Properties

Label 196.2.j.a.111.8
Level $196$
Weight $2$
Character 196.111
Analytic conductor $1.565$
Analytic rank $0$
Dimension $156$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(27,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 111.8
Character \(\chi\) \(=\) 196.111
Dual form 196.2.j.a.83.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.865405 + 1.11851i) q^{2} +(0.0500641 + 0.0627784i) q^{3} +(-0.502147 - 1.93594i) q^{4} +(-2.66268 + 2.12341i) q^{5} +(-0.113544 + 0.00166863i) q^{6} +(-2.36082 - 1.19436i) q^{7} +(2.59993 + 1.11371i) q^{8} +(0.666128 - 2.91850i) q^{9} +O(q^{10})\) \(q+(-0.865405 + 1.11851i) q^{2} +(0.0500641 + 0.0627784i) q^{3} +(-0.502147 - 1.93594i) q^{4} +(-2.66268 + 2.12341i) q^{5} +(-0.113544 + 0.00166863i) q^{6} +(-2.36082 - 1.19436i) q^{7} +(2.59993 + 1.11371i) q^{8} +(0.666128 - 2.91850i) q^{9} +(-0.0707731 - 4.81585i) q^{10} +(-1.87399 + 0.427725i) q^{11} +(0.0963954 - 0.128445i) q^{12} +(-4.45886 + 1.01770i) q^{13} +(3.37898 - 1.60701i) q^{14} +(-0.266609 - 0.0608517i) q^{15} +(-3.49570 + 1.94425i) q^{16} +(2.04254 - 4.24138i) q^{17} +(2.68791 + 3.27076i) q^{18} -6.13285 q^{19} +(5.44785 + 4.08851i) q^{20} +(-0.0432122 - 0.208003i) q^{21} +(1.14334 - 2.46623i) q^{22} +(3.21229 + 6.67039i) q^{23} +(0.0602462 + 0.218976i) q^{24} +(1.46836 - 6.43329i) q^{25} +(2.72040 - 5.86802i) q^{26} +(0.433602 - 0.208812i) q^{27} +(-1.12673 + 5.17015i) q^{28} +(-2.47012 - 1.18955i) q^{29} +(0.298788 - 0.245544i) q^{30} -0.671221 q^{31} +(0.850526 - 5.59255i) q^{32} +(-0.120671 - 0.0962321i) q^{33} +(2.97642 + 5.95513i) q^{34} +(8.82224 - 1.83280i) q^{35} +(-5.98452 + 0.175933i) q^{36} +(3.19581 + 1.53902i) q^{37} +(5.30740 - 6.85968i) q^{38} +(-0.287118 - 0.228969i) q^{39} +(-9.28765 + 2.55528i) q^{40} +(-6.69401 + 5.33830i) q^{41} +(0.270051 + 0.131674i) q^{42} +(-0.476065 - 0.379649i) q^{43} +(1.76906 + 3.41314i) q^{44} +(4.42349 + 9.18548i) q^{45} +(-10.2409 - 2.17960i) q^{46} +(2.47240 + 10.8323i) q^{47} +(-0.297066 - 0.122117i) q^{48} +(4.14699 + 5.63937i) q^{49} +(5.92500 + 7.20978i) q^{50} +(0.368525 - 0.0841134i) q^{51} +(4.20921 + 8.12102i) q^{52} +(-4.09626 + 1.97266i) q^{53} +(-0.141683 + 0.665696i) q^{54} +(4.08158 - 5.11814i) q^{55} +(-4.80781 - 5.73454i) q^{56} +(-0.307035 - 0.385010i) q^{57} +(3.46818 - 1.73342i) q^{58} +(-1.77788 + 2.22940i) q^{59} +(0.0160718 + 0.546694i) q^{60} +(1.90411 - 3.95392i) q^{61} +(0.580878 - 0.750770i) q^{62} +(-5.05836 + 6.09446i) q^{63} +(5.51929 + 5.79115i) q^{64} +(9.71148 - 12.1778i) q^{65} +(0.212066 - 0.0516927i) q^{66} -1.25096i q^{67} +(-9.23670 - 1.82443i) q^{68} +(-0.257936 + 0.535609i) q^{69} +(-5.58480 + 11.4539i) q^{70} +(-6.71573 - 13.9454i) q^{71} +(4.98225 - 6.84602i) q^{72} +(-1.18301 - 0.270013i) q^{73} +(-4.48709 + 2.24268i) q^{74} +(0.477383 - 0.229896i) q^{75} +(3.07959 + 11.8728i) q^{76} +(4.93501 + 1.22844i) q^{77} +(0.504579 - 0.122995i) q^{78} -13.4536i q^{79} +(5.17947 - 12.5997i) q^{80} +(-8.05648 - 3.87979i) q^{81} +(-0.177925 - 12.1071i) q^{82} +(0.443031 - 1.94105i) q^{83} +(-0.380983 + 0.188104i) q^{84} +(3.56758 + 15.6306i) q^{85} +(0.836632 - 0.203935i) q^{86} +(-0.0489865 - 0.214624i) q^{87} +(-5.34860 - 0.975023i) q^{88} +(2.31111 + 0.527495i) q^{89} +(-14.1022 - 3.00142i) q^{90} +(11.7421 + 2.92288i) q^{91} +(11.3004 - 9.56830i) q^{92} +(-0.0336040 - 0.0421381i) q^{93} +(-14.2557 - 6.60891i) q^{94} +(16.3298 - 13.0226i) q^{95} +(0.393672 - 0.226591i) q^{96} -6.93563i q^{97} +(-9.89654 - 0.241882i) q^{98} +5.75414i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9} - 7 q^{10} - 42 q^{12} - 14 q^{13} + 21 q^{14} - 13 q^{16} - 14 q^{17} - 12 q^{18} - 7 q^{20} - 14 q^{21} + 3 q^{22} + 35 q^{24} - 7 q^{26} + 42 q^{28} - 30 q^{29} - 4 q^{30} - 5 q^{32} - 14 q^{33} + 77 q^{34} - 11 q^{36} + 10 q^{37} - 21 q^{38} - 63 q^{40} - 14 q^{41} - 7 q^{42} - 55 q^{44} - 14 q^{45} - 19 q^{46} - 132 q^{50} - 7 q^{52} - 2 q^{53} + 14 q^{54} - 70 q^{56} - 64 q^{57} - 3 q^{58} - 107 q^{60} + 14 q^{61} - 21 q^{62} - 11 q^{64} - 22 q^{65} + 161 q^{66} - 70 q^{69} - 77 q^{70} + 114 q^{72} - 14 q^{73} + 5 q^{74} + 70 q^{76} - 42 q^{77} + 61 q^{78} + 92 q^{81} - 42 q^{82} + 70 q^{84} - 6 q^{85} + 47 q^{86} + 65 q^{88} - 14 q^{89} + 112 q^{90} - 70 q^{92} - 48 q^{93} - 28 q^{94} + 238 q^{96} + 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.865405 + 1.11851i −0.611934 + 0.790909i
\(3\) 0.0500641 + 0.0627784i 0.0289045 + 0.0362451i 0.796074 0.605200i \(-0.206907\pi\)
−0.767169 + 0.641445i \(0.778335\pi\)
\(4\) −0.502147 1.93594i −0.251073 0.967968i
\(5\) −2.66268 + 2.12341i −1.19079 + 0.949619i −0.999491 0.0319134i \(-0.989840\pi\)
−0.191294 + 0.981533i \(0.561269\pi\)
\(6\) −0.113544 + 0.00166863i −0.0463542 + 0.000681215i
\(7\) −2.36082 1.19436i −0.892308 0.451427i
\(8\) 2.59993 + 1.11371i 0.919215 + 0.393756i
\(9\) 0.666128 2.91850i 0.222043 0.972833i
\(10\) −0.0707731 4.81585i −0.0223804 1.52291i
\(11\) −1.87399 + 0.427725i −0.565028 + 0.128964i −0.495487 0.868615i \(-0.665010\pi\)
−0.0695406 + 0.997579i \(0.522153\pi\)
\(12\) 0.0963954 0.128445i 0.0278269 0.0370788i
\(13\) −4.45886 + 1.01770i −1.23666 + 0.282260i −0.790372 0.612627i \(-0.790113\pi\)
−0.446292 + 0.894887i \(0.647256\pi\)
\(14\) 3.37898 1.60701i 0.903071 0.429490i
\(15\) −0.266609 0.0608517i −0.0688381 0.0157118i
\(16\) −3.49570 + 1.94425i −0.873924 + 0.486062i
\(17\) 2.04254 4.24138i 0.495389 1.02869i −0.492032 0.870577i \(-0.663746\pi\)
0.987422 0.158110i \(-0.0505399\pi\)
\(18\) 2.68791 + 3.27076i 0.633546 + 0.770925i
\(19\) −6.13285 −1.40697 −0.703486 0.710709i \(-0.748374\pi\)
−0.703486 + 0.710709i \(0.748374\pi\)
\(20\) 5.44785 + 4.08851i 1.21818 + 0.914218i
\(21\) −0.0432122 0.208003i −0.00942968 0.0453901i
\(22\) 1.14334 2.46623i 0.243761 0.525803i
\(23\) 3.21229 + 6.67039i 0.669809 + 1.39087i 0.907716 + 0.419584i \(0.137824\pi\)
−0.237908 + 0.971288i \(0.576462\pi\)
\(24\) 0.0602462 + 0.218976i 0.0122977 + 0.0446984i
\(25\) 1.46836 6.43329i 0.293671 1.28666i
\(26\) 2.72040 5.86802i 0.533515 1.15081i
\(27\) 0.433602 0.208812i 0.0834467 0.0401858i
\(28\) −1.12673 + 5.17015i −0.212933 + 0.977067i
\(29\) −2.47012 1.18955i −0.458690 0.220893i 0.190246 0.981736i \(-0.439071\pi\)
−0.648936 + 0.760843i \(0.724786\pi\)
\(30\) 0.298788 0.245544i 0.0545510 0.0448300i
