Properties

Label 196.2.p.a.103.11
Level $196$
Weight $2$
Character 196.103
Analytic conductor $1.565$
Analytic rank $0$
Dimension $312$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(3,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.p (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(312\)
Relative dimension: \(26\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 103.11
Character \(\chi\) \(=\) 196.103
Dual form 196.2.p.a.59.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.520558 - 1.31492i) q^{2} +(1.32314 + 0.902103i) q^{3} +(-1.45804 + 1.36899i) q^{4} +(0.323554 + 0.0242470i) q^{5} +(0.497422 - 2.20942i) q^{6} +(1.28165 + 2.31460i) q^{7} +(2.55910 + 1.20457i) q^{8} +(-0.159109 - 0.405403i) q^{9} +O(q^{10})\) \(q+(-0.520558 - 1.31492i) q^{2} +(1.32314 + 0.902103i) q^{3} +(-1.45804 + 1.36899i) q^{4} +(0.323554 + 0.0242470i) q^{5} +(0.497422 - 2.20942i) q^{6} +(1.28165 + 2.31460i) q^{7} +(2.55910 + 1.20457i) q^{8} +(-0.159109 - 0.405403i) q^{9} +(-0.136546 - 0.438070i) q^{10} +(2.61131 + 1.02486i) q^{11} +(-3.16416 + 0.496063i) q^{12} +(2.01211 - 1.60461i) q^{13} +(2.37634 - 2.89016i) q^{14} +(0.406234 + 0.323961i) q^{15} +(0.251751 - 3.99207i) q^{16} +(-0.295026 - 0.317962i) q^{17} +(-0.450248 + 0.420252i) q^{18} +(-3.19321 + 5.53080i) q^{19} +(-0.504947 + 0.407588i) q^{20} +(-0.392197 + 4.21872i) q^{21} +(-0.0117235 - 3.96716i) q^{22} +(3.32097 - 3.57916i) q^{23} +(2.29941 + 3.90239i) q^{24} +(-4.84006 - 0.729521i) q^{25} +(-3.15735 - 1.81048i) q^{26} +(1.22423 - 5.36370i) q^{27} +(-5.03735 - 1.62021i) q^{28} +(-0.987821 - 4.32793i) q^{29} +(0.214515 - 0.702806i) q^{30} +(-1.28102 - 2.21879i) q^{31} +(-5.38031 + 1.74707i) q^{32} +(2.53060 + 3.71170i) q^{33} +(-0.264517 + 0.553454i) q^{34} +(0.358561 + 0.779973i) q^{35} +(0.786978 + 0.373275i) q^{36} +(-8.40044 - 2.59119i) q^{37} +(8.93481 + 1.31972i) q^{38} +(4.10983 - 0.307989i) q^{39} +(0.798800 + 0.451793i) q^{40} +(3.27984 + 6.81065i) q^{41} +(5.75145 - 1.68038i) q^{42} +(-2.17288 + 4.51203i) q^{43} +(-5.21041 + 2.08056i) q^{44} +(-0.0416505 - 0.135028i) q^{45} +(-6.43507 - 2.50366i) q^{46} +(-5.45444 + 0.822124i) q^{47} +(3.93436 - 5.05497i) q^{48} +(-3.71473 + 5.93302i) q^{49} +(1.56027 + 6.74405i) q^{50} +(-0.103526 - 0.686853i) q^{51} +(-0.737052 + 5.09413i) q^{52} +(5.41768 - 1.67113i) q^{53} +(-7.69012 + 1.18235i) q^{54} +(0.820048 + 0.394914i) q^{55} +(0.491791 + 7.46714i) q^{56} +(-9.21441 + 4.43743i) q^{57} +(-5.17667 + 3.55185i) q^{58} +(0.182304 + 2.43268i) q^{59} +(-1.03580 + 0.0837817i) q^{60} +(2.02445 - 6.56311i) q^{61} +(-2.25069 + 2.83945i) q^{62} +(0.734423 - 0.887859i) q^{63} +(5.09803 + 6.16523i) q^{64} +(0.689933 - 0.470389i) q^{65} +(3.56328 - 5.25969i) q^{66} +(0.882664 - 0.509607i) q^{67} +(0.865446 + 0.0597147i) q^{68} +(7.62288 - 1.73987i) q^{69} +(0.838951 - 0.877501i) q^{70} +(-11.9497 - 2.72743i) q^{71} +(0.0811594 - 1.22913i) q^{72} +(1.03556 - 6.87048i) q^{73} +(0.965703 + 12.3948i) q^{74} +(-5.74597 - 5.33149i) q^{75} +(-2.91577 - 12.4356i) q^{76} +(0.974644 + 7.35764i) q^{77} +(-2.54439 - 5.24378i) q^{78} +(-9.00457 - 5.19879i) q^{79} +(0.178251 - 1.28554i) q^{80} +(5.50068 - 5.10389i) q^{81} +(7.24813 - 7.85807i) q^{82} +(3.97658 - 4.98647i) q^{83} +(-5.20354 - 6.68797i) q^{84} +(-0.0877471 - 0.110031i) q^{85} +(7.06408 + 0.508392i) q^{86} +(2.59721 - 6.61758i) q^{87} +(5.44809 + 5.76823i) q^{88} +(12.6725 - 4.97359i) q^{89} +(-0.155869 + 0.125057i) q^{90} +(6.29285 + 2.60068i) q^{91} +(0.0577139 + 9.76491i) q^{92} +(0.306607 - 4.09138i) q^{93} +(3.92038 + 6.74420i) q^{94} +(-1.16728 + 1.71208i) q^{95} +(-8.69495 - 2.54197i) q^{96} +8.05557i q^{97} +(9.73520 + 1.79610i) q^{98} -1.22170i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 312 q - 13 q^{2} - 13 q^{4} - 22 q^{5} - 14 q^{6} - 4 q^{8} - 4 q^{9} - 20 q^{10} + 9 q^{12} - 28 q^{13} - 51 q^{14} - 17 q^{16} - 22 q^{17} - 12 q^{18} - 14 q^{20} - 34 q^{21} - 18 q^{22} - 44 q^{24} - 48 q^{25} - 2 q^{26} - 36 q^{28} - 11 q^{30} - 13 q^{32} - 34 q^{33} - 98 q^{34} - 4 q^{36} - 58 q^{37} - 18 q^{38} + 30 q^{40} - 28 q^{41} - 26 q^{42} + 16 q^{44} - 28 q^{45} - 14 q^{46} - 24 q^{49} + 96 q^{50} - 14 q^{52} - 22 q^{53} - 17 q^{54} + 40 q^{56} + 34 q^{57} - 12 q^{58} + 98 q^{60} - 38 q^{61} - 4 q^{64} - 32 q^{65} - 176 q^{66} - 21 q^{68} + 28 q^{69} + 50 q^{70} - 120 q^{72} - 58 q^{73} - 14 q^{74} - 91 q^{76} - 18 q^{77} - 112 q^{78} + 66 q^{80} - 170 q^{81} + 114 q^{82} + 140 q^{84} - 24 q^{85} + 97 q^{86} + 127 q^{88} - 82 q^{89} + 266 q^{90} + 34 q^{92} + 226 q^{94} + 122 q^{96} + 183 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.520558 1.31492i −0.368090 0.929790i
\(3\) 1.32314 + 0.902103i 0.763916 + 0.520829i 0.881472 0.472237i \(-0.156553\pi\)
−0.117555 + 0.993066i \(0.537506\pi\)
\(4\) −1.45804 + 1.36899i −0.729019 + 0.684493i
\(5\) 0.323554 + 0.0242470i 0.144698 + 0.0108436i 0.146882 0.989154i \(-0.453076\pi\)
−0.00218437 + 0.999998i \(0.500695\pi\)
\(6\) 0.497422 2.20942i 0.203072 0.901994i
\(7\) 1.28165 + 2.31460i 0.484419 + 0.874836i
\(8\) 2.55910 + 1.20457i 0.904780 + 0.425879i
\(9\) −0.159109 0.405403i −0.0530363 0.135134i
\(10\) −0.136546 0.438070i −0.0431795 0.138530i
\(11\) 2.61131 + 1.02486i 0.787339 + 0.309008i 0.724732 0.689031i \(-0.241963\pi\)
0.0626064 + 0.998038i \(0.480059\pi\)
\(12\) −3.16416 + 0.496063i −0.913413 + 0.143201i
\(13\) 2.01211 1.60461i 0.558060 0.445038i −0.303400 0.952863i \(-0.598122\pi\)
0.861460 + 0.507825i \(0.169550\pi\)
\(14\) 2.37634 2.89016i 0.635104 0.772427i
\(15\) 0.406234 + 0.323961i 0.104889 + 0.0836463i
\(16\) 0.251751 3.99207i 0.0629377 0.998017i
\(17\) −0.295026 0.317962i −0.0715543 0.0771172i 0.696260 0.717790i \(-0.254846\pi\)
−0.767814 + 0.640673i \(0.778656\pi\)
\(18\) −0.450248 + 0.420252i −0.106124 + 0.0990543i
\(19\) −3.19321 + 5.53080i −0.732572 + 1.26885i 0.223209 + 0.974771i \(0.428347\pi\)
−0.955780 + 0.294081i \(0.904986\pi\)
\(20\) −0.504947 + 0.407588i −0.112910 + 0.0911394i
\(21\) −0.392197 + 4.21872i −0.0855844 + 0.920601i
\(22\) −0.0117235 3.96716i −0.00249947 0.845802i
\(23\) 3.32097 3.57916i 0.692470 0.746306i −0.284734 0.958607i \(-0.591905\pi\)
0.977204 + 0.212301i \(0.0680957\pi\)
\(24\) 2.29941 + 3.90239i 0.469366 + 0.796572i
\(25\) −4.84006 0.729521i −0.968011 0.145904i
\(26\) −3.15735 1.81048i −0.619208 0.355064i
\(27\) 1.22423 5.36370i 0.235603 1.03224i
