Properties

Label 196.2.p.a.103.12
Level $196$
Weight $2$
Character 196.103
Analytic conductor $1.565$
Analytic rank $0$
Dimension $312$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(3,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.p (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(312\)
Relative dimension: \(26\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 103.12
Character \(\chi\) \(=\) 196.103
Dual form 196.2.p.a.59.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.167781 - 1.40423i) q^{2} +(-1.97899 - 1.34925i) q^{3} +(-1.94370 + 0.471205i) q^{4} +(-0.0159493 - 0.00119524i) q^{5} +(-1.56262 + 3.00533i) q^{6} +(-2.59622 + 0.509531i) q^{7} +(0.987794 + 2.65033i) q^{8} +(0.999898 + 2.54770i) q^{9} +O(q^{10})\) \(q+(-0.167781 - 1.40423i) q^{2} +(-1.97899 - 1.34925i) q^{3} +(-1.94370 + 0.471205i) q^{4} +(-0.0159493 - 0.00119524i) q^{5} +(-1.56262 + 3.00533i) q^{6} +(-2.59622 + 0.509531i) q^{7} +(0.987794 + 2.65033i) q^{8} +(0.999898 + 2.54770i) q^{9} +(0.000997612 + 0.0225970i) q^{10} +(1.65591 + 0.649897i) q^{11} +(4.48234 + 1.69003i) q^{12} +(-2.07204 + 1.65240i) q^{13} +(1.15109 + 3.56019i) q^{14} +(0.0299509 + 0.0238850i) q^{15} +(3.55593 - 1.83176i) q^{16} +(-3.29762 - 3.55399i) q^{17} +(3.40978 - 1.83154i) q^{18} +(-0.682883 + 1.18279i) q^{19} +(0.0315639 - 0.00519222i) q^{20} +(5.82539 + 2.49461i) q^{21} +(0.634772 - 2.43431i) q^{22} +(-3.75388 + 4.04572i) q^{23} +(1.62114 - 6.57777i) q^{24} +(-4.94390 - 0.745173i) q^{25} +(2.66799 + 2.63237i) q^{26} +(-0.140232 + 0.614395i) q^{27} +(4.80618 - 2.21373i) q^{28} +(0.487147 + 2.13433i) q^{29} +(0.0285148 - 0.0460653i) q^{30} +(-4.96153 - 8.59362i) q^{31} +(-3.16882 - 4.68600i) q^{32} +(-2.40016 - 3.52038i) q^{33} +(-4.43732 + 5.22689i) q^{34} +(0.0420170 - 0.00502358i) q^{35} +(-3.14399 - 4.48080i) q^{36} +(1.78032 + 0.549155i) q^{37} +(1.77548 + 0.760473i) q^{38} +(6.33006 - 0.474372i) q^{39} +(-0.0125869 - 0.0434517i) q^{40} +(-1.78963 - 3.71620i) q^{41} +(2.52560 - 8.59871i) q^{42} +(4.01716 - 8.34173i) q^{43} +(-3.52483 - 0.482931i) q^{44} +(-0.0129026 - 0.0418292i) q^{45} +(6.31094 + 4.59250i) q^{46} +(-9.62933 + 1.45139i) q^{47} +(-9.50867 - 1.17282i) q^{48} +(6.48076 - 2.64571i) q^{49} +(-0.216899 + 7.06738i) q^{50} +(1.73073 + 11.4826i) q^{51} +(3.24881 - 4.18812i) q^{52} +(-8.11554 + 2.50331i) q^{53} +(0.886278 + 0.0938331i) q^{54} +(-0.0256339 - 0.0123446i) q^{55} +(-3.91496 - 6.37755i) q^{56} +(2.94730 - 1.41935i) q^{57} +(2.91535 - 1.04216i) q^{58} +(0.462993 + 6.17821i) q^{59} +(-0.0694703 - 0.0323123i) q^{60} +(2.72001 - 8.81806i) q^{61} +(-11.2349 + 8.40895i) q^{62} +(-3.89409 - 6.10492i) q^{63} +(-6.04853 + 5.23596i) q^{64} +(0.0350227 - 0.0238781i) q^{65} +(-4.54071 + 3.96102i) q^{66} +(4.78628 - 2.76336i) q^{67} +(8.08423 + 5.35403i) q^{68} +(12.8876 - 2.94151i) q^{69} +(-0.0141039 - 0.0581585i) q^{70} +(13.9367 + 3.18096i) q^{71} +(-5.76456 + 5.16666i) q^{72} +(-1.28303 + 8.51233i) q^{73} +(0.472434 - 2.59210i) q^{74} +(8.77851 + 8.14527i) q^{75} +(0.769984 - 2.62076i) q^{76} +(-4.63026 - 0.843540i) q^{77} +(-1.72819 - 8.80924i) q^{78} +(-0.651250 - 0.376000i) q^{79} +(-0.0589041 + 0.0249652i) q^{80} +(7.12534 - 6.61135i) q^{81} +(-4.91812 + 3.13655i) q^{82} +(2.16800 - 2.71859i) q^{83} +(-12.4983 - 2.10381i) q^{84} +(0.0483469 + 0.0606251i) q^{85} +(-12.3877 - 4.24142i) q^{86} +(1.91569 - 4.88111i) q^{87} +(-0.0867456 + 5.03068i) q^{88} +(1.89685 - 0.744461i) q^{89} +(-0.0565728 + 0.0251363i) q^{90} +(4.53754 - 5.34577i) q^{91} +(5.39005 - 9.63251i) q^{92} +(-1.77615 + 23.7010i) q^{93} +(3.65369 + 13.2782i) q^{94} +(0.0123052 - 0.0180485i) q^{95} +(-0.0515237 + 13.5491i) q^{96} -12.1281i q^{97} +(-4.80253 - 8.65654i) q^{98} +4.86859i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9} - 20 q^{10} + 9 q^{12} - 28 q^{13} - 51 q^{14} - 17 q^{16} - 22 q^{17} - 12 q^{18} - 14 q^{20} - 34 q^{21} - 18 q^{22} - 44 q^{24} - 48 q^{25} - 2 q^{26} - 36 q^{28} - 11 q^{30} - 13 q^{32} - 34 q^{33} - 98 q^{34} - 4 q^{36} - 58 q^{37} - 18 q^{38} + 30 q^{40} - 28 q^{41} - 26 q^{42} + 16 q^{44} - 28 q^{45} - 14 q^{46} - 24 q^{49} + 96 q^{50} - 14 q^{52} - 22 q^{53} - 17 q^{54} + 40 q^{56} + 34 q^{57} - 12 q^{58} + 98 q^{60} - 38 q^{61} - 4 q^{64} - 32 q^{65} - 176 q^{66} - 21 q^{68} + 28 q^{69} + 50 q^{70} - 120 q^{72} - 58 q^{73} - 14 q^{74} - 91 q^{76} - 18 q^{77} - 112 q^{78} + 66 q^{80} - 170 q^{81} + 114 q^{82} + 140 q^{84} - 24 q^{85} + 97 q^{86} + 127 q^{88} - 82 q^{89} + 266 q^{90} + 34 q^{92} + 226 q^{94} + 122 q^{96} + 183 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.167781 1.40423i −0.118639 0.992937i
\(3\) −1.97899 1.34925i −1.14257 0.778992i −0.164318 0.986407i \(-0.552542\pi\)
−0.978253 + 0.207416i \(0.933495\pi\)
\(4\) −1.94370 + 0.471205i −0.971850 + 0.235602i
\(5\) −0.0159493 0.00119524i −0.00713275 0.000534526i 0.0711632 0.997465i \(-0.477329\pi\)
−0.0782960 + 0.996930i \(0.524948\pi\)
\(6\) −1.56262 + 3.00533i −0.637936 + 1.22692i
\(7\) −2.59622 + 0.509531i −0.981280 + 0.192585i
\(8\) 0.987794 + 2.65033i 0.349238 + 0.937034i
\(9\) 0.999898 + 2.54770i 0.333299 + 0.849233i
\(10\) 0.000997612 0.0225970i 0.000315473 0.00714580i
\(11\) 1.65591 + 0.649897i 0.499276 + 0.195951i 0.601597 0.798800i \(-0.294532\pi\)
−0.102321 + 0.994751i \(0.532627\pi\)
\(12\) 4.48234 + 1.69003i 1.29394 + 0.487870i
\(13\) −2.07204 + 1.65240i −0.574681 + 0.458293i −0.867195 0.497968i \(-0.834080\pi\)
0.292514 + 0.956261i \(0.405508\pi\)
\(14\) 1.15109 + 3.56019i 0.307643 + 0.951502i
\(15\) 0.0299509 + 0.0238850i 0.00773329 + 0.00616709i
\(16\) 3.55593 1.83176i 0.888983 0.457940i
\(17\) −3.29762 3.55399i −0.799790 0.861968i 0.193079 0.981183i \(-0.438153\pi\)
−0.992868 + 0.119215i \(0.961962\pi\)
\(18\) 3.40978 1.83154i 0.803693 0.431698i
\(19\) −0.682883 + 1.18279i −0.156664 + 0.271350i −0.933664 0.358151i \(-0.883407\pi\)
0.777000 + 0.629501i \(0.216741\pi\)
\(20\) 0.0315639 0.00519222i 0.00705790 0.00116102i
\(21\) 5.82539 + 2.49461i 1.27120 + 0.544368i
\(22\) 0.634772 2.43431i 0.135334 0.518997i
\(23\) −3.75388 + 4.04572i −0.782738 + 0.843591i −0.990914 0.134500i \(-0.957057\pi\)
0.208175 + 0.978092i \(0.433248\pi\)
\(24\) 1.62114 6.57777i 0.330913 1.34268i
\(25\) −4.94390 0.745173i −0.988780 0.149035i
\(26\) 2.66799 + 2.63237i 0.523236 + 0.516251i
\(27\) −0.140232 + 0.614395i −0.0269876 + 0.118240i
\(28\) 4.80618 2.21373i 0.908283 0.418355i