\(31\) −0.671221 −0.120555 −0.0602774 0.998182i \(-0.519199\pi\)
−0.0602774 + 0.998182i \(0.519199\pi\)
\(32\) 0.850526 5.59255i 0.150353 0.988632i
\(33\) −0.120671 0.0962321i −0.0210062 0.0167519i
\(34\) 2.97642 + 5.95513i 0.510452 + 1.02130i
\(35\) 8.82224 1.83280i 1.49123 0.309800i
\(36\) −5.98452 + 0.175933i −0.997420 + 0.0293222i
\(37\) 3.19581 + 1.53902i 0.525388 + 0.253014i 0.677726 0.735315i \(-0.262966\pi\)
−0.152337 + 0.988329i \(0.548680\pi\)
\(38\) 5.30740 6.85968i 0.860974 1.11279i
\(39\) −0.287118 0.228969i −0.0459757 0.0366644i
\(40\) −9.28765 + 2.55528i −1.46851 + 0.404025i
\(41\) −6.69401 + 5.33830i −1.04543 + 0.833702i −0.986368 0.164553i \(-0.947382\pi\)
−0.0590605 + 0.998254i \(0.518811\pi\)
\(42\) 0.270051 + 0.131674i 0.0416698 + 0.0203177i
\(43\) −0.476065 0.379649i −0.0725992 0.0578960i 0.586518 0.809936i \(-0.300498\pi\)
−0.659117 + 0.752040i \(0.729070\pi\)
\(44\) 1.76906 + 3.41314i 0.266696 + 0.514549i
\(45\) 4.42349 + 9.18548i 0.659416 + 1.36929i
\(46\) −10.2409 2.17960i −1.50993 0.321364i
\(47\) 2.47240 + 10.8323i 0.360636 + 1.58005i 0.751583 + 0.659638i \(0.229291\pi\)
−0.390947 + 0.920413i \(0.627852\pi\)
\(48\) −0.297066 0.122117i −0.0428777 0.0176261i
\(49\) 4.14699 + 5.63937i 0.592426 + 0.805625i
\(50\) 5.92500 + 7.20978i 0.837921 + 1.01962i
\(51\) 0.368525 0.0841134i 0.0516038 0.0117782i
\(52\) 4.20921 + 8.12102i 0.583713 + 1.12618i
\(53\) −4.09626 + 1.97266i −0.562665 + 0.270965i −0.693521 0.720436i \(-0.743942\pi\)
0.130856 + 0.991401i \(0.458227\pi\)
\(54\) −0.141683 + 0.665696i −0.0192806 + 0.0905898i
\(55\) 4.08158 5.11814i 0.550360 0.690130i
\(56\) −4.80781 5.73454i −0.642470 0.766311i
\(57\) −0.307035 0.385010i −0.0406678 0.0509958i
\(58\) 3.46818 1.73342i 0.455394 0.227610i
\(59\) −1.77788 + 2.22940i −0.231461 + 0.290243i −0.883975 0.467534i \(-0.845143\pi\)
0.652515 + 0.757776i \(0.273714\pi\)
\(60\) 0.0160718 + 0.546694i 0.00207486 + 0.0705779i
\(61\) 1.90411 3.95392i 0.243796 0.506248i −0.742783 0.669532i \(-0.766495\pi\)
0.986579 + 0.163284i \(0.0522088\pi\)
\(62\) 0.580878 0.750770i 0.0737716 0.0953478i
\(63\) −5.05836 + 6.09446i −0.637294 + 0.767830i
\(64\) 5.51929 + 5.79115i 0.689912 + 0.723893i
\(65\) 9.71148 12.1778i 1.20456 1.51047i
\(66\) 0.212066 0.0516927i 0.0261036 0.00636293i
\(67\) 1.25096i 0.152829i −0.997076 0.0764144i \(-0.975653\pi\)
0.997076 0.0764144i \(-0.0243472\pi\)
\(68\) −9.23670 1.82443i −1.12011 0.221245i
\(69\) −0.257936 + 0.535609i −0.0310518 + 0.0644797i
\(70\) −5.58480 + 11.4539i −0.667512 + 1.36900i
\(71\) −6.71573 13.9454i −0.797010 1.65501i −0.754850 0.655898i \(-0.772290\pi\)
−0.0421607 0.999111i \(-0.513424\pi\)
\(72\) 4.98225 6.84602i 0.587164 0.806811i
\(73\) −1.18301 0.270013i −0.138460 0.0316027i 0.152729 0.988268i \(-0.451194\pi\)
−0.291189 + 0.956665i \(0.594051\pi\)
\(74\) −4.48709 + 2.24268i −0.521614 + 0.260707i
\(75\) 0.477383 0.229896i 0.0551234 0.0265460i
\(76\) 3.07959 + 11.8728i 0.353253 + 1.36190i
\(77\) 4.93501 + 1.22844i 0.562397 + 0.139994i
\(78\) 0.504579 0.122995i 0.0571323 0.0139264i
\(79\) 13.4536i 1.51365i −0.653616 0.756826i \(-0.726749\pi\)
0.653616 0.756826i \(-0.273251\pi\)
\(80\) 5.17947 12.5997i 0.579082 1.40869i
\(81\) −8.05648 3.87979i −0.895164 0.431088i
\(82\) −0.177925 12.1071i −0.0196485 1.33701i
\(83\) 0.443031 1.94105i 0.0486290 0.213058i −0.944776 0.327717i \(-0.893721\pi\)
0.993405 + 0.114660i \(0.0365778\pi\)
\(84\) −0.380983 + 0.188104i −0.0415686 + 0.0205239i
\(85\) 3.56758 + 15.6306i 0.386958 + 1.69538i
\(86\) 0.836632 0.203935i 0.0902164 0.0219909i
\(87\) −0.0489865 0.214624i −0.00525190 0.0230101i
\(88\) −5.34860 0.975023i −0.570162 0.103938i
\(89\) 2.31111 + 0.527495i 0.244977 + 0.0559144i 0.343246 0.939245i \(-0.388473\pi\)
−0.0982693 + 0.995160i \(0.531331\pi\)
\(90\) −14.1022 3.00142i −1.48650 0.316378i
\(91\) 11.7421 + 2.92288i 1.23091 + 0.306401i
\(92\) 11.3004 9.56830i 1.17815 0.997564i
\(93\) −0.0336040 0.0421381i −0.00348458 0.00436952i
\(94\) −14.2557 6.60891i −1.47036 0.681657i
\(95\) 16.3298 13.0226i 1.67540 1.33609i
\(96\) 0.393672 0.226591i 0.0401790 0.0231264i
\(97\) 6.93563i 0.704207i −0.935961 0.352103i \(-0.885467\pi\)
0.935961 0.352103i \(-0.114533\pi\)
\(98\) −9.89654 0.241882i −0.999701 0.0244337i
\(99\) 5.75414i 0.578313i
\(100\) −13.1918 + 0.387812i −1.31918 + 0.0387812i
\(101\) −1.97297 + 1.57339i −0.196318 + 0.156559i −0.716715 0.697366i \(-0.754355\pi\)
0.520397 + 0.853924i \(0.325784\pi\)
\(102\) −0.224842 + 0.484993i −0.0222626 + 0.0480214i
\(103\) −1.04936 1.31586i −0.103397 0.129656i 0.727441 0.686171i \(-0.240710\pi\)
−0.830838 + 0.556515i \(0.812138\pi\)
\(104\) −12.7262 2.31991i −1.24790 0.227486i
\(105\) 0.556738 + 0.462088i 0.0543320 + 0.0450952i
\(106\) 1.33848 6.28888i 0.130005 0.610830i
\(107\) 10.8900 + 2.48556i 1.05277 + 0.240289i 0.713686 0.700466i \(-0.247025\pi\)
0.339088 + 0.940755i \(0.389882\pi\)
\(108\) −0.621978 0.734571i −0.0598498 0.0706841i
\(109\) −3.94276 17.2744i −0.377648 1.65459i −0.704645 0.709560i \(-0.748894\pi\)
0.326997 0.945025i \(-0.393963\pi\)
\(110\) 2.19249 + 8.99457i 0.209046 + 0.857598i
\(111\) 0.0633781 + 0.277678i 0.00601558 + 0.0263560i
\(112\) 10.5749 0.414893i 0.999231 0.0392037i
\(113\) −2.77270 + 12.1480i −0.260834 + 1.14279i 0.659515 + 0.751691i \(0.270762\pi\)
−0.920349 + 0.391097i \(0.872096\pi\)
\(114\) 0.696349 0.0102335i 0.0652191 0.000958451i
\(115\) −22.7173 10.9401i −2.11840 1.02017i
\(116\) −1.06252 + 5.37932i −0.0986529 + 0.499458i
\(117\) 13.6911i 1.26574i
\(118\) −0.955020 3.91792i −0.0879168 0.360674i
\(119\) −9.88784 + 7.57362i −0.906417 + 0.694273i
\(120\) −0.625394 0.455136i −0.0570904 0.0415480i
\(121\) −6.58178 + 3.16962i −0.598344 + 0.288147i
\(122\) 2.77469 + 5.55152i 0.251209 + 0.502611i
\(123\) −0.670259 0.152982i −0.0604352 0.0137939i
\(124\) 0.337051 + 1.29944i 0.0302681 + 0.116693i
\(125\) 2.36240 + 4.90558i 0.211300 + 0.438768i
\(126\) −2.43921 10.9320i −0.217302 0.973903i
\(127\) −1.20411 + 2.50035i −0.106847 + 0.221870i −0.947537 0.319647i \(-0.896436\pi\)
0.840690 + 0.541517i \(0.182150\pi\)
\(128\) −11.2539 + 1.16172i −0.994714 + 0.102682i
\(129\) 0.0488934i 0.00430482i
\(130\) 5.21668 + 21.4012i 0.457533 + 1.87701i
\(131\) 4.82357 6.04857i 0.421438 0.528466i −0.525108 0.851036i \(-0.675975\pi\)