\(28\) −5.03735 1.62021i −0.951970 0.306190i
\(29\) −0.987821 4.32793i −0.183434 0.803676i −0.979980 0.199098i \(-0.936199\pi\)
0.796546 0.604578i \(-0.206658\pi\)
\(30\) 0.214515 0.702806i 0.0391648 0.128314i
\(31\) −1.28102 2.21879i −0.230078 0.398506i 0.727753 0.685839i \(-0.240565\pi\)
−0.957831 + 0.287333i \(0.907231\pi\)
\(32\) −5.38031 + 1.74707i −0.951113 + 0.308842i
\(33\) 2.53060 + 3.71170i 0.440520 + 0.646125i
\(34\) −0.264517 + 0.553454i −0.0453644 + 0.0949166i
\(35\) 0.358561 + 0.779973i 0.0606079 + 0.131839i
\(36\) 0.786978 + 0.373275i 0.131163 + 0.0622125i
\(37\) −8.40044 2.59119i −1.38102 0.425989i −0.486762 0.873535i \(-0.661822\pi\)
−0.894261 + 0.447545i \(0.852298\pi\)
\(38\) 8.93481 + 1.31972i 1.44942 + 0.214086i
\(39\) 4.10983 0.307989i 0.658099 0.0493177i
\(40\) 0.798800 + 0.451793i 0.126301 + 0.0714348i
\(41\) 3.27984 + 6.81065i 0.512224 + 1.06364i 0.983374 + 0.181592i \(0.0581249\pi\)
−0.471150 + 0.882053i \(0.656161\pi\)
\(42\) 5.75145 1.68038i 0.887468 0.259289i
\(43\) −2.17288 + 4.51203i −0.331361 + 0.688079i −0.998376 0.0569657i \(-0.981857\pi\)
0.667015 + 0.745044i \(0.267572\pi\)
\(44\) −5.21041 + 2.08056i −0.785498 + 0.313656i
\(45\) −0.0416505 0.135028i −0.00620889 0.0201287i
\(46\) −6.43507 2.50366i −0.948799 0.369144i
\(47\) −5.45444 + 0.822124i −0.795612 + 0.119919i −0.534255 0.845323i \(-0.679408\pi\)
−0.261356 + 0.965242i \(0.584170\pi\)
\(48\) 3.93436 5.05497i 0.567876 0.729622i
\(49\) −3.71473 + 5.93302i −0.530676 + 0.847575i
\(50\) 1.56027 + 6.74405i 0.220655 + 0.953753i
\(51\) −0.103526 0.686853i −0.0144966 0.0961787i
\(52\) −0.737052 + 5.09413i −0.102211 + 0.706429i
\(53\) 5.41768 1.67113i 0.744175 0.229548i 0.100596 0.994927i \(-0.467925\pi\)
0.643579 + 0.765380i \(0.277449\pi\)
\(54\) −7.69012 + 1.18235i −1.04649 + 0.160898i
\(55\) 0.820048 + 0.394914i 0.110575 + 0.0532502i
\(56\) 0.491791 + 7.46714i 0.0657183 + 0.997838i
\(57\) −9.21441 + 4.43743i −1.22048 + 0.587751i
\(58\) −5.17667 + 3.55185i −0.679730 + 0.466380i
\(59\) 0.182304 + 2.43268i 0.0237340 + 0.316708i 0.996417 + 0.0845721i \(0.0269523\pi\)
−0.972683 + 0.232136i \(0.925429\pi\)
\(60\) −1.03580 + 0.0837817i −0.133722 + 0.0108162i
\(61\) 2.02445 6.56311i 0.259204 0.840320i −0.728643 0.684894i \(-0.759849\pi\)
0.987847 0.155426i \(-0.0496752\pi\)
\(62\) −2.25069 + 2.83945i −0.285838 + 0.360610i
\(63\) 0.734423 0.887859i 0.0925286 0.111860i
\(64\) 5.09803 + 6.16523i 0.637254 + 0.770654i
\(65\) 0.689933 0.470389i 0.0855757 0.0583445i
\(66\) 3.56328 5.25969i 0.438609 0.647424i
\(67\) 0.882664 0.509607i 0.107835 0.0622583i −0.445113 0.895475i \(-0.646836\pi\)
0.552947 + 0.833216i \(0.313503\pi\)
\(68\) 0.865446 + 0.0597147i 0.104951 + 0.00724147i
\(69\) 7.62288 1.73987i 0.917687 0.209456i
\(70\) 0.838951 0.877501i 0.100274 0.104881i
\(71\) −11.9497 2.72743i −1.41816 0.323687i −0.556366 0.830937i \(-0.687805\pi\)
−0.861799 + 0.507251i \(0.830662\pi\)
\(72\) 0.0811594 1.22913i 0.00956472 0.144854i
\(73\) 1.03556 6.87048i 0.121203 0.804128i −0.842798 0.538230i \(-0.819093\pi\)
0.964001 0.265899i \(-0.0856686\pi\)
\(74\) 0.965703 + 12.3948i 0.112261 + 1.44086i
\(75\) −5.74597 5.33149i −0.663488 0.615627i
\(76\) −2.91577 12.4356i −0.334462 1.42646i
\(77\) 0.974644 + 7.35764i 0.111071 + 0.838481i
\(78\) −2.54439 5.24378i −0.288095 0.593741i
\(79\) −9.00457 5.19879i −1.01309 0.584910i −0.100997 0.994887i \(-0.532203\pi\)
−0.912096 + 0.409977i \(0.865537\pi\)
\(80\) 0.178251 1.28554i 0.0199290 0.143728i
\(81\) 5.50068 5.10389i 0.611187 0.567098i
\(82\) 7.24813 7.85807i 0.800422 0.867779i
\(83\) 3.97658 4.98647i 0.436486 0.547336i −0.514127 0.857714i \(-0.671884\pi\)
0.950613 + 0.310378i \(0.100456\pi\)
\(84\) −5.20354 6.68797i −0.567753 0.729718i
\(85\) −0.0877471 0.110031i −0.00951751 0.0119346i
\(86\) 7.06408 + 0.508392i 0.761740 + 0.0548213i
\(87\) 2.59721 6.61758i 0.278450 0.709479i
\(88\) 5.44809 + 5.76823i 0.580768 + 0.614895i
\(89\) 12.6725 4.97359i 1.34328 0.527200i 0.418681 0.908133i \(-0.362493\pi\)
0.924602 + 0.380934i \(0.124397\pi\)
\(90\) −0.155869 + 0.125057i −0.0164300 + 0.0131821i
\(91\) 6.29285 + 2.60068i 0.659670 + 0.272626i
\(92\) 0.0577139 + 9.76491i 0.00601709 + 1.01806i
\(93\) 0.306607 4.09138i 0.0317936 0.424257i
\(94\) 3.92038 + 6.74420i 0.404357 + 0.695611i
\(95\) −1.16728 + 1.71208i −0.119760 + 0.175656i
\(96\) −8.69495 2.54197i −0.887425 0.259438i
\(97\) 8.05557i 0.817919i 0.912553 + 0.408960i \(0.134108\pi\)
−0.912553 + 0.408960i \(0.865892\pi\)
\(98\) 9.73520 + 1.79610i 0.983403 + 0.181433i
\(99\) 1.22170i 0.122785i
\(100\) 8.05569 5.56230i 0.805569 0.556230i
\(101\) 8.36578 12.2704i 0.832427 1.22095i −0.140557 0.990073i \(-0.544889\pi\)
0.972984 0.230873i \(-0.0741582\pi\)
\(102\) −0.849266 + 0.493676i −0.0840899 + 0.0488812i
\(103\) −0.641180 + 8.55595i −0.0631773 + 0.843043i 0.872145 + 0.489247i \(0.162728\pi\)
−0.935323 + 0.353796i \(0.884891\pi\)
\(104\) 7.08207 1.68263i 0.694454 0.164995i
\(105\) −0.229188 + 1.35547i −0.0223665 + 0.132281i
\(106\) −5.01763 6.25390i −0.487355 0.607433i
\(107\) −2.95157 + 1.15841i −0.285339 + 0.111987i −0.503694 0.863882i \(-0.668026\pi\)
0.218355 + 0.975869i \(0.429931\pi\)
\(108\) 5.55786 + 9.49643i 0.534805 + 0.913794i
\(109\) 6.02790 15.3588i 0.577368 1.47111i −0.281829 0.959465i \(-0.590941\pi\)
0.859197 0.511645i \(-0.170964\pi\)
\(110\) 0.0923986 1.28387i 0.00880986 0.122413i
\(111\) −8.77744 11.0066i −0.833118 1.04470i
\(112\) 9.56270 4.53375i 0.903590 0.428399i
\(113\) −11.0022 + 13.7963i −1.03500 + 1.29785i −0.0814256 + 0.996679i \(0.525947\pi\)
−0.953572 + 0.301166i \(0.902624\pi\)
\(114\) 10.6315 + 9.80629i 0.995732 + 0.918443i
\(115\) 1.16130 1.07753i 0.108291 0.100480i
\(116\) 7.36516 + 4.95797i 0.683838 + 0.460336i
\(117\) −0.970657 0.560409i −0.0897373 0.0518099i
\(118\) 3.10388 1.50607i 0.285736 0.138645i
\(119\) 0.357834 1.09038i 0.0328026 0.0999554i
\(120\) 0.649362 + 1.31839i 0.0592784 + 0.120352i
\(121\) −2.29499 2.12944i −0.208636 0.193586i
\(122\) −9.68382 + 0.754486i −0.876732 + 0.0683080i
\(123\) −1.80422 + 11.9702i −0.162681 + 1.07932i
\(124\) 4.90527 + 1.48138i 0.440506 + 0.133032i
\(125\) −3.12996 0.714393i −0.279952 0.0638972i
\(126\) −1.54978 0.503526i −0.138065 0.0448576i
\(127\) 6.86346 1.56654i 0.609034 0.139008i 0.0931292 0.995654i \(-0.470313\pi\)
0.515905 + 0.856646i \(0.327456\pi\)
\(128\) 5.45298 9.91287i 0.481980 0.876182i