\(29\) 0.487147 + 2.13433i 0.0904609 + 0.396335i 0.999806 0.0197080i \(-0.00627365\pi\)
−0.909345 + 0.416043i \(0.863417\pi\)
\(30\) 0.0285148 0.0460653i 0.00520607 0.00841033i
\(31\) −4.96153 8.59362i −0.891116 1.54346i −0.838539 0.544842i \(-0.816590\pi\)
−0.0525777 0.998617i \(-0.516744\pi\)
\(32\) −3.16882 4.68600i −0.560174 0.828375i
\(33\) −2.40016 3.52038i −0.417814 0.612820i
\(34\) −4.43732 + 5.22689i −0.760994 + 0.896404i
\(35\) 0.0420170 0.00502358i 0.00710217 0.000849140i
\(36\) −3.14399 4.48080i −0.523998 0.746801i
\(37\) 1.78032 + 0.549155i 0.292682 + 0.0902805i 0.437619 0.899160i \(-0.355822\pi\)
−0.144937 + 0.989441i \(0.546298\pi\)
\(38\) 1.77548 + 0.760473i 0.288020 + 0.123365i
\(39\) 6.33006 0.474372i 1.01362 0.0759603i
\(40\) −0.0125869 0.0434517i −0.00199016 0.00687031i
\(41\) −1.78963 3.71620i −0.279493 0.580373i 0.713211 0.700949i \(-0.247240\pi\)
−0.992704 + 0.120576i \(0.961526\pi\)
\(42\) 2.52560 8.59871i 0.389708 1.32681i
\(43\) 4.01716 8.34173i 0.612612 1.27210i −0.331804 0.943348i \(-0.607657\pi\)
0.944416 0.328753i \(-0.106628\pi\)
\(44\) −3.52483 0.482931i −0.531388 0.0728047i
\(45\) −0.0129026 0.0418292i −0.00192341 0.00623553i
\(46\) 6.31094 + 4.59250i 0.930497 + 0.677127i
\(47\) −9.62933 + 1.45139i −1.40458 + 0.211707i −0.807213 0.590260i \(-0.799025\pi\)
−0.597369 + 0.801967i \(0.703787\pi\)
\(48\) −9.50867 1.17282i −1.37246 0.169281i
\(49\) 6.48076 2.64571i 0.925822 0.377959i
\(50\) −0.216899 + 7.06738i −0.0306741 + 0.999478i
\(51\) 1.73073 + 11.4826i 0.242350 + 1.60789i
\(52\) 3.24881 4.18812i 0.450529 0.580788i
\(53\) −8.11554 + 2.50331i −1.11475 + 0.343856i −0.796796 0.604248i \(-0.793474\pi\)
−0.317959 + 0.948105i \(0.602997\pi\)
\(54\) 0.886278 + 0.0938331i 0.120607 + 0.0127691i
\(55\) −0.0256339 0.0123446i −0.00345647 0.00166455i
\(56\) −3.91496 6.37755i −0.523159 0.852235i
\(57\) 2.94730 1.41935i 0.390379 0.187997i
\(58\) 2.91535 1.04216i 0.382804 0.136843i
\(59\) 0.462993 + 6.17821i 0.0602765 + 0.804334i 0.942650 + 0.333784i \(0.108326\pi\)
−0.882373 + 0.470550i \(0.844055\pi\)
\(60\) −0.0694703 0.0323123i −0.00896857 0.00417150i
\(61\) 2.72001 8.81806i 0.348262 1.12904i −0.596867 0.802340i \(-0.703588\pi\)
0.945129 0.326697i \(-0.105936\pi\)
\(62\) −11.2349 + 8.40895i −1.42684 + 1.06794i
\(63\) −3.89409 6.10492i −0.490609 0.769147i
\(64\) −6.04853 + 5.23596i −0.756066 + 0.654495i
\(65\) 0.0350227 0.0238781i 0.00434403 0.00296171i
\(66\) −4.54071 + 3.96102i −0.558923 + 0.487567i
\(67\) 4.78628 2.76336i 0.584737 0.337598i −0.178277 0.983980i \(-0.557052\pi\)
0.763014 + 0.646382i \(0.223719\pi\)
\(68\) 8.08423 + 5.35403i 0.980357 + 0.649271i
\(69\) 12.8876 2.94151i 1.55148 0.354116i
\(70\) −0.0141039 0.0581585i −0.00168574 0.00695127i
\(71\) 13.9367 + 3.18096i 1.65398 + 0.377510i 0.944834 0.327551i \(-0.106223\pi\)
0.709147 + 0.705061i \(0.249080\pi\)
\(72\) −5.76456 + 5.16666i −0.679360 + 0.608897i
\(73\) −1.28303 + 8.51233i −0.150167 + 0.996293i 0.779104 + 0.626895i \(0.215674\pi\)
−0.929271 + 0.369399i \(0.879564\pi\)
\(74\) 0.472434 2.59210i 0.0549193 0.301326i
\(75\) 8.77851 + 8.14527i 1.01365 + 0.940534i
\(76\) 0.769984 2.62076i 0.0883232 0.300622i
\(77\) −4.63026 0.843540i −0.527667 0.0961303i
\(78\) −1.72819 8.80924i −0.195679 0.997450i
\(79\) −0.651250 0.376000i −0.0732714 0.0423033i 0.462917 0.886402i \(-0.346803\pi\)
−0.536188 + 0.844099i \(0.680136\pi\)
\(80\) −0.0589041 + 0.0249652i −0.00658568 + 0.00279119i
\(81\) 7.12534 6.61135i 0.791704 0.734594i
\(82\) −4.91812 + 3.13655i −0.543115 + 0.346374i
\(83\) 2.16800 2.71859i 0.237969 0.298404i −0.648478 0.761233i \(-0.724594\pi\)
0.886447 + 0.462829i \(0.153166\pi\)
\(84\) −12.4983 2.10381i −1.36367 0.229545i
\(85\) 0.0483469 + 0.0606251i 0.00524396 + 0.00657572i
\(86\) −12.3877 4.24142i −1.33580 0.457364i
\(87\) 1.91569 4.88111i 0.205384 0.523309i
\(88\) −0.0867456 + 5.03068i −0.00924711 + 0.536272i
\(89\) 1.89685 0.744461i 0.201066 0.0789127i −0.262671 0.964885i \(-0.584603\pi\)
0.463737 + 0.885973i \(0.346508\pi\)
\(90\) −0.0565728 + 0.0251363i −0.00596330 + 0.00264960i
\(91\) 4.53754 5.34577i 0.475663 0.560389i
\(92\) 5.39005 9.63251i 0.561952 1.00426i
\(93\) −1.77615 + 23.7010i −0.184178 + 2.45768i
\(94\) 3.65369 + 13.2782i 0.376850 + 1.36955i
\(95\) 0.0123052 0.0180485i 0.00126249 0.00185173i
\(96\) −0.0515237 + 13.5491i −0.00525861 + 1.38285i
\(97\) 12.1281i 1.23142i −0.787973 0.615710i \(-0.788869\pi\)
0.787973 0.615710i \(-0.211131\pi\)
\(98\) −4.80253 8.65654i −0.485129 0.874443i
\(99\) 4.86859i 0.489312i
\(100\) 9.96059 0.881197i 0.996059 0.0881197i
\(101\) −6.66276 + 9.77248i −0.662970 + 0.972398i 0.336558 + 0.941663i \(0.390737\pi\)
−0.999528 + 0.0307352i \(0.990215\pi\)
\(102\) 15.8338 4.35690i 1.56778 0.431397i
\(103\) 0.411098 5.48572i 0.0405067 0.540524i −0.939629 0.342195i \(-0.888830\pi\)
0.980136 0.198329i \(-0.0635513\pi\)
\(104\) −6.42616 3.85937i −0.630136 0.378443i
\(105\) −0.0899294 0.0467500i −0.00877621 0.00456233i
\(106\) 4.87685 + 10.9760i 0.473681 + 1.06609i
\(107\) 9.13170 3.58393i 0.882794 0.346471i 0.119740 0.992805i \(-0.461794\pi\)
0.763055 + 0.646334i \(0.223699\pi\)
\(108\) −0.0169377 1.26028i −0.00162983 0.121270i
\(109\) −3.93663 + 10.0304i −0.377061 + 0.960736i 0.608823 + 0.793306i \(0.291642\pi\)
−0.985884 + 0.167430i \(0.946453\pi\)
\(110\) −0.0130338 + 0.0380670i −0.00124272 + 0.00362954i
\(111\) −2.78228 3.48887i −0.264082 0.331149i
\(112\) −8.29866 + 6.56752i −0.784149 + 0.620572i
\(113\) −8.16471 + 10.2382i −0.768072 + 0.963131i −0.999954 0.00961243i \(-0.996940\pi\)
0.231882 + 0.972744i \(0.425512\pi\)
\(114\) −2.48758 3.90054i −0.232983 0.365319i
\(115\) 0.0647075 0.0600397i 0.00603400 0.00559874i
\(116\) −1.95257 3.91895i −0.181292 0.363865i
\(117\) −6.28165 3.62671i −0.580738 0.335289i
\(118\) 8.59791 1.68673i 0.791502 0.155276i
\(119\) 10.3722 + 7.54670i 0.950820 + 0.691805i
\(120\) −0.0337180 + 0.102973i −0.00307802 + 0.00940014i
\(121\) −5.74390 5.32956i −0.522172 0.484505i
\(122\) −12.8389 2.34001i −1.16238 0.211854i
\(123\) −1.47244 + 9.76899i −0.132765 + 0.880840i
\(124\) 13.6931 + 14.3655i 1.22967 + 1.29006i
\(125\) 0.155926 + 0.0355892i 0.0139465 + 0.00318319i
\(126\) −7.91933 + 6.49247i −0.705510 + 0.578395i
\(127\) −6.66561 + 1.52138i −0.591477 + 0.135001i −0.507775 0.861490i \(-0.669532\pi\)
−0.0837027 + 0.996491i \(0.526675\pi\)
\(128\) 8.36730 + 7.61500i 0.739572 + 0.673077i
\(129\) −19.2050 + 11.0880i −1.69091 + 0.976247i