0.946546 + 0.322569i \(0.104547\pi\)
\(132\) −0.125704 + 0.281934i −0.0109412 + 0.0245392i
\(133\) 14.4786 + 7.32486i 1.25545 + 0.635146i
\(134\) 1.39921 + 1.08259i 0.120874 + 0.0935211i
\(135\) −0.711148 + 1.47671i −0.0612058 + 0.127095i
\(136\) 10.0341 8.75251i 0.860421 0.750521i
\(137\) 1.84829 2.31769i 0.157910 0.198013i −0.696582 0.717477i \(-0.745297\pi\)
0.854493 + 0.519464i \(0.173868\pi\)
\(138\) −0.375867 0.752024i −0.0319959 0.0640165i
\(139\) −2.88773 3.62110i −0.244934 0.307137i 0.644134 0.764913i \(-0.277218\pi\)
−0.889068 + 0.457775i \(0.848646\pi\)
\(140\) −7.97825 16.1590i −0.674285 1.36568i
\(141\) −0.556255 + 0.697522i −0.0468451 + 0.0587419i
\(142\) 21.4099 + 4.55675i 1.79668 + 0.382394i
\(143\) 7.92053 3.81433i 0.662348 0.318970i
\(144\) 3.34570 + 11.4973i 0.278809 + 0.958109i
\(145\) 9.10303 2.07771i 0.755966 0.172544i
\(146\) 1.32579 1.08954i 0.109723 0.0901708i
\(147\) −0.146416 + 0.542671i −0.0120761 + 0.0447587i
\(148\) 1.37468 6.95970i 0.112998 0.572084i
\(149\) 2.02505 + 8.87233i 0.165899 + 0.726850i 0.987608 + 0.156943i \(0.0501637\pi\)
−0.821709 + 0.569907i \(0.806979\pi\)
\(150\) −0.155988 + 0.732912i −0.0127364 + 0.0598420i
\(151\) 5.91167 + 12.2757i 0.481085 + 0.998983i 0.990378 + 0.138390i \(0.0441926\pi\)
−0.509293 + 0.860593i \(0.670093\pi\)
\(152\) −15.9450 6.83022i −1.29331 0.554004i
\(153\) −11.0179 8.78646i −0.890742 0.710343i
\(154\) −5.64481 + 4.45678i −0.454872 + 0.359138i
\(155\) 1.78724 1.42528i 0.143555 0.114481i
\(156\) −0.299094 + 0.670819i −0.0239467 + 0.0537085i
\(157\) −6.53001 5.20751i −0.521152 0.415604i 0.327266 0.944932i \(-0.393873\pi\)
−0.848417 + 0.529328i \(0.822444\pi\)
\(158\) 15.0481 + 11.6429i 1.19716 + 0.926256i
\(159\) −0.328916 0.158398i −0.0260847 0.0125617i
\(160\) 9.61062 + 16.6972i 0.759786 + 1.32003i
\(161\) 0.383225 19.5843i 0.0302023 1.54346i
\(162\) 11.3117 5.65369i 0.888733 0.444196i
\(163\) −2.98169 2.37782i −0.233544 0.186245i 0.499724 0.866184i \(-0.333435\pi\)
−0.733268 + 0.679939i \(0.762006\pi\)
\(164\) 13.6960 + 10.2786i 1.06948 + 0.802621i
\(165\) 0.525649 0.0409217
\(166\) 1.78769 + 2.17533i 0.138751 + 0.168838i
\(167\) −3.24440 1.56242i −0.251059 0.120904i 0.304122 0.952633i \(-0.401637\pi\)
−0.555181 + 0.831729i \(0.687351\pi\)
\(168\) 0.119307 0.588921i 0.00920473 0.0454362i
\(169\) 7.13308 3.43511i 0.548698 0.264239i
\(170\) −20.5704 9.53641i −1.57768 0.731409i
\(171\) −4.08526 + 17.8987i −0.312408 + 1.36875i
\(172\) −0.495922 + 1.11227i −0.0378137 + 0.0848099i
\(173\) −2.43106 5.04815i −0.184830 0.383804i 0.787879 0.615830i \(-0.211179\pi\)
−0.972710 + 0.232026i \(0.925465\pi\)
\(174\) 0.282453 + 0.130944i 0.0214127 + 0.00992687i
\(175\) −11.1502 + 13.4341i −0.842877 + 1.01552i
\(176\) 5.71928 5.13869i 0.431107 0.387343i
\(177\) −0.228966 −0.0172101
\(178\) −2.59006 + 2.12851i −0.194133 + 0.159538i
\(179\) −5.35781 + 11.1256i −0.400462 + 0.831567i 0.599062 + 0.800703i \(0.295540\pi\)
−0.999524 + 0.0308646i \(0.990174\pi\)
\(180\) 15.5613 13.1761i 1.15987 0.982086i
\(181\) −9.88740 2.25673i −0.734924 0.167742i −0.161352 0.986897i \(-0.551586\pi\)
−0.573572 + 0.819155i \(0.694443\pi\)
\(182\) −13.4309 + 10.6042i −0.995568 + 0.786037i
\(183\) 0.343548 0.0784126i 0.0253958 0.00579643i
\(184\) 0.922849 + 20.9201i 0.0680333 + 1.54225i
\(185\) −11.7774 + 2.68811i −0.865891 + 0.197634i
\(186\) 0.0762132 0.00112002i 0.00558822 8.21238e-5i
\(187\) −2.01355 + 8.82194i −0.147245 + 0.645124i
\(188\) 19.7291 10.2258i 1.43889 0.745794i
\(189\) −1.27305 0.0249111i −0.0926011 0.00181202i
\(190\) 0.434041 + 29.5349i 0.0314886 + 2.14269i
\(191\) −16.8887 + 13.4683i −1.22203 + 0.974534i −1.00000 0.000507130i \(-0.999839\pi\)
−0.222026 + 0.975041i \(0.571267\pi\)
\(192\) −0.0872404 + 0.636421i −0.00629603 + 0.0459297i
\(193\) −0.911495 1.14298i −0.0656108 0.0822734i 0.747943 0.663763i \(-0.231042\pi\)
−0.813554 + 0.581489i \(0.802470\pi\)
\(194\) 7.75760 + 6.00213i 0.556963 + 0.430928i
\(195\) 1.25070 0.0895644
\(196\) 8.83507 10.8601i 0.631076 0.775721i
\(197\) −11.4842 −0.818215 −0.409108 0.912486i \(-0.634160\pi\)
−0.409108 + 0.912486i \(0.634160\pi\)
\(198\) −6.43609 4.97967i −0.457393 0.353889i
\(199\) −1.95880 2.45626i −0.138856 0.174119i 0.707541 0.706672i \(-0.249804\pi\)
−0.846397 + 0.532553i \(0.821233\pi\)
\(200\) 10.9824 15.0908i 0.776576 1.06708i
\(201\) 0.0785331 0.0626280i 0.00553930 0.00441744i
\(202\) −0.0524410 3.56842i −0.00368974 0.251073i
\(203\) 4.41077 + 5.75854i 0.309575 + 0.404170i
\(204\) −0.347892 0.671204i −0.0243573 0.0469937i
\(205\) 6.48858 28.4283i 0.453182 1.98552i
\(206\) 2.37993 0.0349752i 0.165818 0.00243684i
\(207\) 21.6073 4.93173i 1.50181 0.342779i
\(208\) 13.6081 12.2267i 0.943555 0.847770i
\(209\) 11.4929 2.62317i 0.794978 0.181449i
\(210\) −0.998656 + 0.222825i −0.0689138 + 0.0153764i
\(211\) 13.5594 + 3.09485i 0.933469 + 0.213058i 0.662098 0.749417i \(-0.269666\pi\)
0.271370 + 0.962475i \(0.412523\pi\)
\(212\) 5.87586 + 6.93954i 0.403556 + 0.476610i
\(213\) 0.539250 1.11976i 0.0369488 0.0767249i
\(214\) −12.2044 + 10.0296i −0.834274 + 0.685607i
\(215\) 2.07376 0.141429
\(216\) 1.35989 0.0599889i 0.0925288 0.00408172i
\(217\) 1.58463 + 0.801682i 0.107572 + 0.0544217i
\(218\) 22.7337 + 10.5393i 1.53972 + 0.713812i
\(219\) −0.0422751 0.0877852i −0.00285669 0.00593197i
\(220\) −11.9579 5.33162i −0.806204 0.359458i
\(221\) −4.79093 + 20.9904i −0.322273 + 1.41197i
\(222\) −0.365434 0.169414i −0.0245263 0.0113703i
\(223\) −8.23205 + 3.96435i −0.551259 + 0.265472i −0.688711 0.725036i \(-0.741823\pi\)
0.137452 + 0.990508i \(0.456109\pi\)
\(224\) −8.68749 + 12.1872i −0.580457 + 0.814291i
\(225\) −17.7974 8.57078i −1.18649 0.571386i
\(226\) −11.1882 13.6143i −0.744228 0.905607i
\(227\) 12.9650 0.860515 0.430258 0.902706i \(-0.358423\pi\)
0.430258 + 0.902706i \(0.358423\pi\)
\(228\) −0.591178 + 0.787732i −0.0391517 + 0.0521689i
\(229\) 14.8237 + 11.8215i 0.979579 + 0.781188i 0.975769 0.218805i \(-0.0702157\pi\)
0.00381023 + 0.999993i \(0.498787\pi\)
\(230\) 31.8963 15.9420i 2.10318 1.05118i
\(231\) 0.169947 + 0.371313i 0.0111817 + 0.0244306i
\(232\) −5.09733 5.84374i −0.334656 0.383661i
\(233\) −0.102552 0.0493866i −0.00671842 0.00323542i 0.430522 0.902580i \(-0.358330\pi\)
−0.437240 + 0.899345i \(0.644044\pi\)