\(129\) −6.94535 + 4.00990i −0.611504 + 0.353052i
\(130\) −0.977675 0.662344i −0.0857477 0.0580914i
\(131\) 14.5953 9.95088i 1.27519 0.869413i 0.279324 0.960197i \(-0.409890\pi\)
0.995871 + 0.0907844i \(0.0289374\pi\)
\(132\) −8.77098 1.94745i −0.763416 0.169504i
\(133\) −16.8942 0.302430i −1.46491 0.0262240i
\(134\) −1.12957 0.895355i −0.0975801 0.0773469i
\(135\) 0.526157 1.70576i 0.0452844 0.146808i
\(136\) −0.371995 1.16908i −0.0318983 0.100248i
\(137\) 0.772969 + 10.3146i 0.0660392 + 0.881232i 0.927599 + 0.373577i \(0.121869\pi\)
−0.861560 + 0.507655i \(0.830512\pi\)
\(138\) −6.25595 9.11779i −0.532542 0.776158i
\(139\) −12.9510 + 6.23687i −1.09849 + 0.529004i −0.893183 0.449694i \(-0.851533\pi\)
−0.205305 + 0.978698i \(0.565819\pi\)
\(140\) −1.59057 0.646364i −0.134428 0.0546278i
\(141\) −7.95863 3.83268i −0.670238 0.322770i
\(142\) 2.63414 + 17.1327i 0.221052 + 1.43774i
\(143\) 6.89874 2.12798i 0.576902 0.177951i
\(144\) −1.65845 + 0.533114i −0.138204 + 0.0444261i
\(145\) −0.214674 1.42427i −0.0178277 0.118279i
\(146\) −9.57321 + 2.21481i −0.792284 + 0.183299i
\(147\) −10.2673 + 4.49916i −0.846833 + 0.371084i
\(148\) 15.7955 7.72203i 1.29838 0.634747i
\(149\) 2.76780 0.417179i 0.226747 0.0341766i −0.0346858 0.999398i \(-0.511043\pi\)
0.261433 + 0.965222i \(0.415805\pi\)
\(150\) −4.01937 + 10.3309i −0.328180 + 0.843511i
\(151\) 2.74206 + 8.88954i 0.223146 + 0.723420i 0.996042 + 0.0888877i \(0.0283312\pi\)
−0.772896 + 0.634533i \(0.781193\pi\)
\(152\) −14.8340 + 10.3074i −1.20319 + 0.836044i
\(153\) −0.0819616 + 0.170195i −0.00662621 + 0.0137595i
\(154\) 9.16737 5.11166i 0.738727 0.411910i
\(155\) −0.360679 0.748958i −0.0289705 0.0601578i
\(156\) −5.57066 + 6.07536i −0.446009 + 0.486418i
\(157\) −11.9883 + 0.898398i −0.956770 + 0.0717000i −0.543955 0.839115i \(-0.683074\pi\)
−0.412815 + 0.910815i \(0.635455\pi\)
\(158\) −2.14860 + 14.5466i −0.170933 + 1.15726i
\(159\) 8.67589 + 2.67616i 0.688043 + 0.212233i
\(160\) −1.78318 + 0.434815i −0.140973 + 0.0343752i
\(161\) 12.5406 + 3.09948i 0.988341 + 0.244273i
\(162\) −9.57464 4.57609i −0.752254 0.359532i
\(163\) 6.04539 + 8.86696i 0.473511 + 0.694514i 0.986478 0.163895i \(-0.0524058\pi\)
−0.512966 + 0.858409i \(0.671453\pi\)
\(164\) −14.1058 5.44014i −1.10148 0.424803i
\(165\) 0.728786 + 1.26229i 0.0567359 + 0.0982695i
\(166\) −8.62685 2.63314i −0.669574 0.204371i
\(167\) 5.31218 + 23.2742i 0.411069 + 1.80101i 0.579131 + 0.815235i \(0.303392\pi\)
−0.168062 + 0.985777i \(0.553751\pi\)
\(168\) −6.08541 + 10.3237i −0.469500 + 0.796493i
\(169\) −1.41894 + 6.21676i −0.109149 + 0.478213i
\(170\) −0.0990052 + 0.172658i −0.00759335 + 0.0132423i
\(171\) 2.75027 + 0.414536i 0.210318 + 0.0317004i
\(172\) −3.00877 9.55336i −0.229417 0.728437i
\(173\) 0.831907 0.896582i 0.0632487 0.0681659i −0.700635 0.713520i \(-0.747100\pi\)
0.763883 + 0.645354i \(0.223290\pi\)
\(174\) −10.0536 + 0.0297098i −0.762161 + 0.00225229i
\(175\) −4.51472 12.1378i −0.341281 0.917530i
\(176\) 4.74872 10.1665i 0.357948 0.766329i
\(177\) −1.95331 + 3.38324i −0.146820 + 0.254300i
\(178\) −13.1367 14.0743i −0.984635 1.05491i
\(179\) −10.6604 11.4891i −0.796793 0.858738i 0.195748 0.980654i \(-0.437287\pi\)
−0.992540 + 0.121916i \(0.961096\pi\)
\(180\) 0.245579 + 0.139856i 0.0183044 + 0.0104243i
\(181\) 20.0404 + 15.9817i 1.48959 + 1.18791i 0.934421 + 0.356170i \(0.115918\pi\)
0.555169 + 0.831738i \(0.312654\pi\)
\(182\) 0.143902 9.62841i 0.0106667 0.713705i
\(183\) 8.59923 6.85766i 0.635674 0.506933i
\(184\) 12.8101 5.15910i 0.944370 0.380334i
\(185\) −2.65516 1.04207i −0.195211 0.0766148i
\(186\) −5.53945 + 1.72664i −0.406173 + 0.126603i
\(187\) −0.444536 1.13266i −0.0325077 0.0828282i
\(188\) 6.82730 8.66574i 0.497932 0.632014i
\(189\) 13.9838 4.04080i 1.01717 0.293925i
\(190\) 2.85889 + 0.643641i 0.207406 + 0.0466946i
\(191\) −1.00074 0.0749955i −0.0724114 0.00542648i 0.0384751 0.999260i \(-0.487750\pi\)
−0.110886 + 0.993833i \(0.535369\pi\)
\(192\) 1.18374 + 12.7564i 0.0854291 + 0.920615i
\(193\) −4.45048 3.03428i −0.320352 0.218413i 0.392457 0.919770i \(-0.371625\pi\)
−0.712809 + 0.701358i \(0.752578\pi\)
\(194\) 10.5924 4.19339i 0.760493 0.301068i
\(195\) 1.33722 0.0957602
\(196\) −2.70601 13.7360i −0.193286 0.981142i
\(197\) 4.43186 0.315757 0.157878 0.987459i \(-0.449535\pi\)
0.157878 + 0.987459i \(0.449535\pi\)
\(198\) −1.60643 + 0.635964i −0.114164 + 0.0451960i
\(199\) 13.8341 + 9.43193i 0.980673 + 0.668612i 0.943734 0.330706i \(-0.107287\pi\)
0.0369393 + 0.999318i \(0.488239\pi\)
\(200\) −11.5074 7.69710i −0.813699 0.544267i
\(201\) 1.62761 + 0.121972i 0.114803 + 0.00860326i
\(202\) −20.4894 4.61292i −1.44163 0.324564i
\(203\) 8.75137 7.83331i 0.614226 0.549791i
\(204\) 1.09124 + 0.859732i 0.0764019 + 0.0601932i
\(205\) 0.896065 + 2.28314i 0.0625839 + 0.159461i
\(206\) 11.5842 3.61077i 0.807108 0.251574i
\(207\) −1.97940 0.776856i −0.137578 0.0539952i
\(208\) −5.89915 8.43646i −0.409033 0.584963i
\(209\) −14.0067 + 11.1700i −0.968867 + 0.772646i
\(210\) 1.90165 0.404239i 0.131226 0.0278951i
\(211\) −0.173155 0.138087i −0.0119205 0.00950629i 0.617511 0.786562i \(-0.288141\pi\)
−0.629432 + 0.777056i \(0.716712\pi\)
\(212\) −5.61142 + 9.85331i −0.385394 + 0.676728i
\(213\) −13.3507 14.3886i −0.914773 0.985891i
\(214\) 3.05968 + 3.27807i 0.209155 + 0.224084i
\(215\) −0.812447 + 1.40720i −0.0554084 + 0.0959702i
\(216\) 9.59387 12.2516i 0.652780 0.833615i
\(217\) 3.49379 5.80876i 0.237174 0.394324i
\(218\) −23.3335 + 0.0689539i −1.58035 + 0.00467015i
\(219\) 7.56806 8.15643i 0.511402 0.551161i
\(220\) −1.73629 + 0.546835i −0.117061 + 0.0368676i
\(221\) −1.10383 0.166376i −0.0742517 0.0111916i
\(222\) −9.90360 + 17.2712i −0.664686 + 1.15917i
\(223\) −3.71159 + 16.2616i −0.248547 + 1.08895i 0.684447 + 0.729062i \(0.260044\pi\)
−0.932994 + 0.359892i \(0.882813\pi\)
\(224\) −10.9395 10.2141i −0.730924 0.682459i
\(225\) 0.474346 + 2.07825i 0.0316231 + 0.138550i
\(226\) 23.8683 + 7.28522i 1.58770 + 0.484606i
\(227\) −7.02786 12.1726i −0.466456 0.807925i 0.532810 0.846235i \(-0.321136\pi\)
−0.999266 + 0.0383097i \(0.987803\pi\)
\(228\) 7.36018 19.0843i 0.487440 1.26389i
\(229\) 7.98099 + 11.7060i 0.527399 + 0.773552i 0.993819 0.111011i \(-0.0354090\pi\)
−0.466420 + 0.884563i \(0.654457\pi\)
\(230\) −2.02138 0.966099i −0.133286 0.0637027i
\(231\) −5.34776 + 10.6144i −0.351857 + 0.698378i