\(130\) −0.0394063 0.0451735i −0.00345616 0.00396197i
\(131\) 1.06471 0.725905i 0.0930239 0.0634226i −0.515915 0.856640i \(-0.672548\pi\)
0.608939 + 0.793217i \(0.291596\pi\)
\(132\) 6.32401 + 5.71160i 0.550434 + 0.497131i
\(133\) 1.17025 3.41873i 0.101474 0.296442i
\(134\) −4.68343 6.25738i −0.404586 0.540555i
\(135\) 0.00297095 0.00963158i 0.000255699 0.000828954i
\(136\) 6.16188 12.2504i 0.528377 1.05046i
\(137\) −1.17209 15.6405i −0.100138 1.33626i −0.790354 0.612651i \(-0.790103\pi\)
0.690215 0.723604i \(-0.257516\pi\)
\(138\) −6.29284 17.6036i −0.535682 1.49852i
\(139\) −14.2955 + 6.88434i −1.21253 + 0.583922i −0.927221 0.374515i \(-0.877809\pi\)
−0.285306 + 0.958437i \(0.592095\pi\)
\(140\) −0.0793013 + 0.0295629i −0.00670218 + 0.00249853i
\(141\) 21.0146 + 10.1201i 1.76975 + 0.852268i
\(142\) 2.12847 20.1040i 0.178617 1.68709i
\(143\) −4.50501 + 1.38961i −0.376728 + 0.116205i
\(144\) 8.22235 + 7.22787i 0.685195 + 0.602323i
\(145\) −0.00521864 0.0346234i −0.000433384 0.00287532i
\(146\) 12.1685 + 0.373453i 1.00707 + 0.0309072i
\(147\) −16.3951 3.50834i −1.35224 0.289363i
\(148\) −3.71916 0.228498i −0.305713 0.0187824i
\(149\) −14.0126 + 2.11206i −1.14796 + 0.173027i −0.695343 0.718678i \(-0.744747\pi\)
−0.452616 + 0.891705i \(0.649509\pi\)
\(150\) 9.96492 13.6936i 0.813633 1.11808i
\(151\) −1.77169 5.74368i −0.144178 0.467414i 0.854464 0.519511i \(-0.173886\pi\)
−0.998642 + 0.0520968i \(0.983410\pi\)
\(152\) −3.80933 0.641517i −0.308977 0.0520339i
\(153\) 5.75721 11.9550i 0.465443 0.966501i
\(154\) −0.407651 + 6.64346i −0.0328495 + 0.535345i
\(155\) 0.0688616 + 0.142993i 0.00553110 + 0.0114854i
\(156\) −12.0802 + 3.90479i −0.967190 + 0.312633i
\(157\) 23.1508 1.73491i 1.84763 0.138461i 0.895680 0.444700i \(-0.146690\pi\)
0.951955 + 0.306238i \(0.0990705\pi\)
\(158\) −0.418721 + 0.977588i −0.0333116 + 0.0777727i
\(159\) 19.4382 + 5.99588i 1.54155 + 0.475505i
\(160\) 0.0449397 + 0.0785260i 0.00355280 + 0.00620802i
\(161\) 7.68449 12.4163i 0.605623 0.978543i
\(162\) −10.4793 8.89633i −0.823333 0.698961i
\(163\) −9.13348 13.3964i −0.715390 1.04928i −0.995990 0.0894592i \(-0.971486\pi\)
0.280601 0.959825i \(-0.409466\pi\)
\(164\) 5.22959 + 6.37989i 0.408362 + 0.498186i
\(165\) 0.0340732 + 0.0590165i 0.00265260 + 0.00459443i
\(166\) −4.18126 2.58824i −0.324529 0.200886i
\(167\) 0.311301 + 1.36390i 0.0240892 + 0.105542i 0.985543 0.169424i \(-0.0541907\pi\)
−0.961454 + 0.274965i \(0.911334\pi\)
\(168\) −0.857252 + 17.9034i −0.0661384 + 1.38128i
\(169\) −1.32983 + 5.82638i −0.102295 + 0.448183i
\(170\) 0.0770196 0.0780617i 0.00590714 0.00598706i
\(171\) −3.69620 0.557113i −0.282656 0.0426035i
\(172\) −3.87750 + 18.1067i −0.295656 + 1.38062i
\(173\) −1.13526 + 1.22352i −0.0863122 + 0.0930225i −0.774731 0.632291i \(-0.782115\pi\)
0.688419 + 0.725313i \(0.258305\pi\)
\(174\) −7.17559 1.87111i −0.543980 0.141848i
\(175\) 13.2152 0.584436i 0.998972 0.0441792i
\(176\) 7.07876 0.722242i 0.533582 0.0544411i
\(177\) 7.41971 12.8513i 0.557699 0.965964i
\(178\) −1.36365 2.53871i −0.102210 0.190284i
\(179\) −13.2242 14.2523i −0.988424 1.06527i −0.997865 0.0653121i \(-0.979196\pi\)
0.00944103 0.999955i \(-0.496995\pi\)
\(180\) 0.0447889 + 0.0752236i 0.00333837 + 0.00560684i
\(181\) 6.08611 + 4.85351i 0.452377 + 0.360759i 0.823016 0.568018i \(-0.192290\pi\)
−0.370639 + 0.928777i \(0.620861\pi\)
\(182\) −8.26797 5.47481i −0.612863 0.405820i
\(183\) −17.2807 + 13.7809i −1.27742 + 1.01871i
\(184\) −14.4306 5.95270i −1.06384 0.438839i
\(185\) −0.0277385 0.0108865i −0.00203937 0.000800395i
\(186\) 33.5796 1.48247i 2.46218 0.108700i
\(187\) −3.15084 8.02820i −0.230412 0.587080i
\(188\) 18.0326 7.35845i 1.31516 0.536670i
\(189\) 0.0510193 1.66656i 0.00371111 0.121224i
\(190\) −0.0274087 0.0142511i −0.00198844 0.00103389i
\(191\) −18.0930 1.35588i −1.30916 0.0981081i −0.598204 0.801344i \(-0.704119\pi\)
−0.710957 + 0.703236i \(0.751738\pi\)
\(192\) 19.0346 2.20093i 1.37371 0.158838i
\(193\) −19.9473 13.5998i −1.43583 0.978936i −0.996756 0.0804872i \(-0.974352\pi\)
−0.439079 0.898448i \(-0.644695\pi\)
\(194\) −17.0306 + 2.03486i −1.22272 + 0.146095i
\(195\) −0.101527 −0.00727051
\(196\) −11.3500 + 8.19624i −0.810712 + 0.585445i
\(197\) 26.2360 1.86924 0.934620 0.355648i \(-0.115740\pi\)
0.934620 + 0.355648i \(0.115740\pi\)
\(198\) 6.83661 0.816858i 0.485856 0.0580516i
\(199\) 17.6162 + 12.0105i 1.24878 + 0.851402i 0.993317 0.115418i \(-0.0368206\pi\)
0.255460 + 0.966820i \(0.417773\pi\)
\(200\) −2.90860 13.8391i −0.205669 0.978569i
\(201\) −13.2005 0.989239i −0.931090 0.0697755i
\(202\) 14.8406 + 7.71639i 1.04418 + 0.542923i
\(203\) −2.35225 5.29298i −0.165096 0.371495i
\(204\) −8.77468 21.5032i −0.614351 1.50553i
\(205\) 0.0241016 + 0.0614099i 0.00168333 + 0.00428905i
\(206\) −7.77216 + 0.343125i −0.541512 + 0.0239067i
\(207\) −14.0608 5.51845i −0.977292 0.383559i
\(208\) −4.34124 + 9.67130i −0.301011 + 0.670584i
\(209\) −1.89948 + 1.51479i −0.131390 + 0.104780i
\(210\) −0.0505591 + 0.134125i −0.00348891 + 0.00925550i
\(211\) −10.2851 8.20209i −0.708056 0.564655i 0.201877 0.979411i \(-0.435296\pi\)
−0.909933 + 0.414755i \(0.863867\pi\)
\(212\) 14.5946 8.68976i 1.00236 0.596815i
\(213\) −23.2887 25.0992i −1.59571 1.71977i
\(214\) −6.56477 12.2216i −0.448758 0.835455i
\(215\) −0.0740414 + 0.128243i −0.00504958 + 0.00874613i
\(216\) −1.76687 + 0.235235i −0.120220 + 0.0160057i
\(217\) 17.2599 + 19.7829i 1.17168 + 1.34295i
\(218\) 14.7454 + 3.84501i 0.998685 + 0.260417i
\(219\) 14.0244 15.1147i 0.947681 1.02136i
\(220\) 0.0556414 + 0.0119154i 0.00375134 + 0.000803338i
\(221\) 12.7054 + 1.91503i 0.854658 + 0.128819i
\(222\) −4.43235 + 4.49232i −0.297480 + 0.301504i
\(223\) −3.04308 + 13.3326i −0.203779 + 0.892816i 0.764831 + 0.644231i \(0.222823\pi\)
−0.968610 + 0.248585i \(0.920035\pi\)
\(224\) 10.6146 + 10.5513i 0.709220 + 0.704987i
\(225\) −3.04492 13.3407i −0.202995 0.889378i
\(226\) 15.7467 + 9.74732i 1.04745 + 0.648382i
\(227\) 10.8866 + 18.8562i 0.722571 + 1.25153i 0.959966 + 0.280116i \(0.0903729\pi\)
−0.237396 + 0.971413i \(0.576294\pi\)
\(228\) −5.05986 + 4.14756i −0.335098 + 0.274679i
\(229\) −5.05667 7.41677i −0.334154 0.490114i 0.621984 0.783030i \(-0.286327\pi\)
−0.956138 + 0.292916i \(0.905374\pi\)
\(230\) −0.0951660 0.0807903i −0.00627506 0.00532716i
\(231\) 8.02509 + 7.91675i 0.528012 + 0.520884i
\(232\) −5.17549 + 3.39938i −0.339787 + 0.223180i
\(233\) 23.3834 + 7.21284i 1.53190 + 0.472529i 0.942188 0.335085i \(-0.108765\pi\)