\(234\) −15.3137 11.8483i −1.00109 0.774550i
\(235\) −29.5846 23.5929i −1.92989 1.53903i
\(236\) 5.20873 + 2.32239i 0.339059 + 0.151174i
\(237\) 0.844598 0.673544i 0.0548625 0.0437514i
\(238\) 0.0857926 17.6139i 0.00556111 1.14174i
\(239\) −16.3374 13.0286i −1.05678 0.842753i −0.0688445 0.997627i \(-0.521931\pi\)
−0.987934 + 0.154875i \(0.950503\pi\)
\(240\) 1.05029 0.305635i 0.0677962 0.0197286i
\(241\) 11.1824 + 23.2206i 0.720324 + 1.49577i 0.862570 + 0.505937i \(0.168853\pi\)
−0.142246 + 0.989831i \(0.545433\pi\)
\(242\) 2.15065 10.1048i 0.138249 0.649563i
\(243\) −0.481045 2.10760i −0.0308591 0.135202i
\(244\) −8.61068 1.70078i −0.551243 0.108881i
\(245\) −23.0168 6.21006i −1.47049 0.396746i
\(246\) 0.751158 0.617302i 0.0478921 0.0393578i
\(247\) 27.3455 6.24143i 1.73995 0.397133i
\(248\) −1.74513 0.747546i −0.110816 0.0474692i
\(249\) 0.144036 0.0693639i 0.00912789 0.00439576i
\(250\) −7.53139 1.60293i −0.476327 0.101378i
\(251\) 6.16865 7.73525i 0.389362 0.488245i −0.548060 0.836439i \(-0.684634\pi\)
0.937422 + 0.348194i \(0.113205\pi\)
\(252\) 14.3385 + 6.73235i 0.903242 + 0.424098i
\(253\) −8.87287 11.1262i −0.557833 0.699500i
\(254\) −1.75464 3.51063i −0.110096 0.220276i
\(255\) −0.802655 + 1.00650i −0.0502642 + 0.0630293i
\(256\) 8.43979 13.5930i 0.527487 0.849563i
\(257\) 3.46199 7.18889i 0.215953 0.448431i −0.764647 0.644449i \(-0.777087\pi\)
0.980600 + 0.196018i \(0.0628011\pi\)
\(258\) 0.0546879 + 0.0423126i 0.00340472 + 0.00263427i
\(259\) −5.70660 7.45033i −0.354591 0.462941i
\(260\) −28.4521 12.6858i −1.76452 0.786737i
\(261\) −5.11711 + 6.41665i −0.316741 + 0.397181i
\(262\) 2.59106 + 10.6297i 0.160076 + 0.656705i
\(263\) 23.1861i 1.42972i 0.699269 + 0.714859i \(0.253509\pi\)
−0.699269 + 0.714859i \(0.746491\pi\)
\(264\) −0.206562 0.384590i −0.0127130 0.0236699i
\(265\) 6.71826 13.9506i 0.412699 0.856979i
\(266\) −20.7228 + 9.85552i −1.27060 + 0.604281i
\(267\) 0.0825882 + 0.171496i 0.00505431 + 0.0104954i
\(268\) −2.42177 + 0.628165i −0.147933 + 0.0383713i
\(269\) 11.8256 + 2.69912i 0.721021 + 0.164568i 0.567259 0.823540i \(-0.308004\pi\)
0.153762 + 0.988108i \(0.450861\pi\)
\(270\) −1.03629 2.07338i −0.0630668 0.126182i
\(271\) −21.8199 + 10.5079i −1.32547 + 0.638311i −0.956663 0.291196i \(-0.905947\pi\)
−0.368804 + 0.929507i \(0.620233\pi\)
\(272\) 1.10619 + 18.7978i 0.0670729 + 1.13978i
\(273\) 0.404363 + 0.883480i 0.0244732 + 0.0534706i
\(274\) 0.992842 + 4.07308i 0.0599798 + 0.246064i
\(275\) 12.6839i 0.764870i
\(276\) 1.16643 + 0.230393i 0.0702106 + 0.0138680i
\(277\) 11.2457 + 5.41565i 0.675689 + 0.325395i 0.740069 0.672531i \(-0.234793\pi\)
−0.0643800 + 0.997925i \(0.520507\pi\)
\(278\) 6.54930 0.0962477i 0.392801 0.00577255i
\(279\) −0.447119 + 1.95896i −0.0267683 + 0.117280i
\(280\) 24.9784 + 5.06027i 1.49275 + 0.302409i
\(281\) −3.22099 14.1121i −0.192148 0.841856i −0.975451 0.220216i \(-0.929324\pi\)
0.783303 0.621640i \(-0.213533\pi\)
\(282\) −0.298802 1.22582i −0.0177934 0.0729964i
\(283\) 3.89076 + 17.0465i 0.231282 + 1.01331i 0.948578 + 0.316543i \(0.102522\pi\)
−0.717296 + 0.696768i \(0.754621\pi\)
\(284\) −23.6250 + 20.0038i −1.40189 + 1.18701i
\(285\) 1.63507 + 0.373194i 0.0968533 + 0.0221061i
\(286\) −2.58809 + 12.1602i −0.153037 + 0.719046i
\(287\) 22.1793 4.60769i 1.30920 0.271983i
\(288\) −15.7553 6.20761i −0.928389 0.365787i
\(289\) −3.21803 4.03528i −0.189296 0.237369i
\(290\) −5.55387 + 11.9799i −0.326134 + 0.703486i
\(291\) 0.435407 0.347226i 0.0255240 0.0203547i
\(292\) 0.0713142 + 2.42581i 0.00417335 + 0.141960i
\(293\) 21.1702i 1.23677i 0.785874 + 0.618387i \(0.212213\pi\)
−0.785874 + 0.618387i \(0.787787\pi\)
\(294\) −0.480276 0.633398i −0.0280103 0.0369405i
\(295\) 9.71135i 0.565416i
\(296\) 6.59487 + 7.56056i 0.383319 + 0.439449i
\(297\) −0.723249 + 0.576772i −0.0419672 + 0.0334677i
\(298\) −11.6763 5.41312i −0.676391 0.313573i
\(299\) −21.1116 26.4731i −1.22092 1.53098i
\(300\) −0.684779 0.808742i −0.0395358 0.0466927i
\(301\) 0.670466 + 1.46488i 0.0386450 + 0.0844343i
\(302\) −18.8465 4.01118i −1.08450 0.230817i
\(303\) −0.197550 0.0450895i −0.0113490 0.00259033i
\(304\) 21.4386 11.9238i 1.22959 0.683876i
\(305\) 3.32579 + 14.5712i 0.190434 + 0.834346i
\(306\) 19.3627 4.71979i 1.10689 0.269813i
\(307\) −3.86847 16.9489i −0.220785 0.967324i −0.956889 0.290455i \(-0.906193\pi\)
0.736103 0.676869i \(-0.236664\pi\)
\(308\) −0.0999216 10.1707i −0.00569356 0.579531i
\(309\) 0.0300721 0.131755i 0.00171074 0.00749526i
\(310\) 0.0475044 + 3.23250i 0.00269807 + 0.183594i
\(311\) −22.0330 10.6105i −1.24938 0.601669i −0.312033 0.950071i \(-0.601010\pi\)
−0.937345 + 0.348402i \(0.886724\pi\)
\(312\) −0.491483 0.915071i −0.0278247 0.0518057i
\(313\) 1.11284i 0.0629013i 0.999505 + 0.0314507i \(0.0100127\pi\)
−0.999505 + 0.0314507i \(0.989987\pi\)
\(314\) 11.4758 2.79730i 0.647616 0.157861i
\(315\) 0.527721 26.9686i 0.0297337 1.51951i
\(316\) −26.0454 + 6.75570i −1.46517 + 0.380038i
\(317\) −19.7244 + 9.49875i −1.10783 + 0.533503i −0.896112 0.443828i \(-0.853620\pi\)
−0.211718 + 0.977331i \(0.567906\pi\)
\(318\) 0.461815 0.230819i 0.0258973 0.0129437i
\(319\) 5.13777 + 1.17266i 0.287660 + 0.0656565i
\(320\) −26.9931 3.70021i −1.50896 0.206848i
\(321\) 0.389157 + 0.808092i 0.0217206 + 0.0451033i
\(322\) 21.5736 + 17.3770i 1.20225 + 0.968380i
\(323\) −12.5266 + 26.0118i −0.696999 + 1.44733i
\(324\) −3.46550 + 17.5450i −0.192528 + 0.974725i
\(325\) 30.1794i 1.67405i
\(326\) 5.23999 1.27728i 0.290216 0.0707422i
\(327\) 0.887066 1.11235i 0.0490549 0.0615129i
\(328\) −23.3493 + 6.42401i −1.28925 + 0.354707i
\(329\) 7.10080 28.5261i 0.391480 1.57269i
\(330\) −0.454899 + 0.587946i −0.0250414 + 0.0323653i
\(331\) 3.79475 7.87988i 0.208578 0.433117i −0.770266 0.637722i \(-0.779877\pi\)
0.978845 + 0.204605i \(0.0655910\pi\)
\(332\) −3.98021 + 0.117011i −0.218442 + 0.00642179i
\(333\) 6.62045 8.30178i 0.362799 0.454935i
\(334\) 4.55531 2.27678i 0.249255 0.124580i
\(335\) 2.65630 + 3.33090i 0.145129 + 0.181986i
\(336\) 0.555467 + 0.643102i 0.0303032 + 0.0350841i
\(337\) 6.28089 7.87599i 0.342142 0.429032i −0.580756 0.814078i \(-0.697243\pi\)
0.922898 + 0.385046i \(0.125814\pi\)
\(338\) −2.33079 + 10.9512i −0.126778 + 0.595667i
\(339\) −0.901445 + 0.434113i −0.0489598 + 0.0235778i
\(340\) 28.4684 14.7555i 1.54391 0.800227i