\(232\) 2.68535 12.2655i 0.176302 0.805270i
\(233\) −25.4093 7.83773i −1.66462 0.513467i −0.687504 0.726181i \(-0.741294\pi\)
−0.977114 + 0.212714i \(0.931770\pi\)
\(234\) −0.231611 + 1.56806i −0.0151409 + 0.102508i
\(235\) −1.78474 + 0.133748i −0.116423 + 0.00872473i
\(236\) −3.59611 3.29737i −0.234087 0.214640i
\(237\) −7.22447 15.0018i −0.469280 0.974470i
\(238\) −1.62004 + 0.0970843i −0.105012 + 0.00629304i
\(239\) −3.72072 + 7.72616i −0.240674 + 0.499764i −0.985960 0.166980i \(-0.946598\pi\)
0.745287 + 0.666744i \(0.232313\pi\)
\(240\) 1.39554 1.54016i 0.0900819 0.0994167i
\(241\) 8.99671 + 29.1666i 0.579529 + 1.87879i 0.464863 + 0.885383i \(0.346103\pi\)
0.114666 + 0.993404i \(0.463420\pi\)
\(242\) −1.60537 + 4.12623i −0.103197 + 0.265244i
\(243\) −4.43815 + 0.668943i −0.284707 + 0.0429127i
\(244\) 6.03308 + 12.3407i 0.386229 + 0.790033i
\(245\) −1.34577 + 1.82958i −0.0859783 + 0.116888i
\(246\) 16.6791 3.85878i 1.06342 0.246027i
\(247\) 2.44966 + 16.2524i 0.155868 + 1.03412i
\(248\) −0.605576 7.22119i −0.0384541 0.458546i
\(249\) 9.75988 3.01052i 0.618507 0.190784i
\(250\) 0.689955 + 4.48753i 0.0436366 + 0.283817i
\(251\) 17.5508 + 8.45200i 1.10779 + 0.533485i 0.896101 0.443851i \(-0.146388\pi\)
0.211693 + 0.977336i \(0.432102\pi\)
\(252\) 0.144651 + 2.29995i 0.00911217 + 0.144883i
\(253\) 12.3402 5.94274i 0.775823 0.373617i
\(254\) −5.63271 8.20944i −0.353428 0.515106i
\(255\) −0.0168422 0.224744i −0.00105470 0.0140740i
\(256\) −15.8732 2.01001i −0.992078 0.125626i
\(257\) −2.89364 + 9.38097i −0.180501 + 0.585169i 0.819428 + 0.573183i \(0.194291\pi\)
−0.999928 + 0.0119858i \(0.996185\pi\)
\(258\) 8.88816 + 7.04520i 0.553352 + 0.438615i
\(259\) −4.76888 22.7646i −0.296324 1.41453i
\(260\) −0.361993 + 1.63035i −0.0224499 + 0.101110i
\(261\) −1.59738 + 1.08908i −0.0988755 + 0.0674122i
\(262\) −20.6823 14.0116i −1.27776 0.865640i
\(263\) 10.2462 5.91566i 0.631809 0.364775i −0.149643 0.988740i \(-0.547813\pi\)
0.781452 + 0.623965i \(0.214479\pi\)
\(264\) 2.00506 + 12.5469i 0.123403 + 0.772209i
\(265\) 1.79343 0.409339i 0.110169 0.0251455i
\(266\) 8.39672 + 22.3719i 0.514836 + 1.37171i
\(267\) 21.2542 + 4.85114i 1.30074 + 0.296885i
\(268\) −0.589314 + 1.95138i −0.0359981 + 0.119200i
\(269\) 4.01084 26.6102i 0.244545 1.62245i −0.443147 0.896449i \(-0.646138\pi\)
0.687692 0.726002i \(-0.258624\pi\)
\(270\) −2.51684 + 0.196092i −0.153170 + 0.0119338i
\(271\) 4.26861 + 3.96069i 0.259300 + 0.240595i 0.799100 0.601198i \(-0.205310\pi\)
−0.539800 + 0.841793i \(0.681500\pi\)
\(272\) −1.34360 + 1.09772i −0.0814678 + 0.0665589i
\(273\) 5.98025 + 9.11787i 0.361941 + 0.551839i
\(274\) 13.1605 6.38572i 0.795052 0.385776i
\(275\) −11.8912 6.86539i −0.717067 0.413999i
\(276\) −8.73259 + 12.9724i −0.525640 + 0.780848i
\(277\) 0.0461258 0.0427985i 0.00277143 0.00257151i −0.678786 0.734336i \(-0.737494\pi\)
0.681557 + 0.731765i \(0.261303\pi\)
\(278\) 14.9427 + 13.7829i 0.896206 + 0.826642i
\(279\) −0.695682 + 0.872358i −0.0416494 + 0.0522267i
\(280\) −0.0219350 + 2.42794i −0.00131087 + 0.145097i
\(281\) −12.4213 15.5758i −0.740992 0.929174i 0.258328 0.966057i \(-0.416829\pi\)
−0.999320 + 0.0368830i \(0.988257\pi\)
\(282\) −0.896736 + 12.4601i −0.0533999 + 0.741989i
\(283\) −5.63043 + 14.3461i −0.334695 + 0.852788i 0.660127 + 0.751154i \(0.270502\pi\)
−0.994822 + 0.101634i \(0.967593\pi\)
\(284\) 21.1569 12.3822i 1.25543 0.734750i
\(285\) −3.08895 + 1.21232i −0.182974 + 0.0718118i
\(286\) −6.38933 7.96357i −0.377809 0.470896i
\(287\) −11.5603 + 16.3204i −0.682383 + 0.963362i
\(288\) 1.56432 + 1.90322i 0.0921787 + 0.112148i
\(289\) 1.25635 16.7649i 0.0739030 0.986168i
\(290\) −1.76105 + 1.02369i −0.103412 + 0.0601134i
\(291\) −7.26695 + 10.6587i −0.425996 + 0.624821i
\(292\) 7.89571 + 11.4351i 0.462061 + 0.669187i
\(293\) 1.53780i 0.0898392i −0.998991 0.0449196i \(-0.985697\pi\)
0.998991 0.0449196i \(-0.0143032\pi\)
\(294\) 11.2608 + 11.1586i 0.656742 + 0.650785i
\(295\) 0.791523i 0.0460842i
\(296\) −18.3763 16.7500i −1.06810 0.973576i
\(297\) 8.69389 12.7516i 0.504470 0.739922i
\(298\) −1.98936 3.42228i −0.115241 0.198247i
\(299\) 0.939033 12.5305i 0.0543057 0.724659i
\(300\) 15.6766 0.0926539i 0.905088 0.00534938i
\(301\) −13.2284 + 0.753514i −0.762474 + 0.0434318i
\(302\) 10.2616 8.23312i 0.590491 0.473763i
\(303\) 22.1382 8.68862i 1.27181 0.499148i
\(304\) 21.2754 + 14.1399i 1.22023 + 0.810978i
\(305\) 0.814154 2.07443i 0.0466183 0.118782i
\(306\) 0.266459 + 0.0191767i 0.0152324 + 0.00109626i
\(307\) −7.98188 10.0090i −0.455550 0.571242i 0.500017 0.866016i \(-0.333327\pi\)
−0.955567 + 0.294774i \(0.904756\pi\)
\(308\) −11.4936 9.39345i −0.654908 0.535242i
\(309\) −8.56672 + 10.7423i −0.487343 + 0.611109i
\(310\) −0.797067 + 0.864141i −0.0452704 + 0.0490799i
\(311\) −3.29414 + 3.05651i −0.186793 + 0.173319i −0.768026 0.640418i \(-0.778761\pi\)
0.581233 + 0.813737i \(0.302571\pi\)
\(312\) 10.8885 + 4.16240i 0.616439 + 0.235649i
\(313\) 12.3942 + 7.15578i 0.700560 + 0.404468i 0.807556 0.589791i \(-0.200790\pi\)
−0.106996 + 0.994259i \(0.534123\pi\)
\(314\) 7.42193 + 15.2960i 0.418844 + 0.863203i
\(315\) 0.259153 0.269463i 0.0146016 0.0151825i
\(316\) 20.2461 4.74710i 1.13893 0.267045i
\(317\) 12.1199 + 11.2457i 0.680723 + 0.631619i 0.942773 0.333436i \(-0.108208\pi\)
−0.262050 + 0.965054i \(0.584398\pi\)
\(318\) −0.997368 12.8012i −0.0559296 0.717856i
\(319\) 1.85603 12.3139i 0.103917 0.689447i
\(320\) 1.50000 + 2.11840i 0.0838524 + 0.118422i
\(321\) −4.95035 1.12989i −0.276302 0.0630640i
\(322\) −2.45256 18.1034i −0.136676 1.00886i
\(323\) 2.70066 0.616409i 0.150269 0.0342979i
\(324\) −1.03305 + 14.9720i −0.0573917 + 0.831779i
\(325\) −10.9093 + 6.29851i −0.605141 + 0.349378i
\(326\) 8.51238 12.5650i 0.471457 0.695910i
\(327\) 21.8310 14.8841i 1.20726 0.823094i
\(328\) 0.189547 + 21.3800i 0.0104660 + 1.18051i
\(329\) −8.89358 11.5712i −0.490319 0.637939i
\(330\) 1.28044 1.61539i 0.0704861 0.0889245i
\(331\) −6.88703 + 22.3272i −0.378545 + 1.22721i 0.543261 + 0.839564i \(0.317189\pi\)
−0.921806 + 0.387650i \(0.873287\pi\)
\(332\) 1.02841 + 12.7143i 0.0564413 + 0.697790i
\(333\) 0.286108 + 3.81784i 0.0156786 + 0.209217i
\(334\) 27.8384 19.1007i 1.52325 1.04514i
\(335\) 0.297946 0.143483i 0.0162785 0.00783932i
\(336\) 16.7427 + 2.62774i 0.913389 + 0.143355i
\(337\) 30.4120 + 14.6457i 1.65665 + 0.797800i 0.999011 + 0.0444660i \(0.0141586\pi\)