0.589712 + 0.807614i \(0.299241\pi\)
\(234\) −4.03878 + 9.42934i −0.264023 + 0.616415i
\(235\) 0.155316 0.0116393i 0.0101317 0.000759266i
\(236\) −3.81112 11.7904i −0.248083 0.767490i
\(237\) 0.781500 + 1.62280i 0.0507639 + 0.105412i
\(238\) 8.85701 15.8311i 0.574115 1.02618i
\(239\) −2.20801 + 4.58497i −0.142824 + 0.296577i −0.960094 0.279678i \(-0.909772\pi\)
0.817270 + 0.576255i \(0.195487\pi\)
\(240\) 0.150255 + 0.0300707i 0.00969892 + 0.00194106i
\(241\) 1.50596 + 4.88220i 0.0970073 + 0.314490i 0.991050 0.133492i \(-0.0426191\pi\)
−0.894043 + 0.447982i \(0.852143\pi\)
\(242\) −6.52018 + 8.95992i −0.419133 + 0.575966i
\(243\) −21.1519 + 3.18814i −1.35689 + 0.204519i
\(244\) −1.13177 + 18.4213i −0.0724543 + 1.17931i
\(245\) −0.106526 + 0.0344513i −0.00680569 + 0.00220101i
\(246\) 13.9649 + 0.428585i 0.890370 + 0.0273256i
\(247\) −0.539475 3.57918i −0.0343260 0.227738i
\(248\) 17.8750 21.6384i 1.13506 1.37404i
\(249\) −7.95852 + 2.45488i −0.504351 + 0.155572i
\(250\) 0.0238138 0.224927i 0.00150611 0.0142256i
\(251\) 7.64898 + 3.68355i 0.482799 + 0.232504i 0.659419 0.751775i \(-0.270802\pi\)
−0.176620 + 0.984279i \(0.556516\pi\)
\(252\) 10.4456 + 10.0312i 0.658012 + 0.631907i
\(253\) −8.84540 + 4.25972i −0.556105 + 0.267806i
\(254\) 3.25473 + 9.10476i 0.204220 + 0.571284i
\(255\) −0.0138795 0.185209i −0.000869167 0.0115982i
\(256\) 9.28931 13.0272i 0.580582 0.814202i
\(257\) −1.56299 + 5.06709i −0.0974967 + 0.316077i −0.991162 0.132658i \(-0.957649\pi\)
0.893665 + 0.448734i \(0.148125\pi\)
\(258\) 18.7923 + 25.1078i 1.16996 + 1.56315i
\(259\) −4.90191 0.518602i −0.304590 0.0322244i
\(260\) −0.0568221 + 0.0629146i −0.00352396 + 0.00390180i
\(261\) −4.95053 + 3.37522i −0.306430 + 0.208921i
\(262\) −1.19797 1.37330i −0.0740110 0.0848425i
\(263\) 0.775770 0.447891i 0.0478360 0.0276182i −0.475891 0.879504i \(-0.657874\pi\)
0.523727 + 0.851886i \(0.324541\pi\)
\(264\) 6.95933 9.83863i 0.428317 0.605526i
\(265\) 0.132429 0.0302261i 0.00813507 0.00185678i
\(266\) −4.99702 1.06970i −0.306387 0.0655873i
\(267\) −4.75832 1.08606i −0.291205 0.0664656i
\(268\) −8.00098 + 7.62646i −0.488738 + 0.465860i
\(269\) −1.46427 + 9.71481i −0.0892783 + 0.592323i 0.898799 + 0.438362i \(0.144441\pi\)
−0.988077 + 0.153961i \(0.950797\pi\)
\(270\) −0.0140234 0.00255589i −0.000853436 0.000155546i
\(271\) −0.444104 0.412069i −0.0269774 0.0250314i 0.666569 0.745443i \(-0.267762\pi\)
−0.693546 + 0.720412i \(0.743953\pi\)
\(272\) −18.2362 6.59729i −1.10573 0.400019i
\(273\) −16.1925 + 4.45694i −0.980017 + 0.269746i
\(274\) −21.7661 + 4.27005i −1.31494 + 0.257963i
\(275\) −7.70238 4.44697i −0.464471 0.268162i
\(276\) −23.6636 + 11.7901i −1.42438 + 0.709681i
\(277\) −11.8402 + 10.9861i −0.711411 + 0.660093i −0.950436 0.310921i \(-0.899363\pi\)
0.239025 + 0.971013i \(0.423172\pi\)
\(278\) 12.0657 + 18.9190i 0.723651 + 1.13469i
\(279\) 16.9329 21.2332i 1.01375 1.27120i
\(280\) 0.0548183 + 0.106397i 0.00327602 + 0.00635843i
\(281\) −2.78044 3.48656i −0.165867 0.207991i 0.691951 0.721945i \(-0.256752\pi\)
−0.857818 + 0.513954i \(0.828180\pi\)
\(282\) 10.6851 31.2073i 0.636287 1.85837i
\(283\) 1.35965 3.46433i 0.0808227 0.205933i −0.884750 0.466066i \(-0.845671\pi\)
0.965573 + 0.260133i \(0.0837663\pi\)
\(284\) −28.5876 + 0.384208i −1.69636 + 0.0227986i
\(285\) −0.0487039 + 0.0191149i −0.00288497 + 0.00113227i
\(286\) 2.70718 + 6.09290i 0.160079 + 0.360281i
\(287\) 6.53979 + 8.73622i 0.386032 + 0.515683i
\(288\) 8.77001 12.7587i 0.516778 0.751815i
\(289\) −0.486127 + 6.48691i −0.0285957 + 0.381583i
\(290\) −0.0477435 + 0.0131373i −0.00280359 + 0.000771448i
\(291\) −16.3639 + 24.0014i −0.959266 + 1.40698i
\(292\) −1.51723 17.1500i −0.0887893 1.00363i
\(293\) 24.3816i 1.42439i 0.701982 + 0.712195i \(0.252299\pi\)
−0.701982 + 0.712195i \(0.747701\pi\)
\(294\) −2.17571 + 23.6110i −0.126890 + 1.37702i
\(295\) 0.0990916i 0.00576934i
\(296\) 0.303142 + 5.26088i 0.0176198 + 0.305783i
\(297\) −0.631505 + 0.926248i −0.0366436 + 0.0537463i
\(298\) 5.31687 + 19.3225i 0.307998 + 1.11932i
\(299\) 1.09306 14.5858i 0.0632130 0.843519i
\(300\) −20.9009 11.6955i −1.20671 0.675238i
\(301\) −6.17909 + 23.7039i −0.356157 + 1.36627i
\(302\) −7.76816 + 3.45153i −0.447008 + 0.198613i
\(303\) 26.3711 10.3499i 1.51498 0.594586i
\(304\) −0.261701 + 5.45679i −0.0150096 + 0.312969i
\(305\) −0.0539220 + 0.137391i −0.00308757 + 0.00786699i
\(306\) −17.7534 6.07860i −1.01490 0.347490i
\(307\) −13.1605 16.5027i −0.751109 0.941860i 0.248533 0.968623i \(-0.420051\pi\)
−0.999642 + 0.0267631i \(0.991480\pi\)
\(308\) 9.39731 0.542212i 0.535461 0.0308954i
\(309\) −8.21518 + 10.3015i −0.467345 + 0.586033i
\(310\) 0.189240 0.120689i 0.0107481 0.00685465i
\(311\) −16.4397 + 15.2538i −0.932211 + 0.864965i −0.991076 0.133301i \(-0.957442\pi\)
0.0588647 + 0.998266i \(0.481252\pi\)
\(312\) 7.51003 + 16.3082i 0.425172 + 0.923269i
\(313\) 15.4240 + 8.90503i 0.871814 + 0.503342i 0.867951 0.496650i \(-0.165437\pi\)
0.00386363 + 0.999993i \(0.498770\pi\)
\(314\) −6.32047 32.2179i −0.356685 1.81816i
\(315\) 0.0548113 + 0.102024i 0.00308827 + 0.00574838i
\(316\) 1.44301 + 0.423958i 0.0811755 + 0.0238495i
\(317\) −7.86770 7.30016i −0.441894 0.410018i 0.427595 0.903971i \(-0.359361\pi\)
−0.869489 + 0.493953i \(0.835552\pi\)
\(318\) 5.15822 28.3016i 0.289258 1.58707i
\(319\) −0.580423 + 3.85086i −0.0324975 + 0.215607i
\(320\) 0.102728 0.0762807i 0.00574268 0.00426422i
\(321\) −22.9072 5.22841i −1.27855 0.291822i
\(322\) −18.7246 8.70754i −1.04348 0.485252i
\(323\) 6.45550 1.47343i 0.359194 0.0819836i
\(324\) −10.7342 + 16.2080i −0.596345 + 0.900443i
\(325\) 11.4753 6.62526i 0.636535 0.367504i
\(326\) −17.2791 + 15.0731i −0.957000 + 0.834823i
\(327\) 21.3241 14.5385i 1.17922 0.803981i
\(328\) 8.08138 8.41395i 0.446220 0.464583i
\(329\) 24.2604 8.67457i 1.33752 0.478245i
\(330\) 0.0771557 0.0577483i 0.00424728 0.00317894i
\(331\) −1.29386 + 4.19458i −0.0711168 + 0.230555i −0.984152 0.177325i \(-0.943256\pi\)
0.913036 + 0.407880i \(0.133732\pi\)
\(332\) −2.93293 + 6.30569i −0.160966 + 0.346070i
\(333\) 0.381054 + 5.08481i 0.0208816 + 0.278646i
\(334\) 1.86299 0.665972i 0.101938 0.0364404i
\(335\) −0.0796408 + 0.0383530i −0.00435124 + 0.00209545i
\(336\) 25.2842 1.80007i 1.37937 0.0982020i
\(337\) −19.0708 9.18402i −1.03885 0.500286i −0.164908 0.986309i \(-0.552733\pi\)
−0.873946 + 0.486023i \(0.838447\pi\)
