Properties

Label 196.2.j.a.111.5
Level $196$
Weight $2$
Character 196.111
Analytic conductor $1.565$
Analytic rank $0$
Dimension $156$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(27,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 111.5
Character \(\chi\) \(=\) 196.111
Dual form 196.2.j.a.83.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25414 - 0.653556i) q^{2} +(-0.635719 - 0.797166i) q^{3} +(1.14573 + 1.63930i) q^{4} +(-0.726306 + 0.579209i) q^{5} +(0.276287 + 1.41524i) q^{6} +(-2.60326 + 0.472259i) q^{7} +(-0.365526 - 2.80471i) q^{8} +(0.436227 - 1.91124i) q^{9} +O(q^{10})\) \(q+(-1.25414 - 0.653556i) q^{2} +(-0.635719 - 0.797166i) q^{3} +(1.14573 + 1.63930i) q^{4} +(-0.726306 + 0.579209i) q^{5} +(0.276287 + 1.41524i) q^{6} +(-2.60326 + 0.472259i) q^{7} +(-0.365526 - 2.80471i) q^{8} +(0.436227 - 1.91124i) q^{9} +(1.28943 - 0.251727i) q^{10} +(-5.04868 + 1.15233i) q^{11} +(0.578434 - 1.95547i) q^{12} +(-2.71007 + 0.618555i) q^{13} +(3.57350 + 1.10910i) q^{14} +(0.923453 + 0.210772i) q^{15} +(-1.37461 + 3.75639i) q^{16} +(-2.67586 + 5.55648i) q^{17} +(-1.79619 + 2.11186i) q^{18} +5.31475 q^{19} +(-1.78165 - 0.527017i) q^{20} +(2.03141 + 1.77501i) q^{21} +(7.08486 + 1.85442i) q^{22} +(-2.67158 - 5.54759i) q^{23} +(-2.00345 + 2.07439i) q^{24} +(-0.920568 + 4.03327i) q^{25} +(3.80306 + 0.995428i) q^{26} +(-4.55681 + 2.19445i) q^{27} +(-3.75681 - 3.72645i) q^{28} +(-6.99898 - 3.37053i) q^{29} +(-1.02039 - 0.867866i) q^{30} +2.80797 q^{31} +(4.17897 - 3.81264i) q^{32} +(4.12814 + 3.29208i) q^{33} +(6.98737 - 5.21977i) q^{34} +(1.61723 - 1.85084i) q^{35} +(3.63289 - 1.47465i) q^{36} +(-5.03268 - 2.42361i) q^{37} +(-6.66544 - 3.47349i) q^{38} +(2.21593 + 1.76715i) q^{39} +(1.89000 + 1.82536i) q^{40} +(8.64941 - 6.89767i) q^{41} +(-1.38760 - 3.55375i) q^{42} +(1.76174 + 1.40494i) q^{43} +(-7.67343 - 6.95606i) q^{44} +(0.790172 + 1.64081i) q^{45} +(-0.275133 + 8.70347i) q^{46} +(-1.31376 - 5.75595i) q^{47} +(3.86833 - 1.29221i) q^{48} +(6.55394 - 2.45883i) q^{49} +(3.79049 - 4.45664i) q^{50} +(6.13053 - 1.39925i) q^{51} +(-4.11900 - 3.73392i) q^{52} +(3.53549 - 1.70260i) q^{53} +(7.14907 + 0.225995i) q^{54} +(2.99945 - 3.76119i) q^{55} +(2.27611 + 7.12877i) q^{56} +(-3.37869 - 4.23674i) q^{57} +(6.57486 + 8.80135i) q^{58} +(-3.63089 + 4.55299i) q^{59} +(0.712507 + 1.75530i) q^{60} +(-2.83755 + 5.89224i) q^{61} +(-3.52158 - 1.83516i) q^{62} +(-0.233014 + 5.18146i) q^{63} +(-7.73278 + 2.05039i) q^{64} +(1.61006 - 2.01896i) q^{65} +(-3.02570 - 6.82670i) q^{66} -7.05842i q^{67} +(-12.1745 + 1.97967i) q^{68} +(-2.72398 + 5.65640i) q^{69} +(-3.23785 + 1.26426i) q^{70} +(-0.607747 - 1.26200i) q^{71} +(-5.51991 - 0.524883i) q^{72} +(-4.23286 - 0.966123i) q^{73} +(4.72771 + 6.32868i) q^{74} +(3.80041 - 1.83018i) q^{75} +(6.08926 + 8.71248i) q^{76} +(12.5988 - 5.38410i) q^{77} +(-1.62416 - 3.66449i) q^{78} +1.47889i q^{79} +(-1.17734 - 3.52447i) q^{80} +(-0.652553 - 0.314253i) q^{81} +(-15.3556 + 2.99776i) q^{82} +(-2.36598 + 10.3660i) q^{83} +(-0.582327 + 5.36377i) q^{84} +(-1.27487 - 5.58558i) q^{85} +(-1.29126 - 2.91339i) q^{86} +(1.76251 + 7.72207i) q^{87} +(5.07738 + 13.7389i) q^{88} +(8.05318 + 1.83809i) q^{89} +(0.0813759 - 2.57422i) q^{90} +(6.76290 - 2.89012i) q^{91} +(6.03326 - 10.7355i) q^{92} +(-1.78508 - 2.23842i) q^{93} +(-2.11420 + 8.07738i) q^{94} +(-3.86013 + 3.07835i) q^{95} +(-5.69596 - 0.907564i) q^{96} -11.4703i q^{97} +(-9.82654 - 1.19966i) q^{98} +10.1519i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9} - 7 q^{10} - 42 q^{12} - 14 q^{13} + 21 q^{14} - 13 q^{16} - 14 q^{17} - 12 q^{18} - 7 q^{20} - 14 q^{21} + 3 q^{22} + 35 q^{24} - 7 q^{26} + 42 q^{28} - 30 q^{29} - 4 q^{30} - 5 q^{32} - 14 q^{33} + 77 q^{34} - 11 q^{36} + 10 q^{37} - 21 q^{38} - 63 q^{40} - 14 q^{41} - 7 q^{42} - 55 q^{44} - 14 q^{45} - 19 q^{46} - 132 q^{50} - 7 q^{52} - 2 q^{53} + 14 q^{54} - 70 q^{56} - 64 q^{57} - 3 q^{58} - 107 q^{60} + 14 q^{61} - 21 q^{62} - 11 q^{64} - 22 q^{65} + 161 q^{66} - 70 q^{69} - 77 q^{70} + 114 q^{72} - 14 q^{73} + 5 q^{74} + 70 q^{76} - 42 q^{77} + 61 q^{78} + 92 q^{81} - 42 q^{82} + 70 q^{84} - 6 q^{85} + 47 q^{86} + 65 q^{88} - 14 q^{89} + 112 q^{90} - 70 q^{92} - 48 q^{93} - 28 q^{94} + 238 q^{96} + 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25414 0.653556i −0.886810 0.462134i
\(3\) −0.635719 0.797166i −0.367033 0.460244i 0.563681 0.825992i \(-0.309385\pi\)
−0.930714 + 0.365748i \(0.880813\pi\)
\(4\) 1.14573 + 1.63930i 0.572864 + 0.819650i
\(5\) −0.726306 + 0.579209i −0.324814 + 0.259030i −0.772297 0.635262i \(-0.780892\pi\)
0.447483 + 0.894293i \(0.352321\pi\)
\(6\) 0.276287 + 1.41524i 0.112794 + 0.577767i
\(7\) −2.60326 + 0.472259i −0.983940 + 0.178497i
\(8\) −0.365526 2.80471i −0.129233 0.991614i
\(9\) 0.436227 1.91124i 0.145409 0.637079i
\(10\) 1.28943 0.251727i 0.407755 0.0796032i
\(11\) −5.04868 + 1.15233i −1.52224 + 0.347440i −0.900175 0.435529i \(-0.856561\pi\)
−0.622061 + 0.782969i \(0.713704\pi\)
\(12\) 0.578434 1.95547i 0.166980 0.564496i
\(13\) −2.71007 + 0.618555i −0.751638 + 0.171556i −0.581142 0.813802i \(-0.697394\pi\)
−0.170495 + 0.985358i \(0.554537\pi\)
\(14\) 3.57350 + 1.10910i 0.955058 + 0.296419i
\(15\) 0.923453 + 0.210772i 0.238434 + 0.0544211i
\(16\) −1.37461 + 3.75639i −0.343654 + 0.939096i
\(17\) −2.67586 + 5.55648i −0.648991 + 1.34764i 0.273593 + 0.961846i \(0.411788\pi\)
−0.922583 + 0.385798i \(0.873926\pi\)
\(18\) −1.79619 + 2.11186i −0.423366 + 0.497769i
\(19\) 5.31475 1.21929 0.609644 0.792675i \(-0.291312\pi\)
0.609644 + 0.792675i \(0.291312\pi\)
\(20\) −1.78165 0.527017i −0.398388 0.117845i
\(21\) 2.03141 + 1.77501i 0.443290 + 0.387339i
\(22\) 7.08486 + 1.85442i 1.51050 + 0.395363i
\(23\) −2.67158 5.54759i −0.557062 1.15675i −0.969347 0.245697i \(-0.920983\pi\)
0.412284 0.911055i \(-0.364731\pi\)
\(24\) −2.00345 + 2.07439i −0.408952 + 0.423433i
\(25\) −0.920568 + 4.03327i −0.184114 + 0.806655i
\(26\) 3.80306 + 0.995428i 0.745842 + 0.195219i
\(27\) −4.55681 + 2.19445i −0.876959 + 0.422321i
\(28\) −3.75681 3.72645i −0.709969 0.704232i
\(29\) −6.99898 3.37053i −1.29968 0.625892i −0.349307 0.937008i \(-0.613583\pi\)
−0.950372 + 0.311116i \(0.899297\pi\)