0.657638 + 0.753334i \(0.271556\pi\)
\(338\) 8.91320 1.37040i 0.484814 0.0745398i
\(339\) −27.0031 + 8.32935i −1.46661 + 0.452388i
\(340\) 0.278570 + 0.0403053i 0.0151076 + 0.00218586i
\(341\) −1.07118 7.10681i −0.0580076 0.384855i
\(342\) −0.886592 3.83218i −0.0479414 0.207221i
\(343\) −18.4936 0.994035i −0.998559 0.0536728i
\(344\) −10.9957 + 8.92938i −0.592847 + 0.481440i
\(345\) 2.50860 0.378110i 0.135058 0.0203568i
\(346\) −1.61199 0.627169i −0.0866612 0.0337168i
\(347\) −10.1148 32.7915i −0.542994 1.76034i −0.643543 0.765410i \(-0.722536\pi\)
0.100550 0.994932i \(-0.467940\pi\)
\(348\) 5.27255 + 13.2042i 0.282638 + 0.707820i
\(349\) 5.40347 11.2204i 0.289241 0.600615i −0.704827 0.709380i \(-0.748975\pi\)
0.994068 + 0.108765i \(0.0346895\pi\)
\(350\) −13.6100 + 12.2549i −0.727488 + 0.655053i
\(351\) −6.14334 12.7568i −0.327907 0.680906i
\(352\) −15.8401 0.951935i −0.844283 0.0507383i
\(353\) 4.86426 0.364526i 0.258898 0.0194017i 0.0553514 0.998467i \(-0.482372\pi\)
0.203547 + 0.979065i \(0.434753\pi\)
\(354\) 5.46550 + 0.807281i 0.290488 + 0.0429065i
\(355\) −3.80023 1.17221i −0.201695 0.0622147i
\(356\) −11.6682 + 24.6002i −0.618414 + 1.30381i
\(357\) 1.45710 1.11993i 0.0771181 0.0592729i
\(358\) −9.55797 + 19.9983i −0.505155 + 1.05694i
\(359\) −12.4421 18.2492i −0.656667 0.963154i −0.999716 0.0238363i \(-0.992412\pi\)
0.343049 0.939318i \(-0.388540\pi\)
\(360\) 0.0560620 0.395720i 0.00295473 0.0208563i
\(361\) −10.8931 18.8675i −0.573323 0.993025i
\(362\) 10.5825 34.6709i 0.556202 1.82226i
\(363\) −1.11562 4.88787i −0.0585551 0.256547i
\(364\) −12.7355 + 4.82293i −0.667523 + 0.252790i
\(365\) 0.501647 2.19786i 0.0262574 0.115041i
\(366\) −13.4937 7.73751i −0.705326 0.404446i
\(367\) −16.6152 2.50434i −0.867307 0.130725i −0.299708 0.954031i \(-0.596889\pi\)
−0.567599 + 0.823305i \(0.692127\pi\)
\(368\) −13.4522 14.1586i −0.701244 0.738068i
\(369\) 2.23921 2.41329i 0.116568 0.125631i
\(370\) 0.0119204 + 4.03379i 0.000619714 + 0.209707i
\(371\) 10.8116 + 10.3979i 0.561309 + 0.539834i
\(372\) 5.15400 + 6.38513i 0.267223 + 0.331054i
\(373\) −11.4975 + 19.9143i −0.595318 + 1.03112i 0.398184 + 0.917306i \(0.369641\pi\)
−0.993502 + 0.113816i \(0.963693\pi\)
\(374\) −1.25795 + 1.17414i −0.0650471 + 0.0607136i
\(375\) −3.49692 3.76879i −0.180580 0.194619i
\(376\) −14.9488 4.46634i −0.770925 0.230334i
\(377\) −8.93223 7.12321i −0.460033 0.366864i
\(378\) −12.5927 16.2842i −0.647700 0.837568i
\(379\) 10.1114 8.06357i 0.519388 0.414198i −0.328396 0.944540i \(-0.606508\pi\)
0.847784 + 0.530342i \(0.177937\pi\)
\(380\) −0.641883 4.09427i −0.0329279 0.210032i
\(381\) 10.4945 + 4.11879i 0.537650 + 0.211012i
\(382\) 0.422333 + 1.35494i 0.0216084 + 0.0693248i
\(383\) 5.60580 + 14.2834i 0.286443 + 0.729845i 0.999584 + 0.0288249i \(0.00917653\pi\)
−0.713141 + 0.701020i \(0.752728\pi\)
\(384\) 16.1575 8.19699i 0.824533 0.418301i
\(385\) 0.136949 + 2.40422i 0.00697956 + 0.122531i
\(386\) −1.67311 + 7.43155i −0.0851592 + 0.378256i
\(387\) 2.17492 + 0.162987i 0.110557 + 0.00828512i
\(388\) −11.0280 11.7453i −0.559860 0.596279i
\(389\) 22.0218 + 15.0142i 1.11655 + 0.761252i 0.973551 0.228471i \(-0.0733725\pi\)
0.143001 + 0.989723i \(0.454325\pi\)
\(390\) −0.696100 1.75834i −0.0352484 0.0890369i
\(391\) −2.11781 −0.107102
\(392\) −16.6531 + 10.7086i −0.841110 + 0.540865i
\(393\) 28.2883 1.42696
\(394\) −2.30704 5.82754i −0.116227 0.293587i
\(395\) −2.78741 1.90042i −0.140250 0.0956205i
\(396\) 1.67249 + 1.78128i 0.0840456 + 0.0895127i
\(397\) −17.0918 1.28085i −0.857811 0.0642840i −0.361441 0.932395i \(-0.617715\pi\)
−0.496370 + 0.868111i \(0.665334\pi\)
\(398\) 5.20079 23.1006i 0.260692 1.15793i
\(399\) −22.0805 15.6404i −1.10541 0.783000i
\(400\) −4.13079 + 19.1382i −0.206539 + 0.956909i
\(401\) 2.59459 + 6.61090i 0.129567 + 0.330132i 0.980905 0.194485i \(-0.0623036\pi\)
−0.851338 + 0.524618i \(0.824208\pi\)
\(402\) −0.686880 2.20367i −0.0342585 0.109909i
\(403\) −6.13784 2.40892i −0.305748 0.119997i
\(404\) 4.60032 + 29.3433i 0.228874 + 1.45988i
\(405\) 1.90352 1.51801i 0.0945866 0.0754303i
\(406\) −14.8558 7.42967i −0.737280 0.368728i
\(407\) −19.2805 15.3757i −0.955699 0.762144i
\(408\) 0.562427 1.88243i 0.0278443 0.0931943i
\(409\) 8.81344 + 9.49863i 0.435797 + 0.469677i 0.912316 0.409487i \(-0.134292\pi\)
−0.476519 + 0.879164i \(0.658102\pi\)
\(410\) 2.53569 2.36676i 0.125229 0.116886i
\(411\) −8.28204 + 14.3449i −0.408523 + 0.707582i
\(412\) −10.7781 13.3527i −0.531000 0.657839i
\(413\) −5.39703 + 3.53981i −0.265570 + 0.174183i
\(414\) 0.00888656 + 3.00715i 0.000436751 + 0.147793i
\(415\) 1.40754 1.51697i 0.0690935 0.0744651i
\(416\) −8.02243 + 12.1486i −0.393332 + 0.595634i
\(417\) −22.7623 3.43086i −1.11467 0.168010i
\(418\) 21.9790 + 12.6031i 1.07503 + 0.616440i
\(419\) 0.955920 4.18816i 0.0466997 0.204605i −0.946196 0.323595i \(-0.895109\pi\)
0.992895 + 0.118990i \(0.0379656\pi\)
\(420\) −1.52146 2.29009i −0.0742397 0.111745i
\(421\) −6.63466 29.0684i −0.323354 1.41671i −0.831543 0.555460i \(-0.812542\pi\)
0.508189 0.861245i \(-0.330315\pi\)
\(422\) −0.0914359 + 0.299568i −0.00445103 + 0.0145827i
\(423\) 1.20114 + 2.08044i 0.0584015 + 0.101154i
\(424\) 15.8774 + 2.24936i 0.771075 + 0.109239i
\(425\) 1.19598 + 1.75418i 0.0580136 + 0.0850904i
\(426\) −11.9701 + 25.0452i −0.579952 + 1.21344i
\(427\) 17.7856 3.72584i 0.860706 0.180306i
\(428\) 2.71766 5.72967i 0.131363 0.276954i
\(429\) 11.0477 + 3.40776i 0.533387 + 0.164528i
\(430\) 2.27328 + 0.335775i 0.109627 + 0.0161925i
\(431\) 25.6682 1.92357i 1.23639 0.0926549i 0.559560 0.828790i \(-0.310970\pi\)
0.676835 + 0.736135i \(0.263351\pi\)
\(432\) −21.1040 6.23752i −1.01537 0.300103i
\(433\) −14.9846 31.1159i −0.720115 1.49533i −0.862789 0.505564i \(-0.831284\pi\)
0.142674 0.989770i \(-0.454430\pi\)
\(434\) −9.45679 1.57026i −0.453940 0.0753747i
\(435\) 1.00079 2.07817i 0.0479843 0.0996404i
\(436\) 12.2371 + 30.6459i 0.586052 + 1.46767i
\(437\) 9.19104 + 29.7966i 0.439667 + 1.42537i
\(438\) −14.6647 5.70551i −0.700706 0.272620i
\(439\) −27.4680 + 4.14014i −1.31098 + 0.197598i −0.767079 0.641553i \(-0.778291\pi\)
−0.543899 + 0.839151i \(0.683052\pi\)
\(440\) 1.62289 + 1.99843i 0.0773681 + 0.0952714i
\(441\) 2.99631 + 0.561966i 0.142682 + 0.0267603i
\(442\) 0.355837 + 1.53806i 0.0169254 + 0.0731580i
\(443\) 5.61834 + 37.2752i 0.266935 + 1.77100i 0.573555 + 0.819167i \(0.305564\pi\)