\(341\) 1.25786 0.287098i 0.0681168 0.0155472i
\(342\) −16.4845 20.0591i −0.891382 1.08467i
\(343\) −3.05484 18.2666i −0.164946 0.986303i
\(344\) −0.814917 1.51726i −0.0439374 0.0818052i
\(345\) −0.450520 1.97386i −0.0242552 0.106269i
\(346\) 7.75029 + 1.64952i 0.416658 + 0.0886789i
\(347\) −10.2389 21.2613i −0.549654 1.14137i −0.972010 0.234938i \(-0.924511\pi\)
0.422356 0.906430i \(-0.361203\pi\)
\(348\) −0.390899 + 0.202607i −0.0209544 + 0.0108609i
\(349\) −5.73626 4.57451i −0.307055 0.244868i 0.457823 0.889043i \(-0.348629\pi\)
−0.764878 + 0.644175i \(0.777201\pi\)
\(350\) −5.37678 24.0976i −0.287401 1.28807i
\(351\) −1.72086 + 1.37234i −0.0918526 + 0.0732500i
\(352\) 0.798200 + 10.8441i 0.0425442 + 0.577995i
\(353\) −0.622464 0.496399i −0.0331304 0.0264206i 0.606785 0.794866i \(-0.292459\pi\)
−0.639915 + 0.768446i \(0.721030\pi\)
\(354\) 0.198148 0.256102i 0.0105315 0.0136117i
\(355\) 47.4936 + 22.8717i 2.52070 + 1.21390i
\(356\) −0.139319 4.73904i −0.00738387 0.251168i
\(357\) −0.970485 0.241576i −0.0513635 0.0127856i
\(358\) −7.80747 15.6210i −0.412638 0.825593i
\(359\) 2.40304 + 1.91636i 0.126828 + 0.101142i 0.684849 0.728685i \(-0.259868\pi\)
−0.558022 + 0.829826i \(0.688439\pi\)
\(360\) 1.27081 + 28.8081i 0.0669777 + 1.51832i
\(361\) 18.6118 0.979569
\(362\) 11.0808 9.10620i 0.582394 0.478611i
\(363\) −0.528495 0.254510i −0.0277388 0.0133583i
\(364\) −0.237748 24.1996i −0.0124614 1.26841i
\(365\) 3.72331 1.79305i 0.194887 0.0938527i
\(366\) −0.209603 + 0.452122i −0.0109561 + 0.0236328i
\(367\) 6.25274 27.3950i 0.326390 1.43001i −0.499566 0.866276i \(-0.666507\pi\)
0.825957 0.563734i \(-0.190636\pi\)
\(368\) −24.1981 17.0722i −1.26141 0.889948i
\(369\) 11.1207 + 23.0924i 0.578922 + 1.20214i
\(370\) 7.18553 15.4995i 0.373558 0.805780i
\(371\) 12.0266 + 0.235337i 0.624392 + 0.0122181i
\(372\) −0.0647026 + 0.0862148i −0.00335467 + 0.00447003i
\(373\) −9.43158 −0.488349 −0.244174 0.969731i \(-0.578517\pi\)
−0.244174 + 0.969731i \(0.578517\pi\)
\(374\) −8.12492 9.88673i −0.420130 0.511231i
\(375\) −0.189693 + 0.393901i −0.00979568 + 0.0203409i
\(376\) −5.63597 + 30.9168i −0.290653 + 1.59441i
\(377\) 12.2245 + 2.79017i 0.629595 + 0.143701i
\(378\) 1.12957 1.40237i 0.0580989 0.0721302i
\(379\) 23.4834 5.35993i 1.20626 0.275321i 0.428302 0.903636i \(-0.359112\pi\)
0.777960 + 0.628314i \(0.216255\pi\)
\(380\) −33.4108 25.0742i −1.71394 1.28628i
\(381\) −0.217251 + 0.0495860i −0.0111301 + 0.00254037i
\(382\) −0.448898 30.5458i −0.0229676 1.56286i
\(383\) −3.03704 + 13.3061i −0.155185 + 0.679911i 0.836144 + 0.548510i \(0.184805\pi\)
−0.991329 + 0.131401i \(0.958052\pi\)
\(384\) −0.636347 0.648341i −0.0324735 0.0330855i
\(385\) −15.7488 + 7.20813i −0.802634 + 0.367360i
\(386\) 2.06725 0.0303800i 0.105220 0.00154630i
\(387\) −1.42513 + 1.13650i −0.0724432 + 0.0577715i
\(388\) −13.4269 + 3.48271i −0.681649 + 0.176808i
\(389\) 9.65354 + 12.1052i 0.489454 + 0.613756i 0.963814 0.266575i \(-0.0858920\pi\)
−0.474360 + 0.880331i \(0.657321\pi\)
\(390\) −1.08236 + 1.39892i −0.0548075 + 0.0708373i
\(391\) 34.8529 1.76259
\(392\) 4.50125 + 19.2805i 0.227347 + 0.973814i
\(393\) 0.621207 0.0313358
\(394\) 9.93849 12.8452i 0.500694 0.647134i
\(395\) 28.5676 + 35.8227i 1.43739 + 1.80244i
\(396\) 11.1397 2.88942i 0.559789 0.145199i
\(397\) −0.788216 + 0.628581i −0.0395594 + 0.0315476i −0.643070 0.765807i \(-0.722340\pi\)
0.603511 + 0.797355i \(0.293768\pi\)
\(398\) 4.44251 0.0652866i 0.222683 0.00327252i
\(399\) 0.265014 + 1.27565i 0.0132673 + 0.0638626i
\(400\) 7.37498 + 25.3437i 0.368749 + 1.26718i
\(401\) −8.21845 + 36.0074i −0.410410 + 1.79812i 0.171854 + 0.985122i \(0.445024\pi\)
−0.582264 + 0.813000i \(0.697833\pi\)
\(402\) 0.00208739 + 0.142039i 0.000104109 + 0.00708426i
\(403\) 2.99288 0.683104i 0.149086 0.0340279i
\(404\) 4.03671 + 3.02948i 0.200834 + 0.150722i
\(405\) 29.6902 6.77659i 1.47532 0.336732i
\(406\) −10.2581 0.0499644i −0.509101 0.00247969i
\(407\) −6.64718 1.51718i −0.329489 0.0752036i
\(408\) 1.05182 + 0.191741i 0.0520728 + 0.00949261i
\(409\) 10.4663 21.7335i 0.517525 1.07465i −0.464442 0.885603i \(-0.653745\pi\)
0.981968 0.189049i \(-0.0605405\pi\)
\(410\) 26.1822 + 31.8596i 1.29305 + 1.57343i
\(411\) 0.238034 0.0117413
\(412\) −2.02049 + 2.69226i −0.0995422 + 0.132638i
\(413\) 6.85999 3.13977i 0.337558 0.154498i
\(414\) −13.1829 + 28.4360i −0.647903 + 1.39755i
\(415\) 2.94200 + 6.10912i 0.144417 + 0.299885i
\(416\) 1.89919 + 25.8020i 0.0931156 + 1.26504i
\(417\) 0.0827551 0.362574i 0.00405253 0.0177553i
\(418\) −7.01193 + 15.1250i −0.342965 + 0.739790i
\(419\) −20.8748 + 10.0528i −1.01980 + 0.491110i −0.867612 0.497242i \(-0.834346\pi\)
−0.152188 + 0.988352i \(0.548632\pi\)
\(420\) 0.615010 1.30984i 0.0300094 0.0639139i
\(421\) 1.48184 + 0.713617i 0.0722205 + 0.0347796i 0.469645 0.882855i \(-0.344382\pi\)
−0.397425 + 0.917635i \(0.630096\pi\)
\(422\) −15.1960 + 12.4881i −0.739731 + 0.607911i
\(423\) 33.2609 1.61720
\(424\) −12.8470 + 0.566719i −0.623904 + 0.0275223i
\(425\) −24.2869 19.3681i −1.17809 0.939492i
\(426\) 0.785802 + 1.57221i 0.0380722 + 0.0761737i
\(427\) −9.21769 + 7.06032i −0.446075 + 0.341673i
\(428\) −0.656471 22.3304i −0.0317317 1.07938i
\(429\) 0.635991 + 0.306277i 0.0307060 + 0.0147872i
\(430\) −1.79464 + 2.31953i −0.0865453 + 0.111858i
\(431\) −2.21158 1.76368i −0.106528 0.0849533i 0.568777 0.822492i \(-0.307417\pi\)
−0.675305 + 0.737538i \(0.735988\pi\)
\(432\) −1.10976 + 1.57297i −0.0533933 + 0.0756796i
\(433\) −27.5735 + 21.9891i −1.32510 + 1.05673i −0.331533 + 0.943444i \(0.607566\pi\)
−0.993563 + 0.113285i \(0.963863\pi\)
\(434\) −2.26804 + 1.07866i −0.108870 + 0.0517771i
\(435\) 0.586170 + 0.467455i 0.0281047 + 0.0224127i
\(436\) −31.4622 + 16.3072i −1.50677 + 0.780974i
\(437\) −19.7005 40.9085i −0.942402 1.95692i
\(438\) 0.134774 + 0.0286845i 0.00643975 + 0.00137060i
\(439\) −4.16005 18.2264i −0.198548 0.869898i −0.971802 0.235800i \(-0.924229\pi\)
0.773253 0.634097i \(-0.218628\pi\)
\(440\) 16.3120 8.76111i 0.777642 0.417670i
\(441\) 19.2209 8.34642i 0.915282 0.397449i
\(442\) −19.3320 23.5239i −0.919529 1.11892i
\(443\) −14.7602 + 3.36892i −0.701278 + 0.160062i −0.558270 0.829659i \(-0.688535\pi\)
−0.143008 + 0.989722i \(0.545678\pi\)
\(444\) 0.505741 0.262131i 0.0240014 0.0124402i