\(30\) −1.02039 0.867866i −0.186296 0.158450i
\(31\) 2.80797 0.504326 0.252163 0.967685i \(-0.418858\pi\)
0.252163 + 0.967685i \(0.418858\pi\)
\(32\) 4.17897 3.81264i 0.738744 0.673986i
\(33\) 4.12814 + 3.29208i 0.718617 + 0.573078i
\(34\) 6.98737 5.21977i 1.19832 0.895183i
\(35\) 1.61723 1.85084i 0.273361 0.312849i
\(36\) 3.63289 1.47465i 0.605481 0.245775i
\(37\) −5.03268 2.42361i −0.827367 0.398439i −0.0282401 0.999601i \(-0.508990\pi\)
−0.799127 + 0.601162i \(0.794705\pi\)
\(38\) −6.66544 3.47349i −1.08128 0.563475i
\(39\) 2.21593 + 1.76715i 0.354833 + 0.282970i
\(40\) 1.89000 + 1.82536i 0.298835 + 0.288615i
\(41\) 8.64941 6.89767i 1.35081 1.07724i 0.361351 0.932430i \(-0.382316\pi\)
0.989460 0.144805i \(-0.0462556\pi\)
\(42\) −1.38760 3.55375i −0.214112 0.548355i
\(43\) 1.76174 + 1.40494i 0.268663 + 0.214252i 0.748549 0.663079i \(-0.230751\pi\)
−0.479886 + 0.877331i \(0.659322\pi\)
\(44\) −7.67343 6.95606i −1.15681 1.04866i
\(45\) 0.790172 + 1.64081i 0.117792 + 0.244597i
\(46\) −0.275133 + 8.70347i −0.0405661 + 1.28326i
\(47\) −1.31376 5.75595i −0.191631 0.839592i −0.975734 0.218960i \(-0.929733\pi\)
0.784102 0.620631i \(-0.213124\pi\)
\(48\) 3.86833 1.29221i 0.558346 0.186514i
\(49\) 6.55394 2.45883i 0.936277 0.351261i
\(50\) 3.79049 4.45664i 0.536057 0.630264i
\(51\) 6.13053 1.39925i 0.858446 0.195935i
\(52\) −4.11900 3.73392i −0.571202 0.517802i
\(53\) 3.53549 1.70260i 0.485636 0.233870i −0.175011 0.984566i \(-0.555996\pi\)
0.660647 + 0.750696i \(0.270282\pi\)
\(54\) 7.14907 + 0.225995i 0.972865 + 0.0307540i
\(55\) 2.99945 3.76119i 0.404445 0.507159i
\(56\) 2.27611 + 7.12877i 0.304158 + 0.952622i
\(57\) −3.37869 4.23674i −0.447518 0.561170i
\(58\) 6.57486 + 8.80135i 0.863322 + 1.15567i
\(59\) −3.63089 + 4.55299i −0.472701 + 0.592749i −0.959830 0.280581i \(-0.909473\pi\)
0.487129 + 0.873330i \(0.338044\pi\)
\(60\) 0.712507 + 1.75530i 0.0919842 + 0.226609i
\(61\) −2.83755 + 5.89224i −0.363311 + 0.754424i −0.999859 0.0168139i \(-0.994648\pi\)
0.636547 + 0.771238i \(0.280362\pi\)
\(62\) −3.52158 1.83516i −0.447241 0.233066i
\(63\) −0.233014 + 5.18146i −0.0293570 + 0.652803i
\(64\) −7.73278 + 2.05039i −0.966598 + 0.256299i
\(65\) 1.61006 2.01896i 0.199704 0.250421i
\(66\) −3.02570 6.82670i −0.372438 0.840309i
\(67\) 7.05842i 0.862324i −0.902275 0.431162i \(-0.858104\pi\)
0.902275 0.431162i \(-0.141896\pi\)
\(68\) −12.1745 + 1.97967i −1.47638 + 0.240071i
\(69\) −2.72398 + 5.65640i −0.327928 + 0.680950i
\(70\) −3.23785 + 1.26426i −0.386998 + 0.151108i
\(71\) −0.607747 1.26200i −0.0721264 0.149772i 0.861788 0.507268i \(-0.169345\pi\)
−0.933914 + 0.357496i \(0.883630\pi\)
\(72\) −5.51991 0.524883i −0.650528 0.0618580i
\(73\) −4.23286 0.966123i −0.495419 0.113076i −0.0324911 0.999472i \(-0.510344\pi\)
−0.462928 + 0.886396i \(0.653201\pi\)
\(74\) 4.72771 + 6.32868i 0.549585 + 0.735694i
\(75\) 3.80041 1.83018i 0.438834 0.211331i
\(76\) 6.08926 + 8.71248i 0.698486 + 0.999390i
\(77\) 12.5988 5.38410i 1.43577 0.613575i
\(78\) −1.62416 3.66449i −0.183900 0.414921i
\(79\) 1.47889i 0.166388i 0.996533 + 0.0831942i \(0.0265122\pi\)
−0.996533 + 0.0831942i \(0.973488\pi\)
\(80\) −1.17734 3.52447i −0.131631 0.394048i
\(81\) −0.652553 0.314253i −0.0725058 0.0349170i
\(82\) −15.3556 + 2.99776i −1.69574 + 0.331048i
\(83\) −2.36598 + 10.3660i −0.259700 + 1.13782i 0.661873 + 0.749616i \(0.269762\pi\)
−0.921573 + 0.388205i \(0.873095\pi\)
\(84\) −0.582327 + 5.36377i −0.0635371 + 0.585236i
\(85\) −1.27487 5.58558i −0.138279 0.605841i
\(86\) −1.29126 2.91339i −0.139240 0.314159i
\(87\) 1.76251 + 7.72207i 0.188961 + 0.827892i
\(88\) 5.07738 + 13.7389i 0.541250 + 1.46457i
\(89\) 8.05318 + 1.83809i 0.853636 + 0.194837i 0.626881 0.779115i \(-0.284331\pi\)
0.226755 + 0.973952i \(0.427188\pi\)
\(90\) 0.0813759 2.57422i 0.00857777 0.271347i
\(91\) 6.76290 2.89012i 0.708944 0.302967i
\(92\) 6.03326 10.7355i 0.629011 1.11926i
\(93\) −1.78508 2.23842i −0.185104 0.232113i
\(94\) −2.11420 + 8.07738i −0.218063 + 0.833118i
\(95\) −3.86013 + 3.07835i −0.396041 + 0.315833i
\(96\) −5.69596 0.907564i −0.581341 0.0926279i
\(97\) 11.4703i 1.16463i −0.812963 0.582316i \(-0.802147\pi\)
0.812963 0.582316i \(-0.197853\pi\)
\(98\) −9.82654 1.19966i −0.992630 0.121184i
\(99\) 10.1519i 1.02030i
\(100\) −7.66647 + 3.11195i −0.766647 + 0.311195i
\(101\) −11.8837 + 9.47693i −1.18247 + 0.942989i −0.999197 0.0400725i \(-0.987241\pi\)
−0.183274 + 0.983062i \(0.558670\pi\)
\(102\) −8.60303 2.25179i −0.851826 0.222960i
\(103\) 6.06708 + 7.60788i 0.597808 + 0.749627i 0.985034 0.172357i \(-0.0551384\pi\)
−0.387227 + 0.921984i \(0.626567\pi\)
\(104\) 2.72547 + 7.37485i 0.267254 + 0.723164i
\(105\) −2.50353 0.112586i −0.244319 0.0109872i
\(106\) −5.54673 0.175342i −0.538747 0.0170308i
\(107\) −4.09741 0.935207i −0.396111 0.0904098i 0.0198252 0.999803i \(-0.493689\pi\)
−0.415937 + 0.909394i \(0.636546\pi\)
\(108\) −8.81822 4.95575i −0.848534 0.476867i
\(109\) −1.62349 7.11295i −0.155502 0.681297i −0.991229 0.132153i \(-0.957811\pi\)
0.835728 0.549144i \(-0.185046\pi\)
\(110\) −6.21987 + 2.75674i −0.593042 + 0.262845i
\(111\) 1.26735 + 5.55262i 0.120291 + 0.527031i
\(112\) 1.80449 10.4280i 0.170508 0.985356i
\(113\) −1.59142 + 6.97247i −0.149708 + 0.655915i 0.843257 + 0.537510i \(0.180635\pi\)
−0.992965 + 0.118404i \(0.962222\pi\)
\(114\) 1.46839 + 7.52163i 0.137528 + 0.704465i
\(115\) 5.15360 + 2.48184i 0.480575 + 0.231433i
\(116\) −2.49361 15.3352i −0.231526 1.42383i
\(117\) 5.44941i 0.503798i
\(118\) 7.52927 3.33709i 0.693125 0.307204i
\(119\) 4.34186 15.7287i 0.398018 1.44184i
\(120\) 0.253608 2.66706i 0.0231511 0.243468i
\(121\) 14.2507 6.86277i 1.29552 0.623888i
\(122\) 7.40959 5.53518i 0.670833 0.501132i
\(123\) −10.9972 2.51004i −0.991583 0.226322i
\(124\) 3.21717 + 4.60310i 0.288910 + 0.413371i
\(125\) −3.68284 7.64750i −0.329403 0.684013i
\(126\) 3.67861 6.34598i 0.327716 0.565345i
\(127\) −2.83208 + 5.88087i −0.251306 + 0.521843i −0.988013 0.154369i \(-0.950665\pi\)
0.736707 + 0.676212i \(0.236380\pi\)
\(128\) 11.0380 + 2.48233i 0.975633 + 0.219409i
\(129\) 2.29755i 0.202288i
\(130\) −3.33875 + 1.47978i −0.292827 + 0.129786i
\(131\) −9.72960 + 12.2005i −0.850080 + 1.06597i 0.146965 + 0.989142i \(0.453049\pi\)