−0.306619 + 0.951832i \(0.599198\pi\)
\(444\) 27.8657 + 4.03179i 1.32245 + 0.191340i
\(445\) 4.22083 1.30195i 0.200087 0.0617185i
\(446\) 23.3148 3.58463i 1.10399 0.169737i
\(447\) 4.03853 + 1.94485i 0.191016 + 0.0919885i
\(448\) −7.73614 + 19.7016i −0.365498 + 0.930812i
\(449\) −7.93063 + 3.81919i −0.374270 + 0.180239i −0.611556 0.791201i \(-0.709456\pi\)
0.237287 + 0.971440i \(0.423742\pi\)
\(450\) 2.48581 1.70558i 0.117182 0.0804016i
\(451\) 1.58468 + 21.1461i 0.0746196 + 0.995730i
\(452\) −2.84535 35.1773i −0.133834 1.65460i
\(453\) −4.39114 + 14.2357i −0.206314 + 0.668853i
\(454\) −12.3476 + 15.5776i −0.579503 + 0.731095i
\(455\) 1.97302 + 0.994044i 0.0924964 + 0.0466015i
\(456\) −28.9258 + 0.256446i −1.35458 + 0.0120092i
\(457\) 0.367781 0.250749i 0.0172041 0.0117295i −0.554687 0.832059i \(-0.687162\pi\)
0.571892 + 0.820329i \(0.306210\pi\)
\(458\) 11.2379 16.5880i 0.525110 0.775107i
\(459\) −2.06663 + 1.19317i −0.0964622 + 0.0556925i
\(460\) −0.218096 + 3.16087i −0.0101688 + 0.147376i
\(461\) −7.14998 + 1.63194i −0.333008 + 0.0760068i −0.385756 0.922601i \(-0.626059\pi\)
0.0527478 + 0.998608i \(0.483202\pi\)
\(462\) 16.7410 + 1.50645i 0.778860 + 0.0700865i
\(463\) −19.2117 4.38494i −0.892842 0.203785i −0.248599 0.968606i \(-0.579970\pi\)
−0.644243 + 0.764821i \(0.722827\pi\)
\(464\) −17.5261 + 2.85389i −0.813627 + 0.132489i
\(465\) 0.198407 1.31635i 0.00920093 0.0610441i
\(466\) 2.92102 + 37.4912i 0.135314 + 1.73675i
\(467\) −4.23062 3.92544i −0.195770 0.181648i 0.576197 0.817311i \(-0.304536\pi\)
−0.771966 + 0.635663i \(0.780727\pi\)
\(468\) 2.18245 0.511719i 0.100884 0.0236542i
\(469\) 2.31080 + 1.38987i 0.106703 + 0.0641785i
\(470\) 1.10493 + 2.27717i 0.0509665 + 0.105038i
\(471\) −16.6727 9.62596i −0.768235 0.443541i
\(472\) −2.46379 + 6.44508i −0.113405 + 0.296659i
\(473\) −10.2983 + 9.55540i −0.473515 + 0.439358i
\(474\) −15.9654 + 17.3089i −0.733315 + 0.795025i
\(475\) 19.4901 24.4398i 0.894268 1.12138i
\(476\) 0.970985 + 2.07969i 0.0445050 + 0.0953225i
\(477\) −1.53948 1.93045i −0.0704881 0.0883893i
\(478\) 12.0962 + 0.870543i 0.553265 + 0.0398177i
\(479\) 9.11656 23.2286i 0.416546 1.06134i −0.556523 0.830832i \(-0.687865\pi\)
0.973070 0.230511i \(-0.0740397\pi\)
\(480\) −2.75165 1.03329i −0.125595 0.0471630i
\(481\) −21.0605 + 8.26563i −0.960275 + 0.376880i
\(482\) 33.6685 27.0129i 1.53356 1.23040i
\(483\) 13.7970 + 15.4140i 0.627785 + 0.701361i
\(484\) 6.26136 0.0370068i 0.284607 0.00168213i
\(485\) −0.195323 + 2.60641i −0.00886917 + 0.118351i
\(486\) 3.18992 + 5.48759i 0.144698 + 0.248922i
\(487\) 6.37880 9.35598i 0.289051 0.423960i −0.654058 0.756445i \(-0.726935\pi\)
0.943109 + 0.332485i \(0.107887\pi\)
\(488\) 13.0865 14.3571i 0.592398 0.649915i
\(489\) 17.1858i 0.777169i
\(490\) 3.10631 + 0.817183i 0.140329 + 0.0369166i
\(491\) 17.5121i 0.790311i 0.918614 + 0.395156i \(0.129309\pi\)
−0.918614 + 0.395156i \(0.870691\pi\)
\(492\) −13.7564 19.9230i −0.620188 0.898196i
\(493\) −1.08469 + 1.59094i −0.0488518 + 0.0716524i
\(494\) 20.0955 11.6814i 0.904138 0.525573i
\(495\) 0.0296225 0.395284i 0.00133143 0.0177667i
\(496\) −9.18006 + 4.55534i −0.412197 + 0.204541i
\(497\) −9.00241 31.1543i −0.403813 1.39746i
\(498\) −9.03919 11.2663i −0.405056 0.504856i
\(499\) 40.0936 15.7356i 1.79484 0.704422i 0.800354 0.599528i \(-0.204645\pi\)
0.994483 0.104893i \(-0.0334501\pi\)
\(500\) 5.54159 3.24326i 0.247828 0.145043i
\(501\) −13.9669 + 35.5872i −0.623997 + 1.58992i
\(502\) 1.97752 27.4776i 0.0882613 1.22639i
\(503\) −13.2908 16.6661i −0.592606 0.743104i 0.391599 0.920136i \(-0.371922\pi\)
−0.984205 + 0.177032i \(0.943351\pi\)
\(504\) 2.94895 1.38746i 0.131357 0.0618025i
\(505\) 3.00430 3.76727i 0.133690 0.167641i
\(506\) −14.2380 13.1329i −0.632958 0.583828i
\(507\) −7.48561 + 6.94563i −0.332448 + 0.308466i
\(508\) −7.86262 + 11.6801i −0.348847 + 0.518219i
\(509\) −33.0528 19.0831i −1.46504 0.845841i −0.465803 0.884888i \(-0.654234\pi\)
−0.999237 + 0.0390471i \(0.987568\pi\)
\(510\) −0.286753 + 0.139139i −0.0126977 + 0.00616116i
\(511\) 17.2296 6.40867i 0.762193 0.283503i
\(512\) 5.61994 + 21.9184i 0.248369 + 0.968666i
\(513\) 25.7563 + 23.8984i 1.13717 + 1.05514i
\(514\) 13.8415 1.07842i 0.610524 0.0475672i
\(515\) −0.414912 + 2.75276i −0.0182832 + 0.121301i
\(516\) 4.63708 15.3547i 0.204136 0.675952i
\(517\) −15.0858 3.44323i −0.663472 0.151433i
\(518\) −27.4512 + 18.1210i −1.20614 + 0.796192i
\(519\) 1.90954 0.435840i 0.0838195 0.0191312i
\(520\) 2.33223 0.372701i 0.102275 0.0163440i
\(521\) −18.1119 + 10.4569i −0.793496 + 0.458125i −0.841192 0.540737i \(-0.818146\pi\)
0.0476958 + 0.998862i \(0.484812\pi\)
\(522\) 2.26358 + 1.53351i 0.0990743 + 0.0671197i
\(523\) −11.6723 + 7.95803i −0.510394 + 0.347980i −0.790974 0.611850i \(-0.790426\pi\)
0.280580 + 0.959831i \(0.409473\pi\)
\(524\) −7.65783 + 34.4895i −0.334534 + 1.50668i
\(525\) 4.97590 20.1327i 0.217166 0.878665i
\(526\) −13.1124 10.3935i −0.571727 0.453180i
\(527\) −0.327558 + 1.06192i −0.0142686 + 0.0462578i
\(528\) 15.4545 9.16790i 0.672569 0.398981i
\(529\) −0.0627145 0.836867i −0.00272672 0.0363855i
\(530\) −1.47183 2.14513i −0.0639323 0.0931787i
\(531\) 0.957209 0.460968i 0.0415393 0.0200043i
\(532\) 25.0463 22.6869i 1.08590 0.983603i
\(533\) 17.5278 + 8.44095i 0.759214 + 0.365618i
\(534\) −4.68519 30.4729i −0.202748 1.31869i
\(535\) −0.983080 + 0.303240i −0.0425023 + 0.0131102i
\(536\) 2.87269 0.240906i 0.124081 0.0104056i
\(537\) −3.74078 24.8185i −0.161427 1.07100i
\(538\) −37.0782 + 8.57821i −1.59855 + 0.369833i
\(539\) −15.7808 + 11.6859i −0.679729 + 0.503345i
\(540\) 1.56800 + 3.20736i 0.0674762 + 0.138023i
\(541\) 3.02017 0.455218i 0.129847 0.0195714i −0.0837970 0.996483i \(-0.526705\pi\)
0.213644 + 0.976911i \(0.431467\pi\)
\(542\) 2.98594 7.67466i 0.128257 0.329655i
\(543\) 12.0992 + 39.2245i 0.519224 + 1.68328i
\(544\) 2.14283 + 1.19530i 0.0918733 + 0.0512483i
\(545\) 2.32275 4.82325i 0.0994958 0.206605i
\(546\) 8.87622 12.6099i 0.379867 0.539656i
\(547\) 9.01528 + 18.7204i 0.385465 + 0.800427i 0.999934 + 0.0114858i \(0.00365613\pi\)
−0.614469 + 0.788941i \(0.710630\pi\)
\(548\) −15.2475 13.9808i −0.651341 0.597232i
\(549\) −2.98281 + 0.223531i −0.127303 + 0.00954007i
\(550\) −2.83739 + 19.2098i −0.120987 + 0.819111i
\(551\) 27.0912 + 8.35653i 1.15412 + 0.356000i
\(552\) 21.6035 + 4.72977i 0.919508 + 0.201312i
\(553\) 0.492380 27.5050i 0.0209381 1.16963i