\(338\) 8.40468 + 0.889831i 0.457154 + 0.0484004i
\(339\) 29.9719 9.24509i 1.62785 0.502125i
\(340\) −0.122539 0.0950557i −0.00664559 0.00515512i
\(341\) −2.63088 17.4547i −0.142470 0.945228i
\(342\) −0.162160 + 5.28377i −0.00876859 + 0.285714i
\(343\) −15.4774 + 10.1710i −0.835702 + 0.549183i
\(344\) 26.0765 + 2.40692i 1.40595 + 0.129772i
\(345\) −0.209064 + 0.0315114i −0.0112556 + 0.00169652i
\(346\) 1.90857 + 1.38888i 0.102605 + 0.0746665i
\(347\) 4.10622 + 13.3120i 0.220433 + 0.714627i 0.996471 + 0.0839405i \(0.0267506\pi\)
−0.776037 + 0.630687i \(0.782773\pi\)
\(348\) −1.42353 + 10.3901i −0.0763092 + 0.556967i
\(349\) 3.28486 6.82108i 0.175835 0.365124i −0.794362 0.607445i \(-0.792194\pi\)
0.970196 + 0.242321i \(0.0779087\pi\)
\(350\) −3.03793 18.4590i −0.162384 0.986676i
\(351\) −0.724660 1.50477i −0.0386795 0.0803188i
\(352\) −2.20187 9.81900i −0.117360 0.523355i
\(353\) 24.1002 1.80606i 1.28272 0.0961267i 0.584138 0.811655i \(-0.301433\pi\)
0.698584 + 0.715528i \(0.253814\pi\)
\(354\) −19.2910 8.26274i −1.02531 0.439160i
\(355\) −0.218479 0.0673918i −0.0115956 0.00357678i
\(356\) −3.33612 + 2.34081i −0.176814 + 0.124063i
\(357\) −10.3441 28.9296i −0.547469 1.53112i
\(358\) −17.7947 + 20.9610i −0.940478 + 1.10783i
\(359\) 8.07426 + 11.8428i 0.426143 + 0.625037i 0.977926 0.208951i \(-0.0670048\pi\)
−0.551783 + 0.833988i \(0.686052\pi\)
\(360\) 0.0981162 0.0755148i 0.00517118 0.00397998i
\(361\) 8.56734 + 14.8391i 0.450913 + 0.781004i
\(362\) 5.79429 9.36060i 0.304541 0.491982i
\(363\) 4.17620 + 18.2971i 0.219193 + 0.960349i
\(364\) −6.30065 + 12.5287i −0.330244 + 0.656681i
\(365\) 0.0306377 0.134232i 0.00160365 0.00702605i
\(366\) 22.2508 + 21.9538i 1.16307 + 1.14754i
\(367\) −6.78258 1.02231i −0.354048 0.0533641i −0.0303895 0.999538i \(-0.509675\pi\)
−0.323658 + 0.946174i \(0.604913\pi\)
\(368\) −5.93775 + 21.2625i −0.309527 + 1.10839i
\(369\) 7.67832 8.27526i 0.399717 0.430793i
\(370\) −0.0106332 + 0.0407776i −0.000552793 + 0.00211993i
\(371\) 19.7942 10.6343i 1.02767 0.552104i
\(372\) −7.71575 46.9046i −0.400043 2.43189i
\(373\) 3.50987 6.07927i 0.181734 0.314773i −0.760737 0.649060i \(-0.775162\pi\)
0.942471 + 0.334288i \(0.108496\pi\)
\(374\) −10.7448 + 5.77146i −0.555598 + 0.298435i
\(375\) −0.260558 0.280815i −0.0134552 0.0145012i
\(376\) −13.3584 24.0873i −0.688909 1.24221i
\(377\) −4.53615 3.61746i −0.233624 0.186309i
\(378\) −2.34879 + 0.207974i −0.120809 + 0.0106971i
\(379\) 17.7291 14.1385i 0.910683 0.726246i −0.0514928 0.998673i \(-0.516398\pi\)
0.962176 + 0.272428i \(0.0878265\pi\)
\(380\) −0.0154132 + 0.0408791i −0.000790678 + 0.00209705i
\(381\) 15.2439 + 5.98280i 0.780970 + 0.306508i
\(382\) 1.13169 + 25.6341i 0.0579025 + 1.31155i
\(383\) −6.38262 16.2627i −0.326137 0.830983i −0.996071 0.0885623i \(-0.971773\pi\)
0.669934 0.742421i \(-0.266322\pi\)
\(384\) −6.28425 26.3596i −0.320692 1.34516i
\(385\) 0.0728413 + 0.0189882i 0.00371234 + 0.000967726i
\(386\) −15.7504 + 30.2922i −0.801676 + 1.54183i
\(387\) 25.2690 + 1.89365i 1.28449 + 0.0962595i
\(388\) 5.71481 + 23.5733i 0.290125 + 1.19675i
\(389\) 6.71120 + 4.57562i 0.340271 + 0.231993i 0.721384 0.692536i \(-0.243506\pi\)
−0.381112 + 0.924529i \(0.624459\pi\)
\(390\) 0.0170343 + 0.142567i 0.000862566 + 0.00721916i
\(391\) 26.7573 1.35317
\(392\) 13.4137 + 14.5627i 0.677493 + 0.735529i
\(393\) −3.08648 −0.155692
\(394\) −4.40191 36.8413i −0.221765 1.85604i
\(395\) 0.00993760 + 0.00677534i 0.000500015 + 0.000340904i
\(396\) −2.29411 9.46308i −0.115283 0.475538i
\(397\) 20.7211 + 1.55283i 1.03996 + 0.0779342i 0.583746 0.811936i \(-0.301586\pi\)
0.456214 + 0.889870i \(0.349205\pi\)
\(398\) 13.9098 26.7522i 0.697235 1.34097i
\(399\) −6.92865 + 5.18668i −0.346866 + 0.259659i
\(400\) −18.9452 + 6.40626i −0.947258 + 0.320313i
\(401\) −3.07366 7.83157i −0.153491 0.391090i 0.833358 0.552734i \(-0.186415\pi\)
−0.986849 + 0.161644i \(0.948320\pi\)
\(402\) 0.825675 + 18.7024i 0.0411809 + 0.932792i
\(403\) 24.4806 + 9.60792i 1.21946 + 0.478604i
\(404\) 8.34557 22.1343i 0.415208 1.10122i
\(405\) −0.121546 + 0.0969301i −0.00603969 + 0.00481649i
\(406\) −7.03788 + 4.19115i −0.349284 + 0.208003i
\(407\) 2.59115 + 2.06637i 0.128439 + 0.102426i
\(408\) −28.7232 + 15.9295i −1.42201 + 0.788626i
\(409\) −21.3546 23.0148i −1.05592 1.13801i −0.990126 0.140177i \(-0.955233\pi\)
−0.0657930 0.997833i \(-0.520958\pi\)
\(410\) 0.0821896 0.0441475i 0.00405905 0.00218029i
\(411\) −18.7834 + 32.5338i −0.926516 + 1.60477i
\(412\) 1.78585 + 10.8563i 0.0879823 + 0.534851i
\(413\) −4.35002 15.8041i −0.214051 0.777669i
\(414\) −5.39002 + 20.6704i −0.264905 + 1.01589i
\(415\) −0.0378275 + 0.0407684i −0.00185688 + 0.00200124i
\(416\) 14.3091 + 4.47342i 0.701560 + 0.219328i
\(417\) 37.5793 + 5.66417i 1.84027 + 0.277376i
\(418\) 2.44580 + 2.41315i 0.119628 + 0.118031i
\(419\) 3.56358 15.6130i 0.174092 0.762747i −0.810193 0.586163i \(-0.800638\pi\)
0.984285 0.176585i \(-0.0565049\pi\)
\(420\) 0.196825 + 0.0484928i 0.00960405 + 0.00236620i
\(421\) −7.33975 32.1576i −0.357718 1.56726i −0.758864 0.651249i \(-0.774245\pi\)
0.401146 0.916014i \(-0.368612\pi\)
\(422\) −9.79195 + 15.8188i −0.476664 + 0.770045i
\(423\) −13.3260 23.0814i −0.647935 1.12226i
\(424\) −14.6511 19.0361i −0.711520 0.924476i
\(425\) 13.6548 + 20.0279i 0.662353 + 0.971494i
\(426\) −31.3376 + 36.9137i −1.51831 + 1.78847i
\(427\) −2.56868 + 24.2796i −0.124307 + 1.17497i
\(428\) −16.0605 + 11.2690i −0.776314 + 0.544706i
\(429\) 10.7903 + 3.32837i 0.520961 + 0.160695i
\(430\) 0.192506 + 0.0824540i 0.00928344 + 0.00397629i
\(431\) 6.81769 0.510915i 0.328396 0.0246099i 0.0904881 0.995898i \(-0.471157\pi\)
0.237908 + 0.971288i \(0.423538\pi\)
\(432\) 0.626770 + 2.44162i 0.0301555 + 0.117472i
\(433\) −7.81590 16.2299i −0.375608 0.779959i 0.624391 0.781112i \(-0.285347\pi\)
−0.999999 + 0.00115329i \(0.999633\pi\)
\(434\) 24.8838 27.5561i 1.19446 1.32273i
\(435\) −0.0363881 + 0.0755606i −0.00174468 + 0.00362286i
\(436\) 2.92527 21.3510i 0.140095 1.02253i
\(437\) −2.22177 7.20280i −0.106282 0.344557i
\(438\) −23.5775 17.1575i −1.12658 0.819815i
\(439\) −6.08892 + 0.917757i −0.290608 + 0.0438021i −0.292728 0.956196i \(-0.594563\pi\)
0.00212023 + 0.999998i \(0.499325\pi\)
\(440\) 0.00739639 0.0801323i 0.000352609 0.00382016i
\(441\) 13.2206 + 13.8656i 0.629551 + 0.660265i
\(442\) 0.557411 18.1626i 0.0265133 0.863905i
\(443\) 4.50741 + 29.9047i 0.214154 + 1.42082i 0.794904 + 0.606735i \(0.207521\pi\)