−0.997045 + 0.0768243i \(0.975522\pi\)
\(132\) −0.666987 + 10.5391i −0.0580538 + 0.917311i
\(133\) −13.8357 + 2.50994i −1.19971 + 0.217640i
\(134\) −4.61308 + 8.85224i −0.398509 + 0.764717i
\(135\) 2.03860 4.23319i 0.175454 0.364335i
\(136\) 16.5624 + 5.47396i 1.42021 + 0.469388i
\(137\) 1.56347 1.96053i 0.133576 0.167500i −0.710545 0.703652i \(-0.751551\pi\)
0.844121 + 0.536153i \(0.180123\pi\)
\(138\) 7.11302 5.31364i 0.605501 0.452327i
\(139\) −2.50048 3.13550i −0.212088 0.265950i 0.664396 0.747380i \(-0.268689\pi\)
−0.876484 + 0.481431i \(0.840117\pi\)
\(140\) 4.88698 + 0.530563i 0.413025 + 0.0448408i
\(141\) −3.75327 + 4.70645i −0.316082 + 0.396355i
\(142\) −0.0625889 + 1.97992i −0.00525235 + 0.166151i
\(143\) 12.9695 6.24578i 1.08456 0.522298i
\(144\) 6.57970 + 4.26585i 0.548308 + 0.355488i
\(145\) 7.03565 1.60584i 0.584279 0.133358i
\(146\) 4.67718 + 3.97807i 0.387086 + 0.329227i
\(147\) −6.12656 3.66146i −0.505310 0.301992i
\(148\) −1.79305 11.0269i −0.147388 0.906403i
\(149\) 0.452330 + 1.98179i 0.0370563 + 0.162354i 0.990071 0.140571i \(-0.0448938\pi\)
−0.953014 + 0.302925i \(0.902037\pi\)
\(150\) −5.96237 0.188481i −0.486826 0.0153894i
\(151\) 1.45269 + 3.01654i 0.118218 + 0.245483i 0.951678 0.307097i \(-0.0993577\pi\)
−0.833460 + 0.552580i \(0.813643\pi\)
\(152\) −1.94268 14.9063i −0.157572 1.20906i
\(153\) 9.45246 + 7.53808i 0.764186 + 0.609418i
\(154\) −19.3195 1.48165i −1.55681 0.119394i
\(155\) −2.03944 + 1.62640i −0.163812 + 0.130636i
\(156\) −0.358030 + 5.65725i −0.0286653 + 0.452943i
\(157\) −0.749519 0.597722i −0.0598181 0.0477034i 0.593124 0.805111i \(-0.297894\pi\)
−0.652942 + 0.757407i \(0.726466\pi\)
\(158\) 0.966540 1.85474i 0.0768938 0.147555i
\(159\) −3.60483 1.73600i −0.285882 0.137673i
\(160\) −0.826890 + 5.18964i −0.0653714 + 0.410277i
\(161\) 9.57472 + 13.1801i 0.754593 + 1.03874i
\(162\) 0.613010 + 0.820596i 0.0481626 + 0.0644721i
\(163\) −8.79053 7.01022i −0.688528 0.549082i 0.215528 0.976498i \(-0.430853\pi\)
−0.904055 + 0.427415i \(0.859424\pi\)
\(164\) 21.2172 + 6.27612i 1.65679 + 0.490083i
\(165\) −4.90510 −0.381861
\(166\) 9.74207 11.4542i 0.756131 0.889015i
\(167\) 2.46446 + 1.18682i 0.190706 + 0.0918390i 0.526800 0.849989i \(-0.323392\pi\)
−0.336094 + 0.941828i \(0.609106\pi\)
\(168\) 4.23585 6.34633i 0.326803 0.489630i
\(169\) −4.75074 + 2.28784i −0.365441 + 0.175987i
\(170\) −2.05163 + 7.83830i −0.157353 + 0.601170i
\(171\) 2.31844 10.1577i 0.177295 0.776782i
\(172\) −0.284646 + 4.49770i −0.0217040 + 0.342947i
\(173\) 5.47431 + 11.3675i 0.416204 + 0.864257i 0.998678 + 0.0514072i \(0.0163706\pi\)
−0.582474 + 0.812850i \(0.697915\pi\)
\(174\) 2.83637 10.8364i 0.215025 0.821509i
\(175\) 0.491729 10.9344i 0.0371712 0.826564i
\(176\) 2.61140 20.5488i 0.196842 1.54893i
\(177\) 5.93771 0.446306
\(178\) −8.89852 7.56842i −0.666972 0.567277i
\(179\) 4.51082 9.36681i 0.337154 0.700108i −0.661608 0.749850i \(-0.730126\pi\)
0.998762 + 0.0497418i \(0.0158399\pi\)
\(180\) −1.78446 + 3.17525i −0.133006 + 0.236669i
\(181\) −8.90161 2.03174i −0.661652 0.151018i −0.121508 0.992590i \(-0.538773\pi\)
−0.540144 + 0.841573i \(0.681630\pi\)
\(182\) −10.3705 0.795328i −0.768710 0.0589536i
\(183\) 6.50098 1.48381i 0.480566 0.109686i
\(184\) −14.5828 + 9.52079i −1.07506 + 0.701882i
\(185\) 5.05904 1.15469i 0.371948 0.0848947i
\(186\) 0.775804 + 3.97393i 0.0568847 + 0.291383i
\(187\) 7.10667 31.1364i 0.519691 2.27692i
\(188\) 7.93053 8.74840i 0.578393 0.638043i
\(189\) 10.8262 7.86471i 0.787492 0.572074i
\(190\) 6.85302 1.33787i 0.497171 0.0970592i
\(191\) −13.2051 + 10.5307i −0.955486 + 0.761975i −0.971290 0.237900i \(-0.923541\pi\)
0.0158035 + 0.999875i \(0.494969\pi\)
\(192\) 6.55038 + 4.86084i 0.472733 + 0.350801i
\(193\) −6.54666 8.20926i −0.471239 0.590915i 0.488235 0.872712i \(-0.337641\pi\)
−0.959474 + 0.281797i \(0.909070\pi\)
\(194\) −7.49648 + 14.3853i −0.538216 + 1.03281i
\(195\) −2.63299 −0.188553
\(196\) 11.5398 + 7.92673i 0.824271 + 0.566195i
\(197\) −11.8054 −0.841099 −0.420550 0.907269i \(-0.638163\pi\)
−0.420550 + 0.907269i \(0.638163\pi\)
\(198\) 6.63484 12.7319i 0.471518 0.904817i
\(199\) −0.317945 0.398690i −0.0225385 0.0282624i 0.770435 0.637519i \(-0.220039\pi\)
−0.792973 + 0.609257i \(0.791468\pi\)
\(200\) 11.6486 + 1.10766i 0.823684 + 0.0783232i
\(201\) −5.62674 + 4.48717i −0.396880 + 0.316501i
\(202\) 21.0975 4.11872i 1.48441 0.289792i
\(203\) 19.8120 + 5.46904i 1.39053 + 0.383852i
\(204\) 9.31772 + 8.44662i 0.652371 + 0.591382i
\(205\) −2.28692 + 10.0196i −0.159725 + 0.699802i
\(206\) −2.63678 13.5065i −0.183714 0.941044i
\(207\) −11.7682 + 2.68601i −0.817944 + 0.186690i
\(208\) 1.40177 11.0303i 0.0971950 0.764816i
\(209\) −26.8325 + 6.12434i −1.85604 + 0.423630i
\(210\) 3.06619 + 1.77739i 0.211587 + 0.122652i
\(211\) 0.438590 + 0.100105i 0.0301938 + 0.00689154i 0.237591 0.971365i \(-0.423642\pi\)
−0.207397 + 0.978257i \(0.566499\pi\)
\(212\) 6.84178 + 3.84501i 0.469895 + 0.264076i
\(213\) −0.619668 + 1.28675i −0.0424589 + 0.0881669i
\(214\) 4.52751 + 3.85077i 0.309494 + 0.263233i
\(215\) −2.09332 −0.142763
\(216\) 7.82042 + 11.9784i 0.532112 + 0.815027i
\(217\) −7.30987 + 1.32609i −0.496226 + 0.0900208i
\(218\) −2.61264 + 9.98167i −0.176950 + 0.676044i
\(219\) 1.92075 + 3.98848i 0.129792 + 0.269516i
\(220\) 9.60227 + 0.607698i 0.647385 + 0.0409710i
\(221\) 3.81477 16.7136i 0.256609 1.12428i
\(222\) 2.03952 7.79204i 0.136883 0.522967i
\(223\) −19.5719 + 9.42534i −1.31063 + 0.631167i −0.953078 0.302725i \(-0.902104\pi\)
−0.357555 + 0.933892i \(0.616389\pi\)
\(224\) −9.07839 + 11.8989i −0.606575 + 0.795026i
\(225\) 7.30696 + 3.51885i 0.487131 + 0.234590i
\(226\) 6.55276 7.70436i 0.435883 0.512486i
\(227\) 1.22521 0.0813200 0.0406600 0.999173i \(-0.487054\pi\)
0.0406600 + 0.999173i \(0.487054\pi\)
\(228\) 3.07424 10.3928i 0.203596 0.688283i
\(229\) −15.2692 12.1768i −1.00902 0.804667i −0.0282040 0.999602i \(-0.508979\pi\)
−0.980816 + 0.194936i \(0.937550\pi\)
\(230\) −4.84130 6.48074i −0.319226 0.427327i
\(231\) −12.3014 6.62060i −0.809370 0.435604i
\(232\) −6.89505 + 20.8621i −0.452682 + 1.36967i
\(233\) 20.5149 + 9.87944i 1.34397 + 0.647224i 0.961003 0.276537i \(-0.0891868\pi\)
0.382970 + 0.923761i \(0.374901\pi\)