\(554\) −0.0802879 0.0383727i −0.00341110 0.00163030i
\(555\) −2.57310 3.77404i −0.109222 0.160199i
\(556\) 10.3448 26.8233i 0.438719 1.13756i
\(557\) 4.16650 + 7.21659i 0.176540 + 0.305777i 0.940693 0.339258i \(-0.110176\pi\)
−0.764153 + 0.645035i \(0.776843\pi\)
\(558\) 1.50923 + 0.460655i 0.0638906 + 0.0195011i
\(559\) 2.86796 + 12.5653i 0.121302 + 0.531457i
\(560\) 3.20397 1.23504i 0.135393 0.0521901i
\(561\) 0.433590 1.89968i 0.0183062 0.0802047i
\(562\) −14.0150 + 24.4411i −0.591185 + 1.03099i
\(563\) 16.5135 + 2.48902i 0.695963 + 0.104900i 0.487490 0.873129i \(-0.337913\pi\)
0.208473 + 0.978028i \(0.433151\pi\)
\(564\) 16.8509 5.30708i 0.709550 0.223468i
\(565\) −3.89431 + 4.19707i −0.163835 + 0.176572i
\(566\) 21.7950 0.0644073i 0.916111 0.00270724i
\(567\) 18.8634 + 6.19046i 0.792189 + 0.259975i
\(568\) −27.2951 21.3740i −1.14528 0.896832i
\(569\) 13.3698 23.1571i 0.560490 0.970797i −0.436964 0.899479i \(-0.643946\pi\)
0.997454 0.0713179i \(-0.0227205\pi\)
\(570\) 3.20209 + 3.43064i 0.134121 + 0.143694i
\(571\) 11.5472 + 12.4449i 0.483235 + 0.520804i 0.926859 0.375409i \(-0.122498\pi\)
−0.443624 + 0.896213i \(0.646307\pi\)
\(572\) −7.14546 + 12.5470i −0.298766 + 0.524615i
\(573\) −1.25647 1.00200i −0.0524899 0.0418593i
\(574\) 27.4779 + 6.70519i 1.14690 + 0.279869i
\(575\) −18.6848 + 14.9006i −0.779208 + 0.621398i
\(576\) 1.68826 3.04770i 0.0703443 0.126987i
\(577\) 17.1308 + 6.72335i 0.713166 + 0.279897i 0.694057 0.719921i \(-0.255822\pi\)
0.0191091 + 0.999817i \(0.493917\pi\)
\(578\) −22.6985 + 7.07508i −0.944132 + 0.294284i
\(579\) −3.15138 8.02957i −0.130967 0.333698i
\(580\) 2.26281 + 1.78275i 0.0939579 + 0.0740247i
\(581\) 16.6383 + 2.81325i 0.690271 + 0.116713i
\(582\) 17.7982 + 4.00702i 0.737758 + 0.166096i
\(583\) 15.8599 + 1.18854i 0.656850 + 0.0492241i
\(584\) 10.9261 16.3349i 0.452124 0.675941i
\(585\) −0.300471 0.204858i −0.0124230 0.00846984i
\(586\) −2.02209 + 0.800514i −0.0835316 + 0.0330689i
\(587\) 0.140687 0.00580676 0.00290338 0.999996i \(-0.499076\pi\)
0.00290338 + 0.999996i \(0.499076\pi\)
\(588\) 8.81084 20.6158i 0.363353 0.850180i
\(589\) 16.3622 0.674194
\(590\) 1.04079 0.412034i 0.0428487 0.0169632i
\(591\) 5.86397 + 3.99799i 0.241212 + 0.164455i
\(592\) −12.4590 + 32.8828i −0.512063 + 1.35147i
\(593\) 11.4042 + 0.854624i 0.468313 + 0.0350952i 0.306797 0.951775i \(-0.400743\pi\)
0.161516 + 0.986870i \(0.448362\pi\)
\(594\) −21.2930 4.79383i −0.873663 0.196693i
\(595\) 0.142217 0.344121i 0.00583033 0.0141076i
\(596\) −3.46445 + 4.39735i −0.141909 + 0.180122i
\(597\) 9.79590 + 24.9595i 0.400920 + 1.02153i
\(598\) −16.9655 + 5.28811i −0.693770 + 0.216247i
\(599\) −0.952438 0.373804i −0.0389156 0.0152732i 0.345803 0.938307i \(-0.387606\pi\)
−0.384719 + 0.923034i \(0.625702\pi\)
\(600\) −8.28241 20.5652i −0.338128 0.839573i
\(601\) 22.9737 18.3209i 0.937118 0.747327i −0.0305556 0.999533i \(-0.509728\pi\)
0.967673 + 0.252207i \(0.0811562\pi\)
\(602\) 7.87698 + 17.0021i 0.321042 + 0.692954i
\(603\) −0.347036 0.276752i −0.0141324 0.0112702i
\(604\) −16.1677 9.20744i −0.657854 0.374646i
\(605\) −0.690920 0.744635i −0.0280899 0.0302737i
\(606\) −22.9491 24.5871i −0.932243 0.998783i
\(607\) −2.38773 + 4.13568i −0.0969151 + 0.167862i −0.910406 0.413715i \(-0.864231\pi\)
0.813491 + 0.581577i \(0.197564\pi\)
\(608\) 7.51774 35.3362i 0.304885 1.43307i
\(609\) 18.6457 2.46994i 0.755564 0.100087i
\(610\) −3.15153 + 0.00931322i −0.127602 + 0.000377081i
\(611\) −9.65576 + 10.4064i −0.390630 + 0.420999i
\(612\) −0.113492 0.360355i −0.00458763 0.0145665i
\(613\) 6.55547 + 0.988078i 0.264773 + 0.0399081i 0.280087 0.959975i \(-0.409637\pi\)
−0.0153140 + 0.999883i \(0.504875\pi\)
\(614\) −9.00597 + 15.7058i −0.363451 + 0.633834i
\(615\) −0.874003 + 3.82926i −0.0352432 + 0.154410i
\(616\) −6.36857 + 20.0030i −0.256597 + 0.805944i
\(617\) −6.33896 27.7728i −0.255197 1.11809i −0.926318 0.376743i \(-0.877044\pi\)
0.671121 0.741348i \(-0.265813\pi\)
\(618\) 18.5848 + 5.67256i 0.747590 + 0.228184i
\(619\) −12.9733 22.4704i −0.521440 0.903160i −0.999689 0.0249362i \(-0.992062\pi\)
0.478249 0.878224i \(-0.341272\pi\)
\(620\) 1.55120 + 0.598245i 0.0622976 + 0.0240261i
\(621\) −15.1319 22.1944i −0.607221 0.890630i
\(622\) 5.73387 + 2.74044i 0.229907 + 0.109882i
\(623\) 27.7536 + 22.9573i 1.11193 + 0.919767i
\(624\) −0.194862 16.4843i −0.00780072 0.659899i
\(625\) 22.3909 + 6.90669i 0.895638 + 0.276268i
\(626\) 2.95740 20.0224i 0.118201 0.800255i
\(627\) −28.6094 + 2.14398i −1.14255 + 0.0856222i
\(628\) 16.2495 17.7217i 0.648425 0.707173i
\(629\) 1.65445 + 3.43549i 0.0659671 + 0.136982i
\(630\) −0.489226 0.200495i −0.0194912 0.00798791i
\(631\) 8.78688 18.2461i 0.349800 0.726367i −0.649626 0.760254i \(-0.725074\pi\)
0.999426 + 0.0338871i \(0.0107887\pi\)
\(632\) −16.7813 24.1509i −0.667525 0.960670i
\(633\) −0.104541 0.338912i −0.00415511 0.0134706i
\(634\) 8.47802 21.7908i 0.336705 0.865422i
\(635\) 2.25868 0.340442i 0.0896331 0.0135100i
\(636\) −16.3134 + 7.97524i −0.646868 + 0.316239i
\(637\) 2.04571 + 17.8986i 0.0810539 + 0.709168i
\(638\) −17.1580 + 3.96959i −0.679292 + 0.157157i
\(639\) 0.795589 + 5.27839i 0.0314730 + 0.208810i
\(640\) 2.00469 3.07513i 0.0792423 0.121555i
\(641\) −26.1774 + 8.07467i −1.03395 + 0.318930i −0.764867 0.644188i \(-0.777196\pi\)
−0.269079 + 0.963118i \(0.586719\pi\)
\(642\) 1.09124 + 7.09749i 0.0430676 + 0.280116i
\(643\) 19.8762 + 9.57187i 0.783841 + 0.377478i 0.782603 0.622521i \(-0.213892\pi\)
0.00123806 + 0.999999i \(0.499606\pi\)
\(644\) −22.5279 + 12.6488i −0.887723 + 0.498433i
\(645\) −2.34442 + 1.12901i −0.0923114 + 0.0444548i
\(646\) −2.21638 3.23029i −0.0872024 0.127094i
\(647\) −0.839488 11.2022i −0.0330037 0.440404i −0.989089 0.147316i \(-0.952936\pi\)
0.956086 0.293087i \(-0.0946826\pi\)
\(648\) 20.2248 6.43543i 0.794505 0.252808i
\(649\) −2.01711 + 6.53931i −0.0791785 + 0.256690i
\(650\) 13.9610 + 11.0662i 0.547595 + 0.434051i
\(651\) 9.86287 4.53406i 0.386556 0.177704i
\(652\) −20.9532 4.65230i −0.820589 0.182198i
\(653\) 26.7162 18.2148i 1.04549 0.712800i 0.0864994 0.996252i \(-0.472432\pi\)
0.958987 + 0.283452i \(0.0914796\pi\)
\(654\) −30.9358 20.9580i −1.20968 0.819523i
\(655\) 4.96363 2.86575i 0.193945 0.111974i
\(656\) 28.0143 11.3788i 1.09377 0.444266i
\(657\) −2.95008 + 0.673336i −0.115093 + 0.0262693i
\(658\) −10.5855 + 17.7178i −0.412667 + 0.690713i