−0.580751 + 0.814082i \(0.697241\pi\)
\(444\) 7.05189 + 5.47029i 0.334668 + 0.259608i
\(445\) −0.0311434 + 0.00960645i −0.00147634 + 0.000455390i
\(446\) 19.2325 + 2.03621i 0.910687 + 0.0964174i
\(447\) 30.5806 + 14.7268i 1.44641 + 0.696555i
\(448\) 13.0354 16.6756i 0.615867 0.787850i
\(449\) −9.58460 + 4.61570i −0.452325 + 0.217828i −0.646154 0.763207i \(-0.723624\pi\)
0.193829 + 0.981035i \(0.437909\pi\)
\(450\) −18.2224 + 6.51407i −0.859014 + 0.307076i
\(451\) −0.548316 7.31677i −0.0258192 0.344533i
\(452\) 11.0454 23.7473i 0.519534 1.11698i
\(453\) −4.24352 + 13.7571i −0.199378 + 0.646367i
\(454\) 24.6518 18.4510i 1.15696 0.865948i
\(455\) −0.0787601 + 0.0798379i −0.00369233 + 0.00374286i
\(456\) 6.67306 + 6.40931i 0.312495 + 0.300143i
\(457\) −10.9773 + 7.48419i −0.513496 + 0.350096i −0.792180 0.610287i \(-0.791054\pi\)
0.278684 + 0.960383i \(0.410102\pi\)
\(458\) −9.56640 + 8.34510i −0.447009 + 0.389941i
\(459\) 2.64598 1.52766i 0.123504 0.0713050i
\(460\) −0.0974808 + 0.147190i −0.00454507 + 0.00686275i
\(461\) 0.584631 0.133438i 0.0272290 0.00621484i −0.208885 0.977940i \(-0.566983\pi\)
0.236114 + 0.971725i \(0.424126\pi\)
\(462\) 9.77045 12.5973i 0.454562 0.586080i
\(463\) −29.5541 6.74552i −1.37349 0.313491i −0.528803 0.848745i \(-0.677359\pi\)
−0.844691 + 0.535254i \(0.820216\pi\)
\(464\) 5.64184 + 6.69720i 0.261916 + 0.310910i
\(465\) 0.0566567 0.375893i 0.00262739 0.0174316i
\(466\) 6.20515 34.0458i 0.287448 1.57714i
\(467\) −25.2631 23.4408i −1.16904 1.08471i −0.994990 0.0999718i \(-0.968125\pi\)
−0.174048 0.984737i \(-0.555685\pi\)
\(468\) 13.9186 + 4.08929i 0.643385 + 0.189028i
\(469\) −11.0182 + 9.61306i −0.508775 + 0.443890i
\(470\) −0.0424033 0.216146i −0.00195592 0.00997007i
\(471\) −48.1561 27.8029i −2.21891 1.28109i
\(472\) −15.9170 + 7.32988i −0.732638 + 0.337385i
\(473\) 12.0733 11.2024i 0.555133 0.515088i
\(474\) 2.14766 1.36968i 0.0986452 0.0629114i
\(475\) 4.25749 5.33872i 0.195347 0.244957i
\(476\) −23.7165 9.78108i −1.08704 0.448315i
\(477\) −14.4924 18.1729i −0.663561 0.832080i
\(478\) 6.80880 + 2.33127i 0.311427 + 0.106630i
\(479\) −2.26375 + 5.76795i −0.103434 + 0.263544i −0.973217 0.229890i \(-0.926163\pi\)
0.869783 + 0.493434i \(0.164259\pi\)
\(480\) 0.0170161 0.216037i 0.000776677 0.00986071i
\(481\) −4.59631 + 1.80392i −0.209574 + 0.0822517i
\(482\) 6.60304 2.93385i 0.300760 0.133633i
\(483\) −31.9603 + 14.2035i −1.45424 + 0.646280i
\(484\) 13.6757 + 7.65250i 0.621623 + 0.347841i
\(485\) −0.0144959 + 0.193435i −0.000658226 + 0.00878342i
\(486\) 8.02575 + 29.1671i 0.364055 + 1.32305i
\(487\) 14.0665 20.6317i 0.637412 0.934911i −0.362584 0.931951i \(-0.618105\pi\)
0.999996 0.00296028i \(-0.000942286\pi\)
\(488\) 26.0576 1.50149i 1.17957 0.0679692i
\(489\) 38.8347i 1.75616i
\(490\) 0.0662505 + 0.143806i 0.00299289 + 0.00649650i
\(491\) 18.3343i 0.827414i −0.910410 0.413707i \(-0.864234\pi\)
0.910410 0.413707i \(-0.135766\pi\)
\(492\) −1.74122 19.6818i −0.0785001 0.887324i
\(493\) 5.97896 8.76952i 0.269279 0.394959i
\(494\) −4.93547 + 1.35806i −0.222057 + 0.0611022i
\(495\) 0.00581912 0.0776508i 0.000261550 0.00349014i
\(496\) −33.3843 21.4700i −1.49900 0.964031i
\(497\) −37.8036 1.15730i −1.69572 0.0519120i
\(498\) 4.78249 + 10.7637i 0.214309 + 0.482332i
\(499\) −1.37167 + 0.538342i −0.0614045 + 0.0240995i −0.395845 0.918318i \(-0.629548\pi\)
0.334440 + 0.942417i \(0.391453\pi\)
\(500\) −0.319844 + 0.00429860i −0.0143039 + 0.000192239i
\(501\) 1.22418 3.11916i 0.0546924 0.139354i
\(502\) 3.88919 11.3589i 0.173583 0.506973i
\(503\) −9.18796 11.5213i −0.409671 0.513711i 0.533599 0.845737i \(-0.320839\pi\)
−0.943270 + 0.332027i \(0.892268\pi\)
\(504\) 12.3335 16.3510i 0.549378 0.728333i
\(505\) 0.117947 0.147901i 0.00524857 0.00658150i
\(506\) 7.46570 + 11.7062i 0.331891 + 0.520406i
\(507\) 10.4930 9.73608i 0.466010 0.432394i
\(508\) 12.2391 6.09798i 0.543021 0.270554i
\(509\) −11.0515 6.38058i −0.489849 0.282814i 0.234663 0.972077i \(-0.424601\pi\)
−0.724512 + 0.689262i \(0.757935\pi\)
\(510\) −0.257746 + 0.0505644i −0.0114132 + 0.00223903i
\(511\) −1.00627 22.7537i −0.0445149 1.00656i
\(512\) −19.8517 10.8586i −0.877331 0.479885i
\(513\) −0.630938 0.585424i −0.0278566 0.0258471i
\(514\) 7.37758 + 1.34463i 0.325411 + 0.0593091i
\(515\) −0.0131135 + 0.0870021i −0.000577848 + 0.00383377i
\(516\) 32.1041 30.6013i 1.41330 1.34715i
\(517\) −16.8886 3.85470i −0.742758 0.169530i
\(518\) 0.0942133 + 6.97040i 0.00413950 + 0.306262i
\(519\) 3.89751 0.889581i 0.171082 0.0390483i
\(520\) 0.0978800 + 0.0692352i 0.00429232 + 0.00303616i
\(521\) −23.8562 + 13.7734i −1.04516 + 0.603422i −0.921290 0.388877i \(-0.872863\pi\)
−0.123868 + 0.992299i \(0.539530\pi\)
\(522\) 5.57017 + 6.38537i 0.243800 + 0.279480i
\(523\) 3.47822 2.37141i 0.152092 0.103695i −0.484883 0.874579i \(-0.661138\pi\)
0.636975 + 0.770884i \(0.280185\pi\)
\(524\) −1.72742 + 1.91264i −0.0754627 + 0.0835539i
\(525\) −26.9412 16.6740i −1.17581 0.727713i
\(526\) −0.759100 1.01421i −0.0330983 0.0442216i
\(527\) −14.1804 + 45.9716i −0.617707 + 2.00256i
\(528\) −14.9833 8.12173i −0.652064 0.353453i
\(529\) −0.557448 7.43862i −0.0242369 0.323418i
\(530\) −0.0646635 0.180889i −0.00280880 0.00785733i
\(531\) −15.2773 + 7.35714i −0.662977 + 0.319273i
\(532\) −0.663690 + 7.19642i −0.0287746 + 0.312004i
\(533\) 9.84883 + 4.74295i 0.426600 + 0.205440i
\(534\) −0.726712 + 6.86398i −0.0314479 + 0.297034i
\(535\) −0.149928 + 0.0462467i −0.00648195 + 0.00199942i
\(536\) 12.0517 + 9.95560i 0.520553 + 0.430017i
\(537\) 6.94062 + 46.0480i 0.299510 + 1.98712i
\(538\) 13.8875 + 0.426208i 0.598731 + 0.0183751i
\(539\) 12.4510 0.169243i 0.536302 0.00728981i
\(540\) −0.00123618 + 0.0201208i −5.31969e−5 + 0.000865862i
\(541\) −19.0789 + 2.87568i −0.820266 + 0.123635i −0.545751 0.837947i \(-0.683756\pi\)
−0.274515 + 0.961583i \(0.588517\pi\)
\(542\) −0.504125 + 0.692760i −0.0216540 + 0.0297566i
\(543\) −5.49574 17.8168i −0.235845 0.764591i
\(544\) −6.20440 + 26.7146i −0.266012 + 1.14538i
\(545\) 0.0747753 0.155273i 0.00320302 0.00665114i
\(546\) 8.97535 + 21.9902i 0.384109 + 0.941093i
\(547\) 2.89015 + 6.00145i 0.123574 + 0.256604i 0.953574 0.301160i \(-0.0973738\pi\)
−0.830000 + 0.557764i \(0.811660\pi\)
\(548\) 9.64805 + 29.8481i 0.412144 + 1.27505i
\(549\) 25.1855 1.88739i 1.07489 0.0805520i
\(550\) −4.95223 + 11.5620i −0.211164 + 0.493005i
\(551\) −2.85713 0.881306i −0.121718 0.0375449i
\(552\) 20.5263 + 31.2508i 0.873656 + 1.33012i