\(234\) 3.56150 6.83432i 0.232822 0.446773i
\(235\) 4.28809 + 3.41964i 0.279724 + 0.223073i
\(236\) −11.6237 0.735630i −0.756640 0.0478854i
\(237\) 1.17892 0.940160i 0.0765793 0.0610700i
\(238\) −15.7249 + 16.8883i −1.01929 + 1.09470i
\(239\) −3.76316 3.00102i −0.243419 0.194120i 0.494179 0.869360i \(-0.335469\pi\)
−0.737598 + 0.675240i \(0.764040\pi\)
\(240\) −2.06113 + 3.17911i −0.133046 + 0.205211i
\(241\) 3.87499 + 8.04649i 0.249610 + 0.518320i 0.987696 0.156386i \(-0.0499845\pi\)
−0.738086 + 0.674707i \(0.764270\pi\)
\(242\) −22.3576 0.706763i −1.43720 0.0454325i
\(243\) 3.54065 + 15.5126i 0.227133 + 0.995133i
\(244\) −12.9102 + 2.09930i −0.826492 + 0.134394i
\(245\) −3.33599 + 5.58197i −0.213128 + 0.356619i
\(246\) 12.1515 + 10.3352i 0.774754 + 0.658949i
\(247\) −14.4033 + 3.28747i −0.916463 + 0.209177i
\(248\) −1.02639 7.87553i −0.0651756 0.500096i
\(249\) 9.76756 4.70381i 0.618994 0.298092i
\(250\) −0.379278 + 11.9980i −0.0239876 + 0.758818i
\(251\) 3.20226 4.01551i 0.202125 0.253457i −0.670430 0.741973i \(-0.733890\pi\)
0.872555 + 0.488516i \(0.162462\pi\)
\(252\) −8.76094 + 5.55456i −0.551887 + 0.349905i
\(253\) 19.8806 + 24.9295i 1.24988 + 1.56730i
\(254\) 7.39530 5.52450i 0.464022 0.346638i
\(255\) −3.64218 + 4.56715i −0.228082 + 0.286006i
\(256\) −12.2209 10.3272i −0.763804 0.645448i
\(257\) −4.89436 + 10.1632i −0.305302 + 0.633966i −0.996017 0.0891610i \(-0.971581\pi\)
0.690715 + 0.723127i \(0.257296\pi\)
\(258\) −1.50158 + 2.88144i −0.0934841 + 0.179391i
\(259\) 14.2459 + 3.93256i 0.885200 + 0.244357i
\(260\) 5.15437 + 0.326204i 0.319661 + 0.0202303i
\(261\) −9.49503 + 11.9064i −0.587728 + 0.736987i
\(262\) 20.1760 8.94232i 1.24648 0.552459i
\(263\) 8.81724i 0.543695i −0.962340 0.271847i \(-0.912365\pi\)
0.962340 0.271847i \(-0.0876346\pi\)
\(264\) 7.72439 12.7816i 0.475403 0.786652i
\(265\) −1.58168 + 3.28439i −0.0971619 + 0.201759i
\(266\) 18.9923 + 5.89459i 1.16449 + 0.361420i
\(267\) −3.65430 7.58823i −0.223640 0.464392i
\(268\) 11.5709 8.08704i 0.706804 0.493994i
\(269\) −7.18151 1.63913i −0.437865 0.0999397i −0.00209460 0.999998i \(-0.500667\pi\)
−0.435770 + 0.900058i \(0.643524\pi\)
\(270\) −5.32331 + 3.97667i −0.323966 + 0.242012i
\(271\) 3.66069 1.76290i 0.222371 0.107088i −0.319382 0.947626i \(-0.603475\pi\)
0.541753 + 0.840538i \(0.317761\pi\)
\(272\) −17.1940 17.6896i −1.04254 1.07259i
\(273\) −6.60321 3.55385i −0.399644 0.215089i
\(274\) −3.24213 + 1.43696i −0.195864 + 0.0868100i
\(275\) 21.4235i 1.29189i
\(276\) −12.3935 + 2.01528i −0.746000 + 0.121305i
\(277\) 7.24493 + 3.48897i 0.435305 + 0.209632i 0.638686 0.769468i \(-0.279478\pi\)
−0.203380 + 0.979100i \(0.565193\pi\)
\(278\) 1.08672 + 5.56655i 0.0651771 + 0.333860i
\(279\) 1.22491 5.36669i 0.0733335 0.321295i
\(280\) −5.78220 3.85932i −0.345553 0.230638i
\(281\) −4.29563 18.8204i −0.256256 1.12273i −0.925219 0.379434i \(-0.876119\pi\)
0.668963 0.743295i \(-0.266738\pi\)
\(282\) 7.78305 3.44957i 0.463474 0.205419i
\(283\) 6.17237 + 27.0429i 0.366909 + 1.60753i 0.735218 + 0.677831i \(0.237080\pi\)
−0.368309 + 0.929704i \(0.620063\pi\)
\(284\) 1.37249 2.44219i 0.0814420 0.144917i
\(285\) 4.90792 + 1.12020i 0.290720 + 0.0663550i
\(286\) −20.3475 0.643222i −1.20317 0.0380345i
\(287\) −19.2592 + 22.0412i −1.13683 + 1.30105i
\(288\) −5.46388 9.65017i −0.321962 0.568642i
\(289\) −13.1149 16.4455i −0.771464 0.967385i
\(290\) −9.87318 2.58424i −0.579773 0.151752i
\(291\) −9.14373 + 7.29188i −0.536015 + 0.427458i
\(292\) −3.26594 8.04585i −0.191125 0.470848i
\(293\) 0.497423i 0.0290598i −0.999894 0.0145299i \(-0.995375\pi\)
0.999894 0.0145299i \(-0.00462517\pi\)
\(294\) 5.29059 + 8.59603i 0.308553 + 0.501331i
\(295\) 5.40990i 0.314977i
\(296\) −4.95794 + 15.0011i −0.288175 + 0.871921i
\(297\) 20.4772 16.3300i 1.18821 0.947563i
\(298\) 0.727925 2.78106i 0.0421676 0.161103i
\(299\) 10.6716 + 13.3818i 0.617157 + 0.773891i
\(300\) 7.35446 + 4.13313i 0.424610 + 0.238626i
\(301\) −5.24977 2.82543i −0.302592 0.162855i
\(302\) 0.149605 4.73258i 0.00860883 0.272329i
\(303\) 15.1094 + 3.44862i 0.868011 + 0.198118i
\(304\) −7.30574 + 19.9643i −0.419013 + 1.14503i
\(305\) −1.35191 5.92310i −0.0774101 0.339156i
\(306\) −6.92813 15.6315i −0.396055 0.893594i
\(307\) −5.29958 23.2190i −0.302463 1.32518i −0.866397 0.499357i \(-0.833570\pi\)
0.563934 0.825820i \(-0.309287\pi\)
\(308\) 23.2610 + 14.4846i 1.32542 + 0.825336i
\(309\) 2.20779 9.67295i 0.125597 0.550275i
\(310\) 3.62069 0.706842i 0.205641 0.0401459i
\(311\) −21.9549 10.5729i −1.24495 0.599534i −0.308793 0.951129i \(-0.599925\pi\)
−0.936152 + 0.351595i \(0.885639\pi\)
\(312\) 4.14635 6.86099i 0.234741 0.388427i
\(313\) 23.6603i 1.33736i −0.743550 0.668680i \(-0.766859\pi\)
0.743550 0.668680i \(-0.233141\pi\)
\(314\) 0.549356 + 1.23948i 0.0310020 + 0.0699478i
\(315\) −2.83191 3.89829i −0.159560 0.219644i
\(316\) −2.42435 + 1.69441i −0.136380 + 0.0953180i
\(317\) 13.4108 6.45831i 0.753227 0.362735i −0.0175451 0.999846i \(-0.505585\pi\)
0.770772 + 0.637111i \(0.219871\pi\)
\(318\) 3.38639 + 4.53314i 0.189899 + 0.254206i
\(319\) 39.2196 + 8.95162i 2.19588 + 0.501195i
\(320\) 4.42876 5.96811i 0.247575 0.333627i
\(321\) 1.85928 + 3.86084i 0.103775 + 0.215491i
\(322\) −3.39405 22.7873i −0.189143 1.26989i
\(323\) −14.2215 + 29.5313i −0.791307 + 1.64317i
\(324\) −0.232493 1.42978i −0.0129163 0.0794321i
\(325\) 11.4999i 0.637898i
\(326\) 6.44298 + 14.5369i 0.356843 + 0.805124i
\(327\) −4.63813 + 5.81603i −0.256489 + 0.321627i
\(328\) −22.5076 21.7378i −1.24277 1.20027i
\(329\) 6.13836 + 14.3638i 0.338419 + 0.791903i
\(330\) 6.15168 + 3.20576i 0.338639 + 0.176471i
\(331\) 0.975324 2.02528i 0.0536087 0.111320i −0.872444 0.488715i \(-0.837466\pi\)
0.926052 + 0.377395i \(0.123180\pi\)
\(332\) −19.7038 + 7.99811i −1.08139 + 0.438953i
\(333\) −6.82748 + 8.56139i −0.374144 + 0.469161i
\(334\) −2.31512 3.09910i −0.126678 0.169575i
\(335\) 4.08831 + 5.12657i 0.223368 + 0.280095i
\(336\) −9.46003 + 5.19082i −0.516087 + 0.283182i
\(337\) −8.07365 + 10.1240i −0.439800 + 0.551491i −0.951490 0.307678i \(-0.900448\pi\)
0.511691 + 0.859170i \(0.329019\pi\)
\(338\) 7.45331 + 0.235613i 0.405407 + 0.0128157i
\(339\) 6.56991 3.16390i 0.356829 0.171840i
