(0.588220\pi\)
\(752\) 21.7774 + 3.54616i 0.794139 + 0.129315i
\(753\) 15.5976 + 27.0158i 0.568407 + 0.984509i
\(754\) 11.0245 11.8114i 0.401490 0.430146i
\(755\) −0.671659 2.94273i −0.0244442 0.107097i
\(756\) −28.8819 + 3.65233i −1.05042 + 0.132834i
\(757\) 0.191320 0.838227i 0.00695364 0.0304659i −0.971332 0.237727i \(-0.923598\pi\)
0.978286 + 0.207261i \(0.0664549\pi\)
\(758\) −10.2584 15.1423i −0.372602 0.549992i
\(759\) −21.6888 3.26906i −0.787254 0.118659i
\(760\) −3.94818 4.33152i −0.143216 0.157121i
\(761\) −6.46148 + 6.96382i −0.234228 + 0.252438i −0.839218 0.543795i \(-0.816987\pi\)
0.604989 + 0.796233i \(0.293177\pi\)
\(762\) −6.96009 + 14.3442i −0.252137 + 0.519635i
\(763\) −43.2752 + 5.73253i −1.56667 + 0.207532i
\(764\) −1.95411 0.458179i −0.0706971 0.0165763i
\(765\) −0.0306457 + 0.0530799i −0.00110800 + 0.00191911i
\(766\) 20.7545 6.33480i 0.749890 0.228886i
\(767\)