\(553\) 1.88238 + 0.644347i 0.0800467 + 0.0274004i
\(554\) 17.4136 + 14.7831i 0.739832 + 0.628074i
\(555\) 0.0402055 + 0.0589706i 0.00170663 + 0.00250316i
\(556\) 24.5422 20.1172i 1.04082 0.853159i
\(557\) 11.6149 + 20.1176i 0.492139 + 0.852410i 0.999959 0.00905307i \(-0.00288172\pi\)
−0.507820 + 0.861463i \(0.669548\pi\)
\(558\) −32.6573 20.2151i −1.38249 0.855774i
\(559\) 5.46013 + 23.9224i 0.230939 + 1.01181i
\(560\) 0.140208 0.0948286i 0.00592486 0.00400724i
\(561\) −4.59660 + 20.1390i −0.194068 + 0.850270i
\(562\) −4.42941 + 4.48934i −0.186843 + 0.189371i
\(563\) −5.68010 0.856137i −0.239388 0.0360819i 0.0282526 0.999601i \(-0.491006\pi\)
−0.267640 + 0.963519i \(0.586244\pi\)
\(564\) −45.6148 9.76827i −1.92073 0.411318i
\(565\) 0.142459 0.153534i 0.00599329 0.00645923i
\(566\) −5.09282 1.32800i −0.214067 0.0558202i
\(567\) −15.1303 + 20.7951i −0.635412 + 0.873313i
\(568\) 5.33597 + 40.0790i 0.223892 + 1.68168i
\(569\) 13.3255 23.0804i 0.558633 0.967581i −0.438978 0.898498i \(-0.644659\pi\)
0.997611 0.0690828i \(-0.0220073\pi\)
\(570\) 0.0350132 + 0.0651842i 0.00146654 + 0.00273026i
\(571\) 19.0145 + 20.4927i 0.795731 + 0.857594i 0.992423 0.122871i \(-0.0392102\pi\)
−0.196691 + 0.980465i \(0.563020\pi\)
\(572\) 8.10159 4.82377i 0.338744 0.201692i
\(573\) 33.9764 + 27.0953i 1.41938 + 1.13192i
\(574\) 11.1704 10.6491i 0.466242 0.444486i
\(575\) 21.5736 17.2044i 0.899680 0.717471i
\(576\) −19.3876 10.1744i −0.807816 0.423933i
\(577\) 33.7461 + 13.2444i 1.40487 + 0.551370i 0.942167 0.335144i \(-0.108785\pi\)
0.462702 + 0.886514i \(0.346880\pi\)
\(578\) 9.19065 0.405749i 0.382280 0.0168769i
\(579\) 21.1259 + 53.8278i 0.877961 + 2.23701i
\(580\) 0.0264582 + 0.0648384i 0.00109862 + 0.00269227i
\(581\) −4.24341 + 8.16273i −0.176046 + 0.338647i
\(582\) 36.4489 + 18.9516i 1.51085 + 0.785568i
\(583\) −15.0655 1.12900i −0.623949 0.0467585i
\(584\) −23.8279 + 5.00798i −0.986005 + 0.207232i
\(585\) 0.0958532 + 0.0653516i 0.00396304 + 0.00270196i
\(586\) 34.2373 4.09077i 1.41433 0.168988i
\(587\) −28.8478 −1.19068 −0.595339 0.803475i \(-0.702982\pi\)
−0.595339 + 0.803475i \(0.702982\pi\)
\(588\) 33.5203 0.906299i 1.38235 0.0373752i
\(589\) 13.5526 0.558424
\(590\) −0.139147 + 0.0166257i −0.00572859 + 0.000684469i
\(591\) −51.9209 35.3990i −2.13574 1.45612i
\(592\) 7.33660 1.30836i 0.301533 0.0537731i
\(593\) 7.48994 + 0.561293i 0.307575 + 0.0230496i 0.227624 0.973749i \(-0.426904\pi\)
0.0799514 + 0.996799i \(0.474523\pi\)
\(594\) 1.40662 + 0.731369i 0.0577141 + 0.0300084i
\(595\) −0.156410 0.132762i −0.00641218 0.00544272i
\(596\) 26.2411 10.7080i 1.07488 0.438618i
\(597\) −18.6570 47.5374i −0.763582 1.94557i
\(598\) −20.6652 + 0.912326i −0.845061 + 0.0373078i
\(599\) −18.2262 7.15325i −0.744701 0.292274i −0.0375104 0.999296i \(-0.511943\pi\)
−0.707191 + 0.707022i \(0.750038\pi\)
\(600\) −12.9163 + 31.3118i −0.527306 + 1.27830i
\(601\) −15.7473 + 12.5581i −0.642346 + 0.512254i −0.889626 0.456690i \(-0.849035\pi\)
0.247279 + 0.968944i \(0.420463\pi\)
\(602\) 34.3223 + 4.69977i 1.39887 + 0.191548i
\(603\) 11.8260 + 9.43092i 0.481592 + 0.384057i
\(604\) 6.15008 + 10.3292i 0.250243 + 0.420287i
\(605\) 0.0852412 + 0.0918681i 0.00346555 + 0.00373497i
\(606\) −18.9582 35.2945i −0.770122 1.43374i
\(607\) 4.51123 7.81368i 0.183105 0.317147i −0.759831 0.650120i \(-0.774718\pi\)
0.942936 + 0.332973i \(0.108052\pi\)
\(608\) 7.70648 0.548059i 0.312539 0.0222267i
\(609\) −2.48649 + 13.6485i −0.100758 + 0.553067i
\(610\) 0.201975 + 0.0526671i 0.00817774 + 0.00213243i
\(611\) 17.5541 18.9188i 0.710163 0.765374i
\(612\) −5.55704 + 25.9497i −0.224630 + 1.04895i
\(613\) −20.0368 3.02006i −0.809277 0.121979i −0.268646 0.963239i \(-0.586576\pi\)
−0.540631 + 0.841260i \(0.681814\pi\)
\(614\) −20.9655 + 21.2491i −0.846098 + 0.857545i
\(615\) 0.0351606 0.154049i 0.00141781 0.00621185i
\(616\) −2.33808 13.1050i −0.0942039 0.528014i
\(617\) −2.25673 9.88738i −0.0908525 0.398051i 0.908971 0.416860i \(-0.136870\pi\)
−0.999823 + 0.0188095i \(0.994012\pi\)
\(618\) 15.8440 + 9.80757i 0.637339 + 0.394518i
\(619\) 6.71696 + 11.6341i 0.269977 + 0.467614i 0.968856 0.247626i \(-0.0796504\pi\)
−0.698878 + 0.715241i \(0.746317\pi\)
\(620\) −0.201225 0.245487i −0.00808139 0.00985898i
\(621\) −1.95926 2.87370i −0.0786223 0.115318i
\(622\) 24.1781 + 20.5258i 0.969453 + 0.823008i
\(623\) −4.54533 + 2.89929i −0.182105 + 0.116158i
\(624\) 21.6403 13.2820i 0.866306 0.531705i
\(625\) 23.8857 + 7.36775i 0.955426 + 0.294710i
\(626\) 9.91683 23.1528i 0.396356 0.925373i
\(627\) 5.80290 0.434867i 0.231745 0.0173669i
\(628\) −44.1807 + 14.2809i −1.76300 + 0.569870i
\(629\) −3.91911 8.13812i −0.156265 0.324488i
\(630\) 0.134068 0.0940851i 0.00534140 0.00374844i
\(631\) −2.19768 + 4.56353i −0.0874883 + 0.181671i −0.940122 0.340837i \(-0.889289\pi\)
0.852634 + 0.522509i \(0.175004\pi\)
\(632\) 0.353223 2.09744i 0.0140505 0.0834317i
\(633\) 9.28742 + 30.1091i 0.369142 + 1.19673i
\(634\) −8.93102 + 12.2729i −0.354696 + 0.487417i
\(635\) 0.108130 0.0162980i 0.00429102 0.000646768i
\(636\) −40.6073 2.49483i −1.61018 0.0989265i
\(637\) −9.05662 + 16.1908i −0.358837 + 0.641504i
\(638\) 5.50486 + 0.168945i 0.217939 + 0.00668858i
\(639\) 5.83114 + 38.6871i 0.230677 + 1.53044i
\(640\) −0.124351 0.131455i −0.00491541 0.00519622i
\(641\) 16.1599 4.98467i 0.638278 0.196883i 0.0413080 0.999146i \(-0.486847\pi\)
0.596970 + 0.802264i \(0.296371\pi\)
\(642\) −3.49848 + 33.0441i −0.138074 + 1.30415i
\(643\) 0.547630 + 0.263725i 0.0215964 + 0.0104003i 0.444651 0.895704i \(-0.353328\pi\)
−0.423054 + 0.906104i \(0.639042\pi\)
\(644\) −9.08571 + 27.7546i −0.358027 + 1.09368i
\(645\) 0.319560 0.153892i 0.0125827 0.00605950i
\(646\) −3.15213 8.81777i −0.124019 0.346930i
\(647\) −0.686199 9.15669i −0.0269773 0.359987i −0.994314 0.106491i \(-0.966039\pi\)
0.967336 0.253496i \(-0.0815805\pi\)
\(648\) 24.5606 + 12.3539i 0.964833 + 0.485306i
\(649\) −3.24852 + 10.5315i −0.127516 + 0.413396i
\(650\) −11.2287 15.0023i −0.440426 0.588439i
\(651\) −7.46515 62.4382i −0.292582 2.44715i
\(652\) 24.0652 + 21.7347i 0.942465 + 0.851198i
\(653\) 18.1920 12.4031i 0.711908 0.485371i −0.152409 0.988317i \(-0.548703\pi\)
0.864317 + 0.502947i \(0.167751\pi\)
\(654\) −23.9931 27.5045i −0.938205 1.07551i
\(655\) −0.0178490 + 0.0103051i −0.000697418 + 0.000402654i
\(656\) −13.1710 9.93639i −0.514241 0.387951i
\(657\) −22.9698 + 5.24270i −0.896136 + 0.204537i