\(340\) 7.69579 8.48946i 0.417363 0.460405i
\(341\) −14.1765 + 3.23570i −0.767702 + 0.175223i
\(342\) −9.54630 + 11.2240i −0.516205 + 0.606924i
\(343\) −15.9004 + 9.49614i −0.858542 + 0.512743i
\(344\) 3.29649 5.45471i 0.177735 0.294098i
\(345\) −1.29780 5.68603i −0.0698711 0.306125i
\(346\) 0.563772 17.8342i 0.0303086 0.958774i
\(347\) 0.157351 + 0.326743i 0.00844706 + 0.0175405i 0.905150 0.425093i \(-0.139759\pi\)
−0.896703 + 0.442633i \(0.854044\pi\)
\(348\) −10.6394 + 11.7367i −0.570333 + 0.629152i
\(349\) −19.8892 15.8611i −1.06464 0.849026i −0.0756735 0.997133i \(-0.524111\pi\)
−0.988971 + 0.148107i \(0.952682\pi\)
\(350\) −7.76295 + 13.3919i −0.414947 + 0.715827i
\(351\) 10.9919 8.76574i 0.586703 0.467880i
\(352\) −16.7049 + 24.0644i −0.890372 + 1.28264i
\(353\) 16.5145 + 13.1699i 0.878981 + 0.700964i 0.955147 0.296131i \(-0.0956966\pi\)
−0.0761665 + 0.997095i \(0.524268\pi\)
\(354\) −7.44672 3.88063i −0.395788 0.206253i
\(355\) 1.17237 + 0.564585i 0.0622231 + 0.0299651i
\(356\) 6.21358 + 15.3075i 0.329319 + 0.811298i
\(357\) −15.2986 + 6.53782i −0.809686 + 0.346018i
\(358\) −11.7789 + 8.79921i −0.622536 + 0.465052i
\(359\) 29.2037 + 23.2892i 1.54131 + 1.22916i 0.875695 + 0.482864i \(0.160404\pi\)
0.665618 + 0.746292i \(0.268168\pi\)
\(360\) 4.31316 2.81596i 0.227324 0.148414i
\(361\) 9.24659 0.486663
\(362\) 9.83601 + 8.36579i 0.516969 + 0.439696i
\(363\) −14.5302 6.99738i −0.762638 0.367267i
\(364\) 12.4862 + 7.77514i 0.654455 + 0.407528i
\(365\) 3.63394 1.75001i 0.190209 0.0915999i
\(366\) −9.12288 2.38786i −0.476861 0.124815i
\(367\) 7.26281 31.8205i 0.379116 1.66102i −0.321071 0.947055i \(-0.604043\pi\)
0.700187 0.713960i \(-0.253100\pi\)
\(368\) 24.5113 2.40968i 1.27774 0.125613i
\(369\) −9.40997 19.5400i −0.489864 1.01721i
\(370\) −7.09940 1.85822i −0.369080 0.0966044i
\(371\) −8.39973 + 6.10198i −0.436092 + 0.316799i
\(372\) 1.62422 5.49090i 0.0842121 0.284690i
\(373\) 17.4750 0.904820 0.452410 0.891810i \(-0.350564\pi\)
0.452410 + 0.891810i \(0.350564\pi\)
\(374\) −29.2621 + 34.4047i −1.51311 + 1.77903i
\(375\) −3.75508 + 7.79750i −0.193911 + 0.402661i
\(376\) −15.6636 + 5.78866i −0.807786 + 0.298527i
\(377\) 21.0526 + 4.80511i 1.08426 + 0.247476i
\(378\) −18.7176 + 2.78789i −0.962731 + 0.143394i
\(379\) 1.61455 0.368510i 0.0829337 0.0189291i −0.180853 0.983510i \(-0.557886\pi\)
0.263786 + 0.964581i \(0.415029\pi\)
\(380\) −9.46901 2.80096i −0.485750 0.143686i
\(381\) 6.48844 1.48094i 0.332413 0.0758710i
\(382\) 23.4434 4.57669i 1.19947 0.234164i
\(383\) 0.707587 3.10014i 0.0361560 0.158410i −0.953627 0.300990i \(-0.902683\pi\)
0.989783 + 0.142580i \(0.0455400\pi\)
\(384\) −5.03825 10.3772i −0.257107 0.529560i
\(385\) −6.03209 + 11.2079i −0.307424 + 0.571206i
\(386\) 2.84521 + 14.5742i 0.144818 + 0.741805i
\(387\) 3.45369 2.75423i 0.175561 0.140005i
\(388\) 18.8032 13.1418i 0.954590 0.667175i
\(389\) 9.34855 + 11.7227i 0.473990 + 0.594365i 0.960143 0.279509i \(-0.0901717\pi\)
−0.486153 + 0.873874i \(0.661600\pi\)
\(390\) 3.30214 + 1.72081i 0.167210 + 0.0871366i
\(391\) 37.9738 1.92042
\(392\) −9.29194 17.4831i −0.469314 0.883031i
\(393\) 15.9112 0.802612
\(394\) 14.8056 + 7.71549i 0.745895 + 0.388701i
\(395\) −0.856589 1.07413i −0.0430997 0.0540453i
\(396\) −16.6420 + 11.6313i −0.836293 + 0.584496i
\(397\) 21.8016 17.3862i 1.09419 0.872587i 0.101688 0.994816i \(-0.467576\pi\)
0.992502 + 0.122229i \(0.0390043\pi\)
\(398\) 0.138180 + 0.707808i 0.00692636 + 0.0354792i
\(399\) 10.7965 + 9.43373i 0.540499 + 0.472277i
\(400\) −13.8851 9.00221i −0.694255 0.450110i
\(401\) −0.731013 + 3.20278i −0.0365051 + 0.159939i −0.989895 0.141802i \(-0.954711\pi\)
0.953390 + 0.301741i \(0.0975677\pi\)
\(402\) 9.98933 1.95015i 0.498223 0.0972646i
\(403\) −7.60978 + 1.73688i −0.379070 + 0.0865203i
\(404\) −29.1510 8.62296i −1.45032 0.429008i
\(405\) 0.655971 0.149721i 0.0325955 0.00743970i
\(406\) −21.2726 19.8072i −1.05574 0.983013i
\(407\) 28.2012 + 6.43674i 1.39788 + 0.319057i
\(408\) −6.16537 16.6829i −0.305231 0.825926i
\(409\) −12.4942 + 25.9445i −0.617800 + 1.28288i 0.323795 + 0.946127i \(0.395041\pi\)
−0.941595 + 0.336748i \(0.890673\pi\)
\(410\) 9.41651 11.0714i 0.465048 0.546777i
\(411\) −2.55680 −0.126118
\(412\) −5.52038 + 18.6623i −0.271970 + 0.919428i
\(413\) 7.30196 13.5673i 0.359306 0.667605i
\(414\) 16.5144 + 4.32253i 0.811637 + 0.212441i
\(415\) −4.28569 8.89932i −0.210376 0.436850i
\(416\) −8.96696 + 12.9174i −0.439641 + 0.633330i
\(417\) −0.909914 + 3.98659i −0.0445587 + 0.195224i
\(418\) 37.6543 + 9.85578i 1.84173 + 0.482062i
\(419\) 17.7821 8.56341i 0.868713 0.418350i 0.0542237 0.998529i \(-0.482732\pi\)
0.814489 + 0.580179i \(0.197017\pi\)
\(420\) −2.68380 4.23303i −0.130956 0.206551i
\(421\) 32.0152 + 15.4177i 1.56032 + 0.751412i 0.997187 0.0749514i \(-0.0238802\pi\)
0.563137 + 0.826364i \(0.309594\pi\)
\(422\) −0.484629 0.412190i −0.0235913 0.0200651i
\(423\) −11.5741 −0.562751
\(424\) −6.06761 9.29366i −0.294669 0.451340i
\(425\) −19.9475 15.9076i −0.967595 0.771631i
\(426\) 1.61812 1.20878i 0.0783980 0.0585656i
\(427\) 4.60423 16.6791i 0.222814 0.807158i
\(428\) −3.16143 7.78838i −0.152813 0.376465i
\(429\) −13.2239 6.36829i −0.638455 0.307464i
\(430\) 2.62531 + 1.36810i 0.126604 + 0.0659757i
\(431\) 18.4581 + 14.7199i 0.889097 + 0.709031i 0.957440 0.288631i \(-0.0932001\pi\)
−0.0683439 + 0.997662i \(0.521772\pi\)
\(432\) −1.97932 20.1337i −0.0952302 0.968681i
\(433\) −4.61587 + 3.68104i −0.221825 + 0.176899i −0.728096 0.685475i \(-0.759595\pi\)
0.506272 + 0.862374i \(0.331023\pi\)
\(434\) 10.0343 + 3.11431i 0.481660 + 0.149492i
\(435\) −5.75282 4.58772i −0.275826 0.219964i
\(436\) 9.80020 10.8109i 0.469344 0.517748i
\(437\) −14.1988 29.4841i −0.679219 1.41041i
\(438\) 0.197809 6.25743i 0.00945166 0.298991i
\(439\) −4.87444 21.3563i −0.232644 1.01928i −0.947436 0.319944i \(-0.896336\pi\)
0.714792 0.699337i \(-0.246521\pi\)
\(440\) −11.6454 7.03776i −0.555173 0.335512i
\(441\) −1.84040 13.5987i −0.0876379 0.647559i
\(442\) −15.7075 + 18.4680i −0.747131 + 0.878433i
\(443\) 20.9084 4.77220i 0.993387 0.226734i 0.305216 0.952283i \(-0.401271\pi\)
0.688170 + 0.725549i \(0.258414\pi\)
\(444\) −7.65037 + 8.43935i −0.363071 + 0.400514i