\(445\) −7.27382 + 3.50289i −0.344812 + 0.166053i
\(446\) 2.68989 12.6384i 0.127370 0.598447i
\(447\) −0.455608 + 0.571315i −0.0215495 + 0.0270223i
\(448\) −6.11334 20.2639i −0.288828 0.957381i
\(449\) 16.6885 + 20.9268i 0.787581 + 0.987595i 0.999946 + 0.0104045i \(0.00331190\pi\)
−0.212365 + 0.977190i \(0.568117\pi\)
\(450\) 24.9885 12.4895i 1.17797 0.588759i
\(451\) 10.2612 12.8671i 0.483179 0.605887i
\(452\) 24.9101 0.732308i 1.17167 0.0344449i
\(453\) −0.474687 + 0.985697i −0.0223027 + 0.0463121i
\(454\) −11.2200 + 14.5015i −0.526579 + 0.680589i
\(455\) −37.4719 + 17.1506i −1.75671 + 0.804034i
\(456\) −0.369481 1.34295i −0.0173025 0.0628893i
\(457\) 4.00223 5.01864i 0.187217 0.234762i −0.679361 0.733804i \(-0.737743\pi\)
0.866578 + 0.499042i \(0.166315\pi\)
\(458\) −26.0511 + 6.35013i −1.21729 + 0.296722i
\(459\) 2.26558i 0.105748i
\(460\) −9.77185 + 49.4727i −0.455615 + 2.30668i
\(461\) 12.1909 25.3147i 0.567788 1.17902i −0.397443 0.917627i \(-0.630102\pi\)
0.965231 0.261397i \(-0.0841833\pi\)
\(462\) −0.562392 0.131247i −0.0261648 0.00610618i
\(463\) 3.97996 + 8.26447i 0.184964 + 0.384083i 0.972746 0.231872i \(-0.0744849\pi\)
−0.787782 + 0.615954i \(0.788771\pi\)
\(464\) 10.9476 0.644232i 0.508228 0.0299077i
\(465\) 0.178953 + 0.0408449i 0.00829876 + 0.00189414i
\(466\) 0.143989 0.0719667i 0.00667015 0.00333379i
\(467\) 4.22022 2.03235i 0.195288 0.0940460i −0.333684 0.942685i \(-0.608292\pi\)
0.528972 + 0.848639i \(0.322578\pi\)
\(468\) 26.5051 6.87494i 1.22520 0.317794i
\(469\) −1.49410 + 2.95329i −0.0689911 + 0.136370i
\(470\) 51.9917 12.6733i 2.39820 0.584578i
\(471\) 0.670652i 0.0309020i
\(472\) −7.10528 + 3.81623i −0.327047 + 0.175656i
\(473\) 1.05452 + 0.507832i 0.0484871 + 0.0233501i
\(474\) 0.0224492 + 1.52758i 0.00103112 + 0.0701642i
\(475\) −9.00520 + 39.4544i −0.413187 + 1.81029i
\(476\) 19.6272 + 15.3392i 0.899611 + 0.703069i
\(477\) 3.02856 + 13.2690i 0.138668 + 0.607545i
\(478\) 28.7112 6.99855i 1.31322 0.320106i
\(479\) −8.25074 36.1488i −0.376986 1.65168i −0.706634 0.707579i \(-0.749787\pi\)
0.329649 0.944104i \(-0.393070\pi\)
\(480\) −0.567074 + 1.43927i −0.0258833 + 0.0656933i
\(481\) −15.8159 3.60988i −0.721144 0.164597i
\(482\) −35.6499 7.58749i −1.62381 0.345601i
\(483\) 1.24865 0.956410i 0.0568157 0.0435181i
\(484\) 9.44121 + 11.1503i 0.429146 + 0.506832i
\(485\) 14.7272 + 18.4673i 0.668728 + 0.838559i
\(486\) 2.77368 + 1.28587i 0.125816 + 0.0583282i
\(487\) −8.86107 + 7.06646i −0.401533 + 0.320212i −0.803349 0.595508i \(-0.796951\pi\)
0.401816 + 0.915721i \(0.368379\pi\)
\(488\) 9.35408 8.15930i 0.423439 0.369354i
\(489\) 0.306229i 0.0138481i
\(490\) 26.8649 20.3704i 1.21363 0.920241i
\(491\) 9.93164i 0.448209i 0.974565 + 0.224104i \(0.0719457\pi\)
−0.974565 + 0.224104i \(0.928054\pi\)
\(492\) 0.0404047 + 1.37440i 0.00182158 + 0.0619626i
\(493\) −10.0907 + 8.04703i −0.454460 + 0.362420i
\(494\) −16.6838 + 35.9877i −0.750640 + 1.61916i
\(495\) −12.2184 15.3214i −0.549177 0.688646i
\(496\) 2.34638 1.30502i 0.105356 0.0585971i
\(497\) −0.801183 + 40.9436i −0.0359380 + 1.83657i
\(498\) −0.0470647 + 0.221134i −0.00210902 + 0.00990925i
\(499\) −37.0653 8.45992i −1.65927 0.378718i −0.712765 0.701403i \(-0.752558\pi\)
−0.946507 + 0.322685i \(0.895415\pi\)
\(500\) 8.31061 7.03678i 0.371662 0.314694i
\(501\) −0.0643416 0.281899i −0.00287457 0.0125943i
\(502\) 3.31360 + 13.5939i 0.147893 + 0.606723i
\(503\) 1.69977 + 7.44716i 0.0757888 + 0.332053i 0.998582 0.0532442i \(-0.0169562\pi\)
−0.922793 + 0.385297i \(0.874099\pi\)
\(504\) −19.9389 + 10.2116i −0.888148 + 0.454862i
\(505\) 1.91242 8.37888i 0.0851017 0.372855i
\(506\) 20.1235 0.295732i 0.894598 0.0131469i
\(507\) 0.572761 + 0.275827i 0.0254372 + 0.0122499i
\(508\) 5.44516 + 1.07553i 0.241590 + 0.0477189i
\(509\) 32.7615i 1.45213i −0.687627 0.726064i \(-0.741347\pi\)
0.687627 0.726064i \(-0.258653\pi\)
\(510\) −0.431160 1.76881i −0.0190921 0.0783242i
\(511\) 2.47038 + 2.05040i 0.109283 + 0.0907041i
\(512\) 7.90013 + 21.2035i 0.349140 + 0.937071i
\(513\) −2.65921 + 1.28061i −0.117407 + 0.0565403i
\(514\) 5.04485 + 10.0936i 0.222519 + 0.445209i
\(515\) 5.58823 + 1.27548i 0.246247 + 0.0562042i
\(516\) −0.0946544 + 0.0245517i −0.00416693 + 0.00108083i
\(517\) −9.26648 19.2420i −0.407539 0.846264i
\(518\) 13.2718 + 0.0646433i 0.583130 + 0.00284026i
\(519\) 0.195206 0.405349i 0.00856859 0.0177929i
\(520\) 38.8118 20.8457i 1.70201 0.914144i
\(521\) 18.0543i 0.790975i −0.918471 0.395487i \(-0.870576\pi\)
0.918471 0.395487i \(-0.129424\pi\)
\(522\) −2.74874 11.2766i −0.120309 0.493562i
\(523\) 24.5794 30.8215i 1.07478 1.34773i 0.140949 0.990017i \(-0.454985\pi\)
0.933831 0.357715i \(-0.116444\pi\)
\(524\) −14.1318 6.30086i −0.617350 0.275254i
\(525\) −1.40160 0.0274264i −0.0611707 0.00119699i
\(526\) −25.9340 20.0654i −1.13078 0.874893i
\(527\) −1.37100 + 2.84690i −0.0597216 + 0.124013i
\(528\) 0.608929 + 0.101783i 0.0265002 + 0.00442955i
\(529\) −19.8350 + 24.8723i −0.862391 + 1.08140i
\(530\) 9.78993 + 19.5874i 0.425247 + 0.850822i
\(531\) 5.32219 + 6.67382i 0.230963 + 0.289619i
\(532\) 6.91008 31.7078i 0.299590 1.37471i
\(533\) 24.4148 30.6152i 1.05752 1.32609i
\(534\) −0.263293 0.0560376i −0.0113938 0.00242499i
\(535\) −34.2743 + 16.5057i −1.48181 + 0.713602i
\(536\) 1.39321 3.25240i 0.0601773 0.140482i
\(537\) −0.966682 + 0.220639i −0.0417154 + 0.00952127i
\(538\) −13.2530 + 10.8913i −0.571375 + 0.469557i
\(539\) −10.1835 8.79433i −0.438634 0.378799i
\(540\) 3.21592 + 0.635209i 0.138391 + 0.0273351i
\(541\) −1.82460 7.99408i −0.0784456 0.343692i 0.920440 0.390883i \(-0.127830\pi\)
−0.998886 + 0.0471906i \(0.984973\pi\)
\(542\) 7.12983 33.4995i 0.306252 1.43893i
\(543\) −0.353329 0.733696i −0.0151628 0.0314859i
\(544\) −21.9829 15.0304i −0.942509 0.644424i
\(545\) 47.1789 + 37.6240i 2.02092 + 1.61163i
\(546\) −1.33812 0.312283i −0.0572664 0.0133645i
\(547\) −27.4432 + 21.8852i −1.17339 + 0.935744i −0.998804 0.0488980i \(-0.984429\pi\)
−0.174583 + 0.984643i \(0.555858\pi\)
\(548\) −5.41501 2.41436i −0.231318 0.103136i
\(549\) −10.2711 8.19096i −0.438361 0.349581i
\(550\) −14.1872 10.9767i −0.604942 0.468050i
\(551\) 15.1489 + 7.29531i 0.645364 + 0.310791i
\(552\) −1.26713 + 1.10528i −0.0539326 + 0.0470439i
\(553\) −16.0686 + 31.7617i −0.683304 + 1.35064i