\(658\) −16.2515 32.6116i −0.633549 1.27133i
\(659\) −1.32496 0.302413i −0.0516131 0.0117804i 0.196636 0.980476i \(-0.436998\pi\)
−0.248250 + 0.968696i \(0.579855\pi\)
\(660\) −0.0940369 0.0986549i −0.00366038 0.00384014i
\(661\) 4.85335 32.1998i 0.188773 1.25243i −0.670886 0.741561i \(-0.734086\pi\)
0.859659 0.510868i \(-0.170676\pi\)
\(662\) 6.10722 + 1.11310i 0.237364 + 0.0432617i
\(663\) −22.5600 20.9326i −0.876159 0.812956i
\(664\) 9.34670 + 3.06052i 0.362722 + 0.118771i
\(665\) −0.0227509 + 0.0531278i −0.000882242 + 0.00206021i
\(666\) 7.07628 1.38822i 0.274200 0.0537924i
\(667\) −10.4636 6.04116i −0.405152 0.233915i
\(668\) −1.24775 2.50432i −0.0482769 0.0968950i
\(669\) 24.0113 22.2792i 0.928329 0.861363i
\(670\) 0.0672185 + 0.105399i 0.00259688 + 0.00407191i
\(671\) 10.2349 12.8342i 0.395115 0.495459i
\(672\) −6.76992 35.2027i −0.261155 1.35797i
\(673\) −16.2378 20.3616i −0.625923 0.784883i 0.363241 0.931695i \(-0.381670\pi\)
−0.989164 + 0.146812i \(0.953099\pi\)
\(674\) −9.69672 + 28.3206i −0.373504 + 1.09087i
\(675\) 1.15112 2.93301i 0.0443067 0.112892i
\(676\) −0.160623 11.9514i −0.00617779 0.459668i
\(677\) −25.4226 + 9.97763i −0.977070 + 0.383472i −0.799519 0.600640i \(-0.794912\pi\)
−0.177550 + 0.984112i \(0.556817\pi\)
\(678\) −18.0109 40.5361i −0.691705 1.55678i
\(679\) 6.17964 + 31.4872i 0.237153 + 1.20837i
\(680\) −0.112920 + 0.188021i −0.00433028 + 0.00721026i
\(681\) 3.89724 52.0050i 0.149343 1.99284i
\(682\) −24.0690 + 6.62292i −0.921649 + 0.253605i
\(683\) 1.00702 1.47703i 0.0385326 0.0565170i −0.806489 0.591249i \(-0.798635\pi\)
0.845022 + 0.534732i \(0.179587\pi\)
\(684\) 7.44682 0.658808i 0.284736 0.0251902i
\(685\) 0.250856i 0.00958471i
\(686\) 16.8792 + 20.0273i 0.644451 + 0.764645i
\(687\) 21.5004i 0.820293i
\(688\) −0.995284 37.0211i −0.0379448 1.41142i
\(689\) 12.6793 18.5971i 0.483042 0.708492i
\(690\) 0.0793261 + 0.288286i 0.00301989 + 0.0109749i
\(691\) −2.29888 + 30.6764i −0.0874536 + 1.16699i 0.764945 + 0.644095i \(0.222766\pi\)
−0.852399 + 0.522892i \(0.824853\pi\)
\(692\) 1.63008 2.91309i 0.0619662 0.110739i
\(693\) −2.48070 12.6400i −0.0942341 0.480152i
\(694\) 18.0042 7.99956i 0.683428 0.303659i
\(695\) 0.236232 0.0927141i 0.00896078 0.00351685i
\(696\) 14.8289 + 0.255699i 0.562087 + 0.00969223i
\(697\) −7.30582 + 18.6149i −0.276728 + 0.705090i
\(698\) −10.1295 3.46824i −0.383406 0.131275i
\(699\) −36.5437 45.8243i −1.38221 1.73323i
\(700\) −25.4109 + 7.36302i −0.960442 + 0.278296i
\(701\) −13.4474 + 16.8625i −0.507900 + 0.636886i −0.967991 0.250986i \(-0.919245\pi\)
0.460091 + 0.887872i \(0.347817\pi\)
\(702\) −1.99145 + 1.27006i −0.0751626 + 0.0479352i
\(703\) −1.86528 + 1.73073i −0.0703504 + 0.0652756i
\(704\) −13.4187 + 4.73937i −0.505735 + 0.178622i
\(705\) −0.323073 0.186527i −0.0121676 0.00702500i
\(706\) −6.57966 33.5390i −0.247629 1.26226i
\(707\) 12.3186 28.7664i 0.463290 1.08187i
\(708\) −8.36608 + 28.4753i −0.314417 + 1.07017i
\(709\) −1.77131 1.64354i −0.0665231 0.0617244i 0.646211 0.763159i \(-0.276353\pi\)
−0.712734 + 0.701435i \(0.752543\pi\)
\(710\) −0.0579767 + 0.318100i −0.00217583 + 0.0119381i
\(711\) 0.306750 2.03515i 0.0115040 0.0763241i
\(712\) 3.84677 + 4.29192i 0.144164 + 0.160847i
\(713\) 53.3924 + 12.1865i 1.99956 + 0.456386i
\(714\) −38.8882 + 19.3793i −1.45535 + 0.725252i
\(715\) 0.0735127 0.0167788i 0.00274922 0.000627492i
\(716\) 32.4196 + 21.4709i 1.21158 + 0.802405i
\(717\) 10.5559 6.09446i 0.394218 0.227602i
\(718\) 15.2752 13.3251i 0.570065 0.497287i
\(719\) 34.2294 23.3372i 1.27654 0.870331i 0.280555 0.959838i \(-0.409482\pi\)
0.995986 + 0.0895071i \(0.0285292\pi\)
\(720\) −0.122502 0.125107i −0.00456537 0.00466247i
\(721\) 1.72784 + 14.4516i 0.0643482 + 0.538206i
\(722\) 19.4000 14.5202i 0.721992 0.540386i
\(723\) 3.60704 11.6937i 0.134147 0.434895i
\(724\) −14.1166 6.56596i −0.524638 0.244022i
\(725\) −0.817961 10.9149i −0.0303783 0.405370i
\(726\) 24.9926 8.93423i 0.927562 0.331580i
\(727\) −37.1888 + 17.9092i −1.37926 + 0.664215i −0.968841 0.247683i \(-0.920331\pi\)
−0.410416 + 0.911898i \(0.634616\pi\)
\(728\) 18.6502 + 6.74547i 0.691223 + 0.250004i
\(729\) 19.8885 + 9.57779i 0.736611 + 0.354733i
\(730\) −0.193633 0.0205006i −0.00716668 0.000758760i
\(731\) −42.8935 + 13.2309i −1.58647 + 0.489362i
\(732\) 27.0948 34.9286i 1.00145 1.29100i
\(733\) −1.11455 7.39457i −0.0411669 0.273125i 0.958772 0.284176i \(-0.0917201\pi\)
−0.999939 + 0.0110518i \(0.996482\pi\)
\(734\) −0.297565 + 9.69580i −0.0109833 + 0.357878i
\(735\) 0.257297 + 0.0755516i 0.00949056 + 0.00278676i
\(736\) 30.8536 + 4.77050i 1.13728 + 0.175843i
\(737\) 9.72155 1.46529i 0.358098 0.0539746i
\(738\) −12.9086 9.39366i −0.475172 0.345785i
\(739\) 2.35749 + 7.64279i 0.0867217 + 0.281145i 0.988537 0.150976i \(-0.0482416\pi\)
−0.901816 + 0.432121i \(0.857765\pi\)
\(740\) 0.0590450 + 0.00808967i 0.00217054 + 0.000297382i
\(741\) −3.76161 + 7.81106i −0.138186 + 0.286946i
\(742\) −18.2540 26.0113i −0.670126 0.954906i
\(743\) 9.02492 + 18.7404i 0.331092 + 0.687520i 0.998357 0.0573007i \(-0.0182494\pi\)
−0.667265 + 0.744820i \(0.732535\pi\)
\(744\) −64.5701 + 18.7044i −2.36726 + 0.685735i
\(745\) 0.226016 0.0169376i 0.00828060 0.000620545i
\(746\) −9.12556 3.90866i −0.334110 0.143106i
\(747\) 9.09393 + 2.80511i 0.332729 + 0.102633i
\(748\) 9.90720 + 14.1197i 0.362243 + 0.516268i
\(749\) −21.8818 + 13.9576i −0.799544 + 0.509998i
\(750\) −0.350611 + 0.412998i −0.0128025 + 0.0150806i
\(751\) −5.48368 8.04308i −0.200102 0.293496i 0.713051 0.701112i \(-0.247313\pi\)
−0.913154 + 0.407616i \(0.866360\pi\)
\(752\) −31.5826 + 22.7997i −1.15170 + 0.831418i
\(753\) −10.1672 17.6101i −0.370514 0.641749i
\(754\) −4.31865 + 6.97672i −0.157276 + 0.254077i
\(755\) 0.0213922 + 0.0937254i 0.000778542 + 0.00341102i
\(756\) 0.686125 + 3.26333i 0.0249541 + 0.118686i
\(757\) 9.91684 43.4485i 0.360434 1.57916i −0.391662 0.920109i \(-0.628100\pi\)
0.752096 0.659054i \(-0.229043\pi\)
\(758\) −22.8282 22.5235i −0.829159 0.818091i
\(759\) 23.2524 + 3.50474i 0.844009 + 0.127214i
\(760\) 0.0599895 + 0.0147848i 0.00217605 + 0.000536301i
\(761\) −21.9654 + 23.6731i −0.796245 + 0.858148i −0.992480 0.122409i \(-0.960938\pi\)
0.196235 + 0.980557i \(0.437128\pi\)
\(762\) 5.84356 22.4097i 0.211690 0.811818i
\(763\) 5.10959 28.0469i 0.184980 1.01537i
\(764\) 35.8062 5.89007i 1.29542 0.213095i
\(765\) −0.106113 + 0.183792i −0.00383651 + 0.00664503i
\(766\) −21.7656 +