\(445\) −6.91371 + 3.32947i −0.327741 + 0.157832i
\(446\) 30.7059 + 0.970669i 1.45397 + 0.0459625i
\(447\) 1.29226 1.62044i 0.0611218 0.0766443i
\(448\) 19.1621 8.98958i 0.905326 0.424718i
\(449\) −11.6549 14.6148i −0.550029 0.689714i 0.426651 0.904416i \(-0.359693\pi\)
−0.976680 + 0.214702i \(0.931122\pi\)
\(450\) −6.86418 9.18863i −0.323580 0.433156i
\(451\) −35.7197 + 44.7911i −1.68198 + 2.10913i
\(452\) −13.2533 + 5.37974i −0.623383 + 0.253042i
\(453\) 1.48118 3.07571i 0.0695921 0.144509i
\(454\) −1.53658 0.800743i −0.0721154 0.0375807i
\(455\) −3.23795 + 6.01624i −0.151797 + 0.282046i
\(456\) −10.6478 + 11.0249i −0.498630 + 0.516287i
\(457\) −13.2680 + 16.6376i −0.620652 + 0.778273i −0.988436 0.151638i \(-0.951545\pi\)
0.367784 + 0.929911i \(0.380117\pi\)
\(458\) 11.1915 + 25.2507i 0.522945 + 1.17989i
\(459\) 31.1918i 1.45591i
\(460\) 1.83614 + 11.2918i 0.0856103 + 0.526483i
\(461\) −1.12831 + 2.34296i −0.0525506 + 0.109122i −0.925591 0.378526i \(-0.876431\pi\)
0.873040 + 0.487649i \(0.162145\pi\)
\(462\) 11.1007 + 16.3428i 0.516450 + 0.760335i
\(463\) −16.5778 34.4242i −0.770436 1.59983i −0.799806 0.600258i \(-0.795064\pi\)
0.0293703 0.999569i \(-0.490650\pi\)
\(464\) 22.2819 21.6577i 1.03441 1.00543i
\(465\) 2.59302 + 0.591841i 0.120249 + 0.0274460i
\(466\) −19.2717 25.7978i −0.892745 1.19506i
\(467\) 19.5231 9.40182i 0.903421 0.435064i 0.0762975 0.997085i \(-0.475690\pi\)
0.827123 + 0.562021i \(0.189976\pi\)
\(468\) −8.93322 + 6.24354i −0.412938 + 0.288608i
\(469\) 3.33341 + 18.3749i 0.153922 + 0.848475i
\(470\) −3.14293 7.09121i −0.144973 0.327093i
\(471\) 0.977474i 0.0450396i
\(472\) 14.0970 + 8.51934i 0.648867 + 0.392134i
\(473\) −10.5134 5.06300i −0.483408 0.232797i
\(474\) −2.09298 + 0.408598i −0.0961338 + 0.0187675i
\(475\) −4.89259 + 21.4358i −0.224488 + 0.983544i
\(476\) 30.7586 10.9032i 1.40982 0.499745i
\(477\) −1.71180 7.49987i −0.0783778 0.343395i
\(478\) 2.75819 + 6.22314i 0.126157 + 0.284640i
\(479\) −3.29653 14.4430i −0.150622 0.659919i −0.992705 0.120571i \(-0.961528\pi\)
0.842082 0.539349i \(-0.181330\pi\)
\(480\) 4.66268 2.63998i 0.212821 0.120498i
\(481\) 15.1380 + 3.45516i 0.690235 + 0.157542i
\(482\) 0.399066 12.6239i 0.0181770 0.575005i
\(483\) 4.41994 16.0115i 0.201114 0.728549i
\(484\) 27.5776 + 15.4983i 1.25353 + 0.704468i
\(485\) 6.64370 + 8.33093i 0.301675 + 0.378288i
\(486\) 5.69789 21.7690i 0.258462 0.987460i
\(487\) −15.1969 + 12.1192i −0.688639 + 0.549172i −0.904089 0.427343i \(-0.859450\pi\)
0.215450 + 0.976515i \(0.430878\pi\)
\(488\) 17.5632 + 5.80474i 0.795049 + 0.262768i
\(489\) 11.4640i 0.518422i
\(490\) 7.83192 4.82030i 0.353810 0.217759i
\(491\) 10.0146i 0.451952i 0.974133 + 0.225976i \(0.0725571\pi\)
−0.974133 + 0.225976i \(0.927443\pi\)
\(492\) −8.48508 20.9035i −0.382537 0.942403i
\(493\) 37.4566 29.8706i 1.68696 1.34530i
\(494\) 20.2123 + 5.29045i 0.909396 + 0.238029i
\(495\) −5.88008 7.37339i −0.264290 0.331409i
\(496\) −3.85987 + 10.5478i −0.173313 + 0.473610i
\(497\) 2.17812 + 2.99830i 0.0977019 + 0.134492i
\(498\) −15.3241 0.484422i −0.686689 0.0217075i
\(499\) −12.4803 2.84855i −0.558696 0.127519i −0.0661570 0.997809i \(-0.521074\pi\)
−0.492539 + 0.870291i \(0.663931\pi\)
\(500\) 8.31702 14.7992i 0.371948 0.661842i
\(501\) −0.620610 2.71907i −0.0277268 0.121479i
\(502\) −6.64044 + 2.94315i −0.296377 + 0.131359i
\(503\) 2.26568 + 9.92658i 0.101022 + 0.442605i 0.999989 + 0.00458995i \(0.00146103\pi\)
−0.898968 + 0.438015i \(0.855682\pi\)
\(504\) 14.6177 1.24042i 0.651122 0.0552529i
\(505\) 3.14207 13.7663i 0.139820 0.612592i
\(506\) −8.64021 44.2581i −0.384104 1.96751i
\(507\) 4.84392 + 2.33271i 0.215126 + 0.103599i
\(508\) −12.8853 + 2.09525i −0.571693 + 0.0929617i
\(509\) 9.97627i 0.442190i 0.975252 + 0.221095i \(0.0709631\pi\)
−0.975252 + 0.221095i \(0.929037\pi\)
\(510\) 7.55268 3.34747i 0.334438 0.148228i
\(511\) 11.4755 + 0.516063i 0.507647 + 0.0228293i
\(512\) 8.57728 + 20.9387i 0.379066 + 0.925370i
\(513\) −24.2183 + 11.6629i −1.06927 + 0.514931i
\(514\) 12.7805 9.54738i 0.563722 0.421117i
\(515\) −8.81312 2.01154i −0.388352 0.0886389i
\(516\) 3.76637 2.63237i 0.165805 0.115883i
\(517\) 13.2655 + 27.5461i 0.583416 + 1.21148i
\(518\) −15.2962 14.2425i −0.672079 0.625780i
\(519\) 5.58168 11.5905i 0.245009 0.508766i
\(520\) −6.25111 3.77778i −0.274129 0.165667i
\(521\) 16.0983i 0.705280i −0.935759 0.352640i \(-0.885284\pi\)
0.935759 0.352640i \(-0.114716\pi\)
\(522\) 19.6896 8.72673i 0.861790 0.381959i
\(523\) −18.6524 + 23.3893i −0.815612 + 1.02274i 0.183598 + 0.983001i \(0.441226\pi\)
−0.999210 + 0.0397435i \(0.987346\pi\)
\(524\) −31.1478 1.97125i −1.36070 0.0861145i
\(525\) −9.02915 + 6.55922i −0.394064 + 0.286268i
\(526\) −5.76257 + 11.0580i −0.251260 + 0.482154i
\(527\) −7.51372 + 15.6024i −0.327303 + 0.679651i
\(528\) −18.0409 + 10.9816i −0.785131 + 0.477911i
\(529\) −9.29814 + 11.6595i −0.404267 + 0.506935i
\(530\) 4.13018 3.08537i 0.179404 0.134020i
\(531\) 7.11794 + 8.92562i 0.308892 + 0.387339i
\(532\) −19.9665 19.8051i −0.865657 0.858662i
\(533\) −19.1739 + 24.0433i −0.830513 + 1.04143i
\(534\) −0.376338 + 11.9050i −0.0162858 + 0.515179i
\(535\) 3.51765 1.69401i 0.152081 0.0732385i
\(536\) −19.7968 + 2.58004i −0.855093 + 0.111441i
\(537\) −10.3345 + 2.35879i −0.445967 + 0.101789i
\(538\) 7.93535 + 6.74922i 0.342117 + 0.290980i
\(539\) −30.2554 + 19.9662i −1.30319 + 0.860003i
\(540\) 9.27514 1.50821i 0.399139 0.0649030i
\(541\) −2.64693 11.5970i −0.113801 0.498593i −0.999416 0.0341733i \(-0.989120\pi\)
0.885615 0.464419i \(-0.153737\pi\)
\(542\) −5.74317 0.181552i −0.246690 0.00779833i
\(543\) 4.03929 + 8.38768i 0.173343 + 0.359950i
\(544\) 10.0025 + 33.4224i 0.428855 + 1.43297i
\(545\) 5.29904 + 4.22584i 0.226986 + 0.181015i
\(546\) 5.95869 + 8.77259i 0.255009 + 0.375432i
\(547\) −0.697519 + 0.556253i −0.0298237 + 0.0237836i −0.638288 0.769797i \(-0.720357\pi\)
0.608465 + 0.793581i \(0.291786\pi\)
\(548\) 5.00521 + 0.316765i 0.213812 + 0.0135315i
\(549\) 10.0236 + 7.99359i 0.427799 + 0.341158i
\(550\) −14.0015 + 26.8681i −0.597025 + 1.14566i
\(551\) −37.1979 17.9135i −1.58468 0.763143i
\(552\) 16.8602 + 5.57240i 0.717619 + 0.237177i
\(553\) −0.698421 3.84994i −0.0296999 0.163716i