\(554\) −15.7896 + 7.89175i −0.670835 + 0.335288i
\(555\) −0.758379 0.604787i −0.0321914 0.0256718i
\(556\) −5.56015 + 7.40878i −0.235803 + 0.314202i
\(557\) −8.06998 −0.341936 −0.170968 0.985277i \(-0.554689\pi\)
−0.170968 + 0.985277i \(0.554689\pi\)
\(558\) −1.80418 2.19540i −0.0763770 0.0929387i
\(559\) 2.50908 + 1.20831i 0.106123 + 0.0511059i
\(560\) −27.2765 + 23.5595i −1.15264 + 0.995572i
\(561\) −0.654633 + 0.315255i −0.0276386 + 0.0133101i
\(562\) 18.5720 + 8.60995i 0.783414 + 0.363189i
\(563\) 1.89250 8.29157i 0.0797592 0.349448i −0.919264 0.393642i \(-0.871215\pi\)
0.999023 + 0.0441942i \(0.0140720\pi\)
\(564\) 1.62968 + 0.726616i 0.0686219 + 0.0305960i
\(565\) −18.4124 38.2338i −0.774617 1.60851i
\(566\) −22.4339 10.4003i −0.942966 0.437157i
\(567\) 14.3860 + 18.7819i 0.604157 + 0.788765i
\(568\) −1.92934 43.7364i −0.0809534 1.83514i
\(569\) −12.9987 −0.544933 −0.272467 0.962165i \(-0.587839\pi\)
−0.272467 + 0.962165i \(0.587839\pi\)
\(570\) −1.83242 + 1.50589i −0.0767517 + 0.0630746i
\(571\) −15.3795 + 31.9358i −0.643612 + 1.33647i 0.282516 + 0.959263i \(0.408831\pi\)
−0.926127 + 0.377211i \(0.876883\pi\)
\(572\) −11.3616 13.4183i −0.475051 0.561047i
\(573\) −1.69104 0.385968i −0.0706441 0.0161241i
\(574\) −14.0403 + 28.7953i −0.586030 + 1.20189i
\(575\) 47.6293 10.8711i 1.98628 0.453355i
\(576\) 20.5780 12.2504i 0.857417 0.510434i
\(577\) −24.8156 + 5.66400i −1.03309 + 0.235795i −0.705265 0.708944i \(-0.749172\pi\)
−0.327822 + 0.944739i \(0.606315\pi\)
\(578\) 7.29841 0.107256i 0.303574 0.00446128i
\(579\) 0.0261212 0.114444i 0.00108556 0.00475614i
\(580\) −8.59337 16.5796i −0.356820 0.688429i
\(581\) −3.36424 + 4.05333i −0.139572 + 0.168160i
\(582\) 0.0115730 + 0.787501i 0.000479716 + 0.0326429i
\(583\) 6.83258 5.44880i 0.282977 0.225666i
\(584\) −2.77502 2.01954i −0.114831 0.0835693i
\(585\) −29.0718 36.4549i −1.20197 1.50723i
\(586\) −23.6791 18.3208i −0.978175 0.756824i
\(587\) −19.9884 −0.825010 −0.412505 0.910955i \(-0.635346\pi\)
−0.412505 + 0.910955i \(0.635346\pi\)
\(588\) 1.12410 + 0.0109506i 0.0463570 + 0.000451595i
\(589\) 4.11649 0.169617
\(590\) 10.8623 + 8.40425i 0.447193 + 0.345998i
\(591\) −0.574946 0.720959i −0.0236501 0.0296563i
\(592\) −14.1638 + 0.833499i −0.582130 + 0.0342566i
\(593\) −17.3176 + 13.8103i −0.711147 + 0.567120i −0.910851 0.412736i \(-0.864573\pi\)
0.199704 + 0.979856i \(0.436002\pi\)
\(594\) −0.0192237 1.30811i −0.000788760 0.0536722i
\(595\) 10.2462 41.1621i 0.420053 1.68748i
\(596\) 16.1594 8.37559i 0.661915 0.343077i
\(597\) 0.0561343 0.245940i 0.00229742 0.0100657i
\(598\) 47.8807 0.703648i 1.95799 0.0287743i
\(599\) 3.15451 0.719996i 0.128890 0.0294182i −0.157589 0.987505i \(-0.550372\pi\)
0.286479 + 0.958086i \(0.407515\pi\)
\(600\) 1.49720 0.0660460i 0.0611230 0.00269632i
\(601\) 2.00055 0.456614i 0.0816043 0.0186257i −0.181524 0.983387i \(-0.558103\pi\)
0.263128 + 0.964761i \(0.415246\pi\)
\(602\) −2.21871 0.517789i −0.0904280 0.0211035i
\(603\) −3.65092 0.833298i −0.148677 0.0339345i
\(604\) 20.7965 17.6088i 0.846196 0.716493i
\(605\) 10.7947 22.4155i 0.438869 0.911321i
\(606\) 0.221394 0.181942i 0.00899353 0.00739088i
\(607\) −20.3591 −0.826349 −0.413175 0.910652i \(-0.635580\pi\)
−0.413175 + 0.910652i \(0.635580\pi\)
\(608\) −5.21614 + 34.2983i −0.211543 + 1.39098i
\(609\) −0.140691 + 0.565197i −0.00570107 + 0.0229029i
\(610\) −19.1763 8.89008i −0.776425 0.359949i
\(611\) −22.0481 45.7834i −0.891972 1.85220i
\(612\) −11.4774 + 25.7420i −0.463948 + 1.04056i
\(613\) 4.37367 19.1623i 0.176651 0.773959i −0.806510 0.591220i \(-0.798647\pi\)
0.983161 0.182739i \(-0.0584963\pi\)
\(614\) 22.3054 + 10.3407i 0.900171 + 0.417317i
\(615\) 2.10953 1.01589i 0.0850643 0.0409648i
\(616\) 11.4626 + 8.69003i 0.461840 + 0.350131i
\(617\) −1.46739 0.706657i −0.0590748 0.0284489i 0.404113 0.914709i \(-0.367580\pi\)
−0.463188 + 0.886260i \(0.653294\pi\)
\(618\) 0.121345 + 0.147657i 0.00488121 + 0.00593965i
\(619\) 31.2009 1.25407 0.627036 0.778990i \(-0.284268\pi\)
0.627036 + 0.778990i \(0.284268\pi\)
\(620\) −3.65671 2.74429i −0.146857 0.110213i
\(621\) 2.78571 + 2.22153i 0.111787 + 0.0891468i
\(622\) 30.9355 15.4618i 1.24040 0.619963i
\(623\) −4.82610 4.00563i −0.193354 0.160482i
\(624\) 1.44885 + 0.242178i 0.0580005 + 0.00969486i
\(625\) 13.0194 + 6.26980i 0.520775 + 0.250792i
\(626\) −1.24472 0.963056i −0.0497492 0.0384914i
\(627\) 0.740058 + 0.590177i 0.0295551 + 0.0235694i
\(628\) −6.80238 + 15.2566i −0.271445 + 0.608805i
\(629\) 13.0552 10.4111i 0.520543 0.415120i
\(630\) 29.7080 + 23.9290i 1.18360 + 0.953355i
\(631\) 2.03967 + 1.62659i 0.0811981 + 0.0647533i 0.663248 0.748400i \(-0.269178\pi\)
−0.582050 + 0.813153i \(0.697749\pi\)
\(632\) 14.9835 34.9786i 0.596010 1.39137i
\(633\) 0.484550 + 1.00618i 0.0192591 + 0.0399920i
\(634\) 6.44508 30.2822i 0.255967 1.20266i
\(635\) −2.10314 9.21445i −0.0834604 0.365664i
\(636\) −0.141483 + 0.716299i −0.00561018 + 0.0284031i
\(637\) −24.2300 20.9247i −0.960028 0.829068i
\(638\) −5.75789 + 4.73184i −0.227957 + 0.187335i
\(639\) −45.1730 + 10.3104i −1.78702 + 0.407875i
\(640\) 27.4987 26.9900i 1.08698 1.06687i
\(641\) 27.1415 13.0706i 1.07202 0.516259i 0.187265 0.982309i \(-0.440038\pi\)
0.884758 + 0.466050i \(0.154323\pi\)
\(642\) −1.24064 0.264050i −0.0489642 0.0104212i
\(643\) 1.53208 1.92117i 0.0604195 0.0757636i −0.750703 0.660639i \(-0.770285\pi\)
0.811123 + 0.584876i \(0.198857\pi\)
\(644\) −38.1063 + 9.09228i −1.50160 + 0.358286i
\(645\) 0.103821 + 0.130187i 0.00408794 + 0.00512612i
\(646\) −18.2539 36.5219i −0.718191 1.43693i
\(647\) −24.7984 + 31.0962i −0.974924 + 1.22252i 4.63982e−6 1.00000i \(0.499999\pi\)
−0.974929 + 0.222516i \(0.928573\pi\)
\(648\) −16.6253 19.0598i −0.653104 0.748739i
\(649\) 2.37816 4.93830i 0.0933510 0.193845i
\(650\) −33.7561 26.1175i −1.32402 1.02441i
\(651\) 0.0290049 + 0.139616i 0.00113679 + 0.00547199i
\(652\) −3.10606 + 6.96637i −0.121643 + 0.272824i
\(653\) −15.4874 + 19.4206i −0.606070 + 0.759988i −0.986310 0.164900i \(-0.947270\pi\)
0.380240 + 0.924888i \(0.375841\pi\)
\(654\) 0.476502 + 1.95483i 0.0186327 + 0.0764397i
\(655\) 26.3478i 1.02949i
\(656\) 13.0213 31.6759i 0.508395 1.23674i
\(657\) −1.57607 + 3.27274i −0.0614882 + 0.127682i
\(658\) 25.7617 + 32.6290i 1.00430 + 1.27201i