\(659\) 16.8638 + 3.84906i 0.656921 + 0.149938i 0.537972 0.842962i \(-0.319190\pi\)
0.118949 + 0.992900i \(0.462048\pi\)
\(660\) −2.79066 0.842775i −0.108626 0.0328050i
\(661\) −6.17484 + 40.9674i −0.240174 + 1.59345i 0.465590 + 0.885000i \(0.345842\pi\)
−0.705764 + 0.708447i \(0.749396\pi\)
\(662\) 32.9436 2.56671i 1.28039 0.0997578i
\(663\) −1.31044 1.21591i −0.0508931 0.0472219i
\(664\) 16.1830 7.97083i 0.628023 0.309328i
\(665\) −5.45883 0.507485i −0.211684 0.0196794i
\(666\) 4.87123 2.36362i 0.188756 0.0915884i
\(667\) −18.7709 10.8374i −0.726810 0.419624i
\(668\) −39.6074 26.6624i −1.53246 1.03160i
\(669\) −19.5806 + 18.1681i −0.757028 + 0.702419i
\(670\) −0.343767 0.317084i −0.0132809 0.0122500i
\(671\) 12.0127 15.0635i 0.463747 0.581520i
\(672\) −5.26027 23.3832i −0.202919 0.902028i
\(673\) 8.66067 + 10.8601i 0.333844 + 0.418628i 0.920214 0.391416i \(-0.128015\pi\)
−0.586369 + 0.810044i \(0.699443\pi\)
\(674\) 3.42667 47.6134i 0.131990 1.83400i
\(675\) −9.83826 + 25.0675i −0.378675 + 0.964848i
\(676\) −6.44180 11.0068i −0.247762 0.423338i
\(677\) −10.0195 + 3.93237i −0.385081 + 0.151133i −0.549981 0.835177i \(-0.685365\pi\)
0.164900 + 0.986310i \(0.447270\pi\)
\(678\) 25.0091 + 31.1710i 0.960470 + 1.19712i
\(679\) −18.6454 + 10.3244i −0.715545 + 0.396216i
\(680\) −0.0920136 0.387279i −0.00352856 0.0148515i
\(681\) 1.68209 22.4459i 0.0644579 0.860131i
\(682\) −8.78729 + 5.10802i −0.336483 + 0.195596i
\(683\) −2.45241 + 3.59702i −0.0938387 + 0.137636i −0.870287 0.492545i \(-0.836067\pi\)
0.776448 + 0.630181i \(0.217019\pi\)
\(684\) −4.57749 + 3.16067i −0.175025 + 0.120851i
\(685\) 3.35605i 0.128228i
\(686\) 8.31990 + 24.8350i 0.317655 + 0.948206i
\(687\) 22.6883i 0.865613i
\(688\) 17.4653 + 9.81020i 0.665859 + 0.374010i
\(689\) 8.21947 12.0558i 0.313137 0.459288i
\(690\) −1.80306 3.10178i −0.0686412 0.118083i
\(691\) 3.68409 49.1608i 0.140149 1.87016i −0.276388 0.961046i \(-0.589137\pi\)
0.416537 0.909119i \(-0.363243\pi\)
\(692\) 0.0144574 + 2.44612i 0.000549588 + 0.0929875i
\(693\) 2.82774 1.56579i 0.107417 0.0594795i
\(694\) −37.8529 + 30.3701i −1.43688 + 1.15283i
\(695\) −4.34156 + 1.70394i −0.164685 + 0.0646341i
\(696\) 14.6178 13.8066i 0.554088 0.523336i
\(697\) 1.19789 3.05218i 0.0453735 0.115610i
\(698\) −17.5668 1.26426i −0.664913 0.0478528i
\(699\) −26.5497 33.2922i −1.00420 1.25923i
\(700\) 23.1991 + 11.5167i 0.876843 + 0.435292i
\(701\) −1.03090 + 1.29271i −0.0389367 + 0.0488250i −0.800919 0.598773i \(-0.795655\pi\)
0.761982 + 0.647598i \(0.224226\pi\)
\(702\) −13.5762 + 14.7186i −0.512400 + 0.555519i
\(703\) 41.1557 38.1869i 1.55222 1.44025i
\(704\) 6.99400 + 21.3241i 0.263596 + 0.803682i
\(705\) −2.48211 1.43305i −0.0934818 0.0539717i
\(706\) −3.01145 6.20636i −0.113338 0.233580i
\(707\) 39.1230 + 3.63710i 1.47137 + 0.136787i
\(708\) −1.78360 7.60695i −0.0670318 0.285887i
\(709\) −16.0924 14.9315i −0.604362 0.560766i 0.317513 0.948254i \(-0.397152\pi\)
−0.921875 + 0.387488i \(0.873343\pi\)
\(710\) 0.436869 + 5.60720i 0.0163954 + 0.210435i
\(711\) −0.674897 + 4.47765i −0.0253106 + 0.167925i
\(712\) 38.4213 + 2.53696i 1.43990 + 0.0950767i
\(713\) −12.1956 2.78357i −0.456730 0.104246i
\(714\) −2.23113 1.33299i −0.0834978 0.0498859i
\(715\) 2.28371 0.521242i 0.0854059 0.0194933i
\(716\) 31.2717 + 2.15771i 1.16868 + 0.0806373i
\(717\) −11.8928 + 6.86633i −0.444146 + 0.256428i
\(718\) −17.5194 + 25.8601i −0.653818 + 0.965090i
\(719\) −29.1133 + 19.8491i −1.08574 + 0.740246i −0.967534 0.252743i \(-0.918667\pi\)
−0.118208 + 0.992989i \(0.537715\pi\)
\(720\) −0.549525 + 0.132278i −0.0204796 + 0.00492972i
\(721\) −20.6254 + 9.48168i −0.768128 + 0.353116i
\(722\) −19.1387 + 24.1452i −0.712270 + 0.898593i
\(723\) −14.4074 + 46.7075i −0.535815 + 1.73707i
\(724\) −51.0983 + 4.13313i −1.89905 + 0.153607i
\(725\) 1.62380 + 21.6680i 0.0603062 + 0.804731i
\(726\) −5.84642 + 4.01138i −0.216981 + 0.148876i
\(727\) −30.5126 + 14.6941i −1.13165 + 0.544974i −0.903473 0.428645i \(-0.858991\pi\)
−0.228178 + 0.973620i \(0.573277\pi\)
\(728\) 12.9714 + 14.2356i 0.480750 + 0.527606i
\(729\) −26.7578 12.8859i −0.991031 0.477256i
\(730\) −3.15115 + 0.484487i −0.116629 + 0.0179317i
\(731\) 2.07571 0.640273i 0.0767730 0.0236813i
\(732\) −3.14997 + 21.7710i −0.116426 + 0.804678i
\(733\) 3.34355 + 22.1830i 0.123497 + 0.819347i 0.961723 + 0.274024i \(0.0883549\pi\)
−0.838226 + 0.545323i \(0.816407\pi\)
\(734\) 5.35617 + 23.1513i 0.197700 + 0.854532i
\(735\) −3.43112 + 1.20677i −0.126559 + 0.0445123i
\(736\) −11.6148 + 25.0590i −0.428128 + 0.923685i
\(737\) 2.82718 0.426129i 0.104141 0.0156967i
\(738\) −4.33893 1.68812i −0.159718 0.0621407i
\(739\) −2.38810 7.74202i −0.0878476 0.284795i 0.900980 0.433861i \(-0.142849\pi\)
−0.988827 + 0.149067i \(0.952373\pi\)
\(740\) 5.29792 2.11550i 0.194755 0.0777673i
\(741\) −11.4201 + 23.7141i −0.419528 + 0.871159i
\(742\) 8.04442 19.6291i 0.295320 0.720608i
\(743\) −3.74567 7.77796i −0.137415 0.285346i 0.820893 0.571082i \(-0.193476\pi\)
−0.958308 + 0.285736i \(0.907762\pi\)
\(744\) 5.71299 10.1009i 0.209448 0.370319i
\(745\) 0.905648 0.0678689i 0.0331804 0.00248653i
\(746\) 32.1708 + 4.75179i 1.17786 + 0.173975i
\(747\) −2.65424 0.818724i −0.0971135 0.0299555i
\(748\) 2.19874 + 1.04290i 0.0803941 + 0.0381320i
\(749\) −6.46414 5.34703i −0.236195 0.195376i
\(750\) −3.13531 + 6.56005i −0.114485 + 0.239539i
\(751\) −19.7777 29.0085i −0.721697 1.05854i −0.995314 0.0966964i \(-0.969172\pi\)
0.273617 0.961839i \(-0.411780\pi\)
\(752\) 1.90882 + 21.9815i 0.0696075 + 0.801582i
\(753\) 15.5976 + 27.0158i 0.568407 + 0.984509i
\(754\) −4.71672 + 15.4532i −0.171773 + 0.562773i
\(755\) 0.671659 + 2.94273i 0.0244442 + 0.107097i
\(756\) −14.8572 + 25.0353i −0.540350 + 0.910526i
\(757\) 0.191320 0.838227i 0.00695364 0.0304659i −0.971332 0.237727i \(-0.923598\pi\)
0.978286 + 0.207261i \(0.0664549\pi\)
\(758\) −15.8665 9.09814i −0.576299 0.330459i
\(759\) 21.6888 + 3.26906i 0.787254 + 0.118659i
\(760\) −5.04951 + 2.97533i −0.183165 + 0.107927i
\(761\) −6.46148 + 6.96382i −0.234228 + 0.252438i −0.839218 0.543795i \(-0.816987\pi\)
0.604989 + 0.796233i \(0.293177\pi\)
\(762\) −0.0471154 15.9435i −0.00170681 0.577573i
\(763\) 43.2752 5.73253i 1.56667 0.207532i
\(764\) 1.56179 1.26066i 0.0565036 0.0456091i
\(765\) −0.0306457 + 0.0530799i −0.00110800 + 0.00191911i
\(766\) 15.8633 14.8065i 0.573166 0.534981i