\(554\) −6.80590 9.11062i −0.289155 0.387073i
\(555\) −4.13661 3.29884i −0.175589 0.140028i
\(556\) 2.27516 7.69146i 0.0964882 0.326191i
\(557\) 5.08127 0.215300 0.107650 0.994189i \(-0.465667\pi\)
0.107650 + 0.994189i \(0.465667\pi\)
\(558\) −5.04364 + 5.93002i −0.213514 + 0.251038i
\(559\) −5.64347 2.71775i −0.238693 0.114949i
\(560\) 4.72940 + 8.61912i 0.199854 + 0.364224i
\(561\) −29.3387 + 14.1288i −1.23868 + 0.596517i
\(562\) −6.91286 + 26.4108i −0.291601 + 1.11407i
\(563\) 2.45358 10.7498i 0.103406 0.453052i −0.896543 0.442957i \(-0.853929\pi\)
0.999949 0.0100951i \(-0.00321343\pi\)
\(564\) −12.0155 0.760425i −0.505944 0.0320197i
\(565\) −2.88266 5.98591i −0.121275 0.251829i
\(566\) 9.93306 37.9496i 0.417518 1.59514i
\(567\) 1.84717 + 0.509908i 0.0775740 + 0.0214141i
\(568\) −3.31740 + 2.16585i −0.139195 + 0.0908770i
\(569\) −29.8693 −1.25219 −0.626093 0.779748i \(-0.715347\pi\)
−0.626093 + 0.779748i \(0.715347\pi\)
\(570\) −5.42310 4.61249i −0.227149 0.193196i
\(571\) 12.1074 25.1413i 0.506680 1.05213i −0.478097 0.878307i \(-0.658673\pi\)
0.984777 0.173825i \(-0.0556126\pi\)
\(572\) 25.0982 + 14.1049i 1.04941 + 0.589757i
\(573\) 16.7894 + 3.83208i 0.701389 + 0.160087i
\(574\) 38.5589 15.0558i 1.60942 0.628416i
\(575\) 24.8343 5.66827i 1.03566 0.236383i
\(576\) 0.545531 + 15.6736i 0.0227304 + 0.653067i
\(577\) −21.1227 + 4.82112i −0.879349 + 0.200706i −0.638282 0.769803i \(-0.720355\pi\)
−0.241067 + 0.970508i \(0.577497\pi\)
\(578\) 5.69979 + 29.1963i 0.237080 + 1.21441i
\(579\) −2.38231 + 10.4376i −0.0990052 + 0.433770i
\(580\) 10.6934 + 9.69368i 0.444019 + 0.402508i
\(581\) 1.26381 28.1029i 0.0524316 1.16590i
\(582\) 16.2332 3.16909i 0.672886 0.131363i
\(583\) −15.8876 + 12.6699i −0.657997 + 0.524735i
\(584\) −1.16247 + 12.2251i −0.0481034 + 0.505878i
\(585\) −3.15635 3.95794i −0.130499 0.163641i
\(586\) −0.325094 + 0.623838i −0.0134295 + 0.0257705i
\(587\) −22.0575 −0.910410 −0.455205 0.890387i \(-0.650434\pi\)
−0.455205 + 0.890387i \(0.650434\pi\)
\(588\) −1.01714 14.2383i −0.0419463 0.587178i
\(589\) 14.9236 0.614918
\(590\) −3.53568 + 6.78477i −0.145562 + 0.279325i
\(591\) 7.50491 + 9.41086i 0.308711 + 0.387111i
\(592\) 16.0220 15.5732i 0.658500 0.640053i
\(593\) −29.3534 + 23.4085i −1.20540 + 0.961274i −0.999849 0.0173730i \(-0.994470\pi\)
−0.205550 + 0.978647i \(0.565898\pi\)
\(594\) −36.3538 + 7.09710i −1.49162 + 0.291198i
\(595\) 5.95667 + 13.9387i 0.244200 + 0.571429i
\(596\) −2.73050 + 3.01210i −0.111846 + 0.123380i
\(597\) −0.115699 + 0.506910i −0.00473524 + 0.0207465i
\(598\) −4.63795 23.7572i −0.189660 0.971503i
\(599\) −18.4439 + 4.20970i −0.753597 + 0.172004i −0.582028 0.813168i \(-0.697741\pi\)
−0.171569 + 0.985172i \(0.554884\pi\)
\(600\) −6.52228 9.99007i −0.266271 0.407843i
\(601\) 38.9502 8.89012i 1.58881 0.362636i 0.665411 0.746477i \(-0.268256\pi\)
0.923399 + 0.383842i \(0.125399\pi\)
\(602\) 4.73736 + 6.97450i 0.193080 + 0.284259i
\(603\) −13.4903 3.07908i −0.549368 0.125390i
\(604\) −3.28063 + 5.83754i −0.133487 + 0.237526i
\(605\) −6.37538 + 13.2386i −0.259196 + 0.538226i
\(606\) −16.6954 14.1999i −0.678204 0.576830i
\(607\) −19.3766 −0.786472 −0.393236 0.919438i \(-0.628644\pi\)
−0.393236 + 0.919438i \(0.628644\pi\)
\(608\) 22.2102 20.2632i 0.900742 0.821783i
\(609\) −8.23510 19.2702i −0.333703 0.780868i
\(610\) −2.17560 + 8.31194i −0.0880874 + 0.336541i
\(611\) 7.12075 + 14.7864i 0.288075 + 0.598193i
\(612\) −1.52724 + 24.1320i −0.0617350 + 0.975479i
\(613\) −10.5186 + 46.0851i −0.424843 + 1.86136i 0.0779593 + 0.996957i \(0.475160\pi\)
−0.502802 + 0.864402i \(0.667698\pi\)
\(614\) −8.52850 + 32.5834i −0.344182 + 1.31496i
\(615\) 9.44116 4.54662i 0.380704 0.183337i
\(616\) −19.7061 33.3681i −0.793979 1.34444i
\(617\) 23.7284 + 11.4270i 0.955268 + 0.460033i 0.845530 0.533928i \(-0.179285\pi\)
0.109738 + 0.993961i \(0.464999\pi\)
\(618\) −9.09069 + 10.6883i −0.365681 + 0.429947i
\(619\) 12.4492 0.500376 0.250188 0.968197i \(-0.419508\pi\)
0.250188 + 0.968197i \(0.419508\pi\)
\(620\) −5.00281 1.47985i −0.200918 0.0594320i
\(621\) 24.3478 + 19.4167i 0.977042 + 0.779165i
\(622\) 20.6244 + 27.6086i 0.826965 + 1.10700i
\(623\) −21.8326 0.981828i −0.874704 0.0393361i
\(624\) −9.68414 + 5.89475i −0.387676 + 0.235979i
\(625\) −11.5322 5.55359i −0.461286 0.222144i
\(626\) −15.4634 + 29.6733i −0.618040 + 1.18599i
\(627\) 21.9401 + 17.4966i 0.876201 + 0.698747i
\(628\) 0.121100 1.91351i 0.00483243 0.0763575i
\(629\) 26.9335 21.4787i 1.07391 0.856413i
\(630\) 1.00386 + 6.73981i 0.0399947 + 0.268520i
\(631\) −31.6136 25.2110i −1.25852 1.00363i −0.999285 0.0378184i \(-0.987959\pi\)
−0.259232 0.965815i \(-0.583469\pi\)
\(632\) 4.14786 0.540574i 0.164993 0.0215029i
\(633\) −0.199020 0.413268i −0.00791032 0.0164259i
\(634\) −21.0399 0.665110i −0.835601 0.0264149i
\(635\) −1.34930 5.91168i −0.0535454 0.234598i
\(636\) −1.28434 7.89838i −0.0509273 0.313191i
\(637\) −16.2407 + 10.7176i −0.643480 + 0.424646i
\(638\) −43.3365 36.8588i −1.71571 1.45925i
\(639\) −2.67710 + 0.611030i −0.105904 + 0.0241720i
\(640\) −9.45477 + 4.59040i −0.373733 + 0.181451i
\(641\) −41.3677 + 19.9216i −1.63393 + 0.786857i −0.634017 + 0.773319i \(0.718595\pi\)
−0.999908 + 0.0135385i \(0.995690\pi\)
\(642\) 0.191479 6.05718i 0.00755706 0.239058i
\(643\) 8.61176 10.7988i 0.339614 0.425863i −0.582470 0.812852i \(-0.697914\pi\)
0.922084 + 0.386989i \(0.126485\pi\)
\(644\) −10.6362 + 30.7967i −0.419125 + 1.21356i
\(645\) 1.33076 + 1.66872i 0.0523987 + 0.0657059i
\(646\) 37.1361 27.7418i 1.46110 1.09149i
\(647\) 10.1662 12.7480i 0.399673 0.501174i −0.540749 0.841184i \(-0.681859\pi\)
0.940422 + 0.340010i \(0.110430\pi\)
\(648\) −0.642862 + 1.94509i −0.0252540 + 0.0764103i
\(649\) 13.0847 27.1706i 0.513618 1.06654i
\(650\) −7.51581 + 14.4224i −0.294794 + 0.565694i
\(651\) 5.70414 + 4.98416i 0.223563 + 0.195345i
\(652\) 1.42029 22.4421i 0.0556230 0.878902i
\(653\) 7.90068 9.90714i 0.309177 0.387696i −0.602830 0.797870i \(-0.705960\pi\)
0.912008 + 0.410173i \(0.134532\pi\)
\(654\) 9.61796 4.26283i 0.376092 0.166690i
\(655\) 14.4968i 0.566437i
\(656\) 14.0207 + 41.9722i 0.547417 + 1.63874i
\(657\) −3.69298 + 7.66855i −0.144077 + 0.299179i
\(658\) 1.68921 22.0260i 0.0658522 0.858662i