\(659\) 0.0294533 + 0.0611603i 0.00114734 + 0.00238247i 0.901542 0.432692i \(-0.142436\pi\)
−0.900394 + 0.435075i \(0.856722\pi\)
\(660\) −0.263953 1.01762i −0.0102744 0.0396109i
\(661\) 28.1377 + 6.42225i 1.09443 + 0.249796i 0.731378 0.681973i \(-0.238878\pi\)
0.363052 + 0.931769i \(0.381735\pi\)
\(662\) 5.52976 + 11.0638i 0.214920 + 0.430006i
\(663\) −1.55760 + 0.750099i −0.0604921 + 0.0291314i
\(664\) 3.31362 4.55318i 0.128593 0.176698i
\(665\) −54.1055 + 11.2403i −2.09812 + 0.435879i
\(666\) 3.55629 + 14.5895i 0.137803 + 0.565331i
\(667\) 20.2978i 0.785935i
\(668\) −1.39558 + 7.06551i −0.0539966 + 0.273373i
\(669\) −0.661005 0.318323i −0.0255559 0.0123071i
\(670\) −6.02443 + 0.0885342i −0.232744 + 0.00342037i
\(671\) −1.87708 + 8.22403i −0.0724639 + 0.317485i
\(672\) −1.20002 + 0.0647542i −0.0462919 + 0.00249795i
\(673\) 4.75394 + 20.8284i 0.183251 + 0.802875i 0.980069 + 0.198656i \(0.0636576\pi\)
−0.796818 + 0.604219i \(0.793485\pi\)
\(674\) 3.37388 + 13.8412i 0.129957 + 0.533142i
\(675\) −0.706663 3.09609i −0.0271995 0.119169i
\(676\) −10.2320 12.0842i −0.393539 0.464779i
\(677\) −0.503420 0.114902i −0.0193480 0.00441605i 0.212836 0.977088i \(-0.431730\pi\)
−0.232184 + 0.972672i \(0.574587\pi\)
\(678\) 0.294554 1.38396i 0.0113123 0.0531508i
\(679\) −8.28367 + 16.3738i −0.317898 + 0.628369i
\(680\) −8.13250 + 44.6117i −0.311867 + 1.71078i
\(681\) 0.649079 + 0.813920i 0.0248728 + 0.0311895i
\(682\) −0.767434 + 1.65539i −0.0293866 + 0.0633881i
\(683\) 7.54053 6.01337i 0.288530 0.230095i −0.468518 0.883454i \(-0.655212\pi\)
0.757049 + 0.653359i \(0.226641\pi\)
\(684\) 36.7021 1.07897i 1.40334 0.0412555i
\(685\) 10.0959i 0.385746i
\(686\) 23.0751 + 12.3911i 0.881011 + 0.473095i
\(687\) 1.52244i 0.0580848i
\(688\) 2.40231 + 0.401550i 0.0915873 + 0.0153089i
\(689\) 16.2571 12.9646i 0.619345 0.493911i
\(690\) 2.59767 + 1.20427i 0.0988916 + 0.0458459i
\(691\) 25.8177 + 32.3744i 0.982151 + 1.23158i 0.972806 + 0.231622i \(0.0744033\pi\)
0.00934519 + 0.999956i \(0.497025\pi\)
\(692\) −8.55215 + 7.24130i −0.325104 + 0.275273i
\(693\) 6.87254 13.5845i 0.261066 0.516033i
\(694\) 32.6419 + 6.94730i 1.23907 + 0.263716i
\(695\) 15.3782 + 3.50997i 0.583327 + 0.133141i
\(696\) 0.111667 0.612564i 0.00423274 0.0232192i
\(697\) 8.96896 + 39.2956i 0.339723 + 1.48843i
\(698\) 10.0808 2.45728i 0.381566 0.0930093i
\(699\) −0.00203378 0.00891055i −7.69245e−5 0.000337028i
\(700\) 31.6066 + 14.8402i 1.19462 + 0.560907i
\(701\) 0.230882 1.01156i 0.00872030 0.0382061i −0.970381 0.241581i \(-0.922334\pi\)
0.979101 + 0.203375i \(0.0651911\pi\)
\(702\) −0.0457399 3.11243i −0.00172634 0.117471i
\(703\) −19.5994 9.43859i −0.739206 0.355983i
\(704\) −12.8201 8.49179i −0.483176 0.320046i
\(705\) 3.03843i 0.114434i
\(706\) 1.09391 0.266649i 0.0411700 0.0100355i
\(707\) 6.53705 1.35806i 0.245851 0.0510750i
\(708\) 0.114975 + 0.443264i 0.00432101 + 0.0166589i
\(709\) 45.4077 21.8672i 1.70532 0.821240i 0.712495 0.701677i \(-0.247565\pi\)
0.992827 0.119563i \(-0.0381493\pi\)
\(710\) −66.6835 + 33.3289i −2.50259 + 1.25081i
\(711\) −39.2644 8.96185i −1.47253 0.336096i
\(712\) 5.42125 + 3.94536i 0.203170 + 0.147859i
\(713\) −2.15615 4.47730i −0.0807486 0.167676i
\(714\) 1.11007 0.876440i 0.0415433 0.0327999i
\(715\) −12.9904 + 26.9749i −0.485814 + 1.00880i
\(716\) 24.2289 + 4.78569i 0.905476 + 0.178850i
\(717\) 1.67790i 0.0626624i
\(718\) −4.22308 + 1.02941i −0.157604 + 0.0384171i
\(719\) 7.97413 9.99925i 0.297385 0.372909i −0.610580 0.791954i \(-0.709064\pi\)
0.907965 + 0.419045i \(0.137635\pi\)
\(720\) −33.3221 23.5093i −1.24184 0.876139i
\(721\) 0.905746 + 4.35984i 0.0337318 + 0.162369i
\(722\) −16.1068 + 20.8176i −0.599432 + 0.774750i
\(723\) −0.897911 + 1.86453i −0.0333937 + 0.0693427i
\(724\) 0.596034 + 20.2746i 0.0221514 + 0.753499i
\(725\) −11.2797 + 14.1443i −0.418918 + 0.525307i
\(726\) 0.742035 0.370875i 0.0275395 0.0137644i
\(727\) 13.5677 + 17.0134i 0.503199 + 0.630992i 0.966948 0.254975i \(-0.0820673\pi\)
−0.463749 + 0.885967i \(0.653496\pi\)
\(728\) 27.2734 + 20.6766i 1.01082 + 0.766325i
\(729\) −16.6175 + 20.8377i −0.615464 + 0.771768i
\(730\) −1.21662 + 5.71629i −0.0450291 + 0.211570i
\(731\) −2.58262 + 1.24372i −0.0955217 + 0.0460008i
\(732\) −0.324314 0.625713i −0.0119870 0.0231270i
\(733\) −33.1480 + 7.56581i −1.22435 + 0.279449i −0.785358 0.619042i \(-0.787521\pi\)
−0.438991 + 0.898492i \(0.644664\pi\)
\(734\) 25.2306 + 30.7016i 0.931278 + 1.13322i
\(735\) −0.762457 1.75586i −0.0281237 0.0647658i
\(736\) 40.0366 12.2915i 1.47577 0.453073i
\(737\) 0.535066 + 2.34428i 0.0197094 + 0.0863525i
\(738\) −35.4532 7.54563i −1.30505 0.277758i
\(739\) 3.76001 + 7.80774i 0.138314 + 0.287213i 0.958608 0.284731i \(-0.0919041\pi\)
−0.820293 + 0.571943i \(0.806190\pi\)
\(740\) 11.1180 + 21.4504i 0.408706 + 0.788534i
\(741\) 1.76085 + 1.40423i 0.0646865 + 0.0515858i
\(742\) −10.6711 + 13.2483i −0.391750 + 0.486360i
\(743\) 37.3504 29.7859i 1.37025 1.09274i 0.384760 0.923017i \(-0.374284\pi\)
0.985492 0.169723i \(-0.0542873\pi\)
\(744\) −0.0404385 0.146981i −0.00148255 0.00538860i
\(745\) −24.2317 19.3241i −0.887780 0.707981i
\(746\) 8.16214 10.5494i 0.298837 0.386239i
\(747\) −5.36983 2.58597i −0.196472 0.0946158i
\(748\) 18.0898 0.531805i 0.661429 0.0194447i
\(749\) −22.7406 18.8746i −0.830925 0.689662i
\(750\) −0.276422 0.553058i −0.0100935 0.0201948i
\(751\) 22.8316 + 18.2076i 0.833137 + 0.664405i 0.944187 0.329410i \(-0.106850\pi\)
−0.111050 + 0.993815i \(0.535421\pi\)
\(752\) −29.7034 33.0594i −1.08317 1.20555i
\(753\) 0.794434 0.0289508
\(754\) −13.7000 + 11.2587i −0.498925 + 0.410017i
\(755\) −41.8073 20.1333i −1.52152 0.732726i
\(756\) 0.591034 + 2.47706i 0.0214957 + 0.0900898i
\(757\) 42.1420 20.2945i 1.53168 0.737617i 0.537288 0.843399i \(-0.319449\pi\)
0.994389 + 0.105782i \(0.0337345\pi\)
\(758\) −14.3275 + 30.9050i −0.520398 + 1.12252i
\(759\) 0.254274 1.11405i 0.00922958 0.0404374i
\(760\) 56.9597 15.6711i 2.06615 0.568452i
\(761\) 9.62914 + 19.9951i 0.349056 + 0.724823i 0.999393 0.0348229i \(-0.0110867\pi\)
−0.650337 + 0.759646i \(0.725372\pi\)
\(762\) 0.132547 0.285910i 0.00480168 0.0103574i
\(763\) −11.3237 + 45.4909i −0.409947 + 1.64688i
\(764\) 34.5544 + 25.9324i 1.25014 + 0.938203i
\(765\) 47.9943 1.73524
\(766\) −12.2548 14.9122i −0.442785 0.538798i
\(767\) 5.65846