\(659\) −20.1815 41.9073i −0.786159 1.63248i −0.774525 0.632543i \(-0.782011\pi\)
−0.0116331 0.999932i \(-0.503703\pi\)
\(660\) −5.61991 8.04093i −0.218755 0.312993i
\(661\) −15.1941 3.46795i −0.590981 0.134887i −0.0834363 0.996513i \(-0.526590\pi\)
−0.507544 + 0.861626i \(0.669447\pi\)
\(662\) −2.54683 + 1.90255i −0.0989853 + 0.0739449i
\(663\) −15.7486 + 7.58414i −0.611626 + 0.294544i
\(664\) 29.9386 + 2.84683i 1.16184 + 0.110478i
\(665\) 8.59516 9.83675i 0.333306 0.381453i
\(666\) 14.1580 6.27503i 0.548610 0.243152i
\(667\) 47.8321i 1.85207i
\(668\) 0.878043 + 5.39976i 0.0339725 + 0.208923i
\(669\) 19.9558 + 9.61021i 0.771536 + 0.371552i
\(670\) −1.77680 9.10137i −0.0686437 0.351617i
\(671\) 7.53611 33.0178i 0.290928 1.27464i
\(672\) 15.2567 0.327344i 0.588539 0.0126276i
\(673\) −6.37705 27.9397i −0.245817 1.07700i −0.935623 0.353001i \(-0.885161\pi\)
0.689805 0.723995i \(-0.257696\pi\)
\(674\) 16.7421 7.42036i 0.644882 0.285822i
\(675\) −4.65594 20.3990i −0.179207 0.785158i
\(676\) −9.19350 5.16665i −0.353596 0.198717i
\(677\) 0.0287922 + 0.00657164i 0.00110658 + 0.000252569i 0.223074 0.974801i \(-0.428391\pi\)
−0.221968 + 0.975054i \(0.571248\pi\)
\(678\) −10.3074 0.325835i −0.395852 0.0125136i
\(679\) 5.41695 + 29.8602i 0.207883 + 1.14593i
\(680\) −15.1999 + 5.61732i −0.582891 + 0.215415i
\(681\) −0.778889 0.976695i −0.0298471 0.0374270i
\(682\) 19.8941 + 5.20715i 0.761783 + 0.199392i
\(683\) 9.04267 7.21129i 0.346008 0.275932i −0.435030 0.900416i \(-0.643262\pi\)
0.781038 + 0.624484i \(0.214691\pi\)
\(684\) 19.3079 7.83740i 0.738256 0.299670i
\(685\) 2.32952i 0.0890065i
\(686\) 26.1476 1.51765i 0.998320 0.0579443i
\(687\) 19.9132i 0.759734i
\(688\) −7.69921 + 4.68652i −0.293530 + 0.178672i
\(689\) −8.52825 + 6.80105i −0.324901 + 0.259100i
\(690\) −2.08852 + 7.97925i −0.0795086 + 0.303765i
\(691\) 15.6042 + 19.5671i 0.593613 + 0.744368i 0.984367 0.176128i \(-0.0563571\pi\)
−0.390754 + 0.920495i \(0.627786\pi\)
\(692\) −12.3627 + 21.9981i −0.469960 + 0.836243i
\(693\) −4.79433 26.4281i −0.182122 1.00392i
\(694\) 0.0162048 0.512619i 0.000615127 0.0194588i
\(695\) 3.63222 + 0.829031i 0.137778 + 0.0314469i
\(696\) 21.0139 7.76595i 0.796530 0.294368i
\(697\) 15.1822 + 66.5174i 0.575066 + 2.51953i
\(698\) 14.5777 + 32.8908i 0.551774 + 1.24493i
\(699\) −5.16613 22.6343i −0.195401 0.856108i
\(700\) 18.4882 11.7218i 0.698788 0.443041i
\(701\) 9.79183 42.9008i 0.369832 1.62034i −0.357402 0.933951i \(-0.616337\pi\)
0.727234 0.686390i \(-0.240806\pi\)
\(702\) −19.5143 + 3.80963i −0.736518 + 0.143785i
\(703\) −26.7474 12.8809i −1.00880 0.485812i
\(704\) 36.6776 19.2625i 1.38234 0.725982i
\(705\) 5.59225i 0.210616i
\(706\) −12.1043 27.3101i −0.455550 1.02783i
\(707\) 26.4608 30.2831i 0.995160 1.13891i
\(708\) 6.80300 + 9.73370i 0.255673 + 0.365815i
\(709\) −28.0827 + 13.5239i −1.05467 + 0.507900i −0.879135 0.476573i \(-0.841879\pi\)
−0.175531 + 0.984474i \(0.556164\pi\)
\(710\) −1.10133 1.47428i −0.0413322 0.0553287i
\(711\) 2.82651 + 0.645133i 0.106003 + 0.0241944i
\(712\) 2.21165 23.2587i 0.0828849 0.871657i
\(713\) −7.50170 15.5774i −0.280941 0.583380i
\(714\) 23.4594 + 1.79914i 0.877944 + 0.0673310i
\(715\) −5.80220 + 12.0484i −0.216990 + 0.450585i
\(716\) 20.5232 3.33723i 0.766988 0.124718i
\(717\) 4.90767i 0.183280i
\(718\) −21.4047 48.2942i −0.798817 1.80232i
\(719\) −11.6224 + 14.5740i −0.433441 + 0.543518i −0.949801 0.312854i \(-0.898715\pi\)
0.516360 + 0.856371i \(0.327287\pi\)
\(720\) −7.24969 + 0.712711i −0.270180 + 0.0265612i
\(721\) −19.3871 16.9401i −0.722013 0.630881i
\(722\) −11.5965 6.04317i −0.431577 0.224903i
\(723\) 3.95099 8.20432i 0.146939 0.305122i
\(724\) −6.86820 16.9202i −0.255255 0.628836i
\(725\) 20.0373 25.1260i 0.744167 0.933157i
\(726\) 13.6497 + 18.2720i 0.506588 + 0.678137i
\(727\) 18.2390 + 22.8710i 0.676447 + 0.848237i 0.995022 0.0996604i \(-0.0317756\pi\)
−0.318575 + 0.947898i \(0.603204\pi\)
\(728\) −10.5780 17.9115i −0.392045 0.663846i
\(729\) 8.76052 10.9853i 0.324464 0.406865i
\(730\) −5.70120 0.180225i −0.211011 0.00667044i
\(731\) −12.5207 + 6.02965i −0.463094 + 0.223014i
\(732\) 9.88076 + 8.95702i 0.365203 + 0.331061i
\(733\) 27.4010 6.25409i 1.01208 0.231000i 0.315841 0.948812i \(-0.397713\pi\)
0.696237 + 0.717812i \(0.254856\pi\)
\(734\) −29.9050 + 35.1606i −1.10382 + 1.29780i
\(735\) 6.57051 0.889225i 0.242357 0.0327996i
\(736\) −32.3154 12.9974i −1.19116 0.479091i
\(737\) 8.13363 + 35.6358i 0.299606 + 1.31266i
\(738\) −0.969087 + 30.6558i −0.0356726 + 1.12846i
\(739\) −10.2252 21.2329i −0.376142 0.781066i 0.623858 0.781538i \(-0.285564\pi\)
−1.00000 0.000471178i \(0.999850\pi\)
\(740\) 7.68917 + 6.97032i 0.282660 + 0.256234i
\(741\) 11.7771 + 9.39195i 0.432644 + 0.345022i
\(742\) 14.5224 2.16304i 0.533134 0.0794075i
\(743\) −2.49935 + 1.99316i −0.0916922 + 0.0731221i −0.668263 0.743925i \(-0.732962\pi\)
0.576571 + 0.817047i \(0.304390\pi\)
\(744\) −5.62561 + 5.82482i −0.206245 + 0.213548i
\(745\) −1.47640 1.17739i −0.0540911 0.0431362i
\(746\) −21.9160 11.4209i −0.802403 0.418148i
\(747\) 18.7799 + 9.04390i 0.687119 + 0.330899i
\(748\) 59.1842 24.0238i 2.16399 0.878398i
\(749\) 11.1083 + 0.499548i 0.405888 + 0.0182531i
\(750\) 9.80549 7.32499i 0.358046 0.267471i
\(751\) −2.87328 2.29137i −0.104848 0.0836132i 0.569663 0.821879i \(-0.307074\pi\)
−0.674510 + 0.738265i \(0.735645\pi\)
\(752\) 23.4275 + 2.97723i 0.854312 + 0.108568i
\(753\) −5.23676 −0.190838
\(754\) −23.2624 19.7853i −0.847168 0.720539i
\(755\) −2.80231 1.34952i −0.101986 0.0491141i
\(756\) 25.2965 + 8.73662i 0.920026 + 0.317748i
\(757\) 17.6860 8.51712i 0.642808 0.309560i −0.0839331 0.996471i \(-0.526748\pi\)
0.726741 + 0.686911i \(0.241034\pi\)
\(758\) −2.26571 0.593035i −0.0822942 0.0215400i
\(759\) 7.23447 31.6963i 0.262595 1.15050i
\(760\) 10.0449 + 9.70133i 0.364366 + 0.351904i
\(761\) 7.92651 + 16.4596i 0.287336 + 0.596659i 0.993812 0.111078i \(-0.0354304\pi\)
−0.706476 + 0.707737i \(0.749716\pi\)
\(762\) −9.10528 2.38325i −0.329850 0.0863361i
\(763\) 7.58552 + 17.7502i 0.274614 + 0.642599i
\(764\) −32.3924 9.58178i −1.17192 0.346657i
\(765\) −11.2315 −0.406076
\(766\) −2.91353 + 3.42556i −0.105270 + 0.123771i
\(767\) 7.02367 14.5848i 0.253610 0.526627i