Properties

Label 196.2.j.a.111.4
Level $196$
Weight $2$
Character 196.111
Analytic conductor $1.565$
Analytic rank $0$
Dimension $156$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(27,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 111.4
Character \(\chi\) \(=\) 196.111
Dual form 196.2.j.a.83.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.33971 + 0.452975i) q^{2} +(0.470328 + 0.589772i) q^{3} +(1.58963 - 1.21371i) q^{4} +(0.701998 - 0.559824i) q^{5} +(-0.897253 - 0.577075i) q^{6} +(0.938659 - 2.47364i) q^{7} +(-1.57985 + 2.34607i) q^{8} +(0.540940 - 2.37001i) q^{9} +O(q^{10})\) \(q+(-1.33971 + 0.452975i) q^{2} +(0.470328 + 0.589772i) q^{3} +(1.58963 - 1.21371i) q^{4} +(0.701998 - 0.559824i) q^{5} +(-0.897253 - 0.577075i) q^{6} +(0.938659 - 2.47364i) q^{7} +(-1.57985 + 2.34607i) q^{8} +(0.540940 - 2.37001i) q^{9} +(-0.686884 + 1.06799i) q^{10} +(0.406550 - 0.0927925i) q^{11} +(1.46346 + 0.366677i) q^{12} +(0.0704045 - 0.0160694i) q^{13} +(-0.137027 + 3.73915i) q^{14} +(0.660338 + 0.150718i) q^{15} +(1.05383 - 3.85869i) q^{16} +(-1.30432 + 2.70845i) q^{17} +(0.348856 + 3.42015i) q^{18} +7.07149 q^{19} +(0.436451 - 1.74193i) q^{20} +(1.90036 - 0.609829i) q^{21} +(-0.502625 + 0.308472i) q^{22} +(-0.339993 - 0.706003i) q^{23} +(-2.12670 + 0.171670i) q^{24} +(-0.933207 + 4.08865i) q^{25} +(-0.0870424 + 0.0534197i) q^{26} +(3.69112 - 1.77755i) q^{27} +(-1.51017 - 5.07143i) q^{28} +(4.62837 + 2.22890i) q^{29} +(-0.952931 + 0.0971991i) q^{30} -2.54266 q^{31} +(0.336071 + 5.64686i) q^{32} +(0.245938 + 0.196129i) q^{33} +(0.520546 - 4.21935i) q^{34} +(-0.725871 - 2.26198i) q^{35} +(-2.01661 - 4.42398i) q^{36} +(-7.13701 - 3.43700i) q^{37} +(-9.47372 + 3.20321i) q^{38} +(0.0425905 + 0.0339648i) q^{39} +(0.204336 + 2.53138i) q^{40} +(-5.37941 + 4.28994i) q^{41} +(-2.26969 + 1.67781i) q^{42} +(-3.75265 - 2.99264i) q^{43} +(0.533640 - 0.640939i) q^{44} +(-0.947052 - 1.96657i) q^{45} +(0.775292 + 0.791828i) q^{46} +(0.549665 + 2.40824i) q^{47} +(2.77139 - 1.19333i) q^{48} +(-5.23784 - 4.64382i) q^{49} +(-0.601833 - 5.90031i) q^{50} +(-2.21083 + 0.504606i) q^{51} +(0.0924134 - 0.110995i) q^{52} +(-5.53554 + 2.66578i) q^{53} +(-4.13983 + 4.05338i) q^{54} +(0.233450 - 0.292737i) q^{55} +(4.32041 + 6.11016i) q^{56} +(3.32592 + 4.17057i) q^{57} +(-7.21029 - 0.889541i) q^{58} +(-6.25588 + 7.84462i) q^{59} +(1.23262 - 0.561872i) q^{60} +(5.42920 - 11.2738i) q^{61} +(3.40641 - 1.15176i) q^{62} +(-5.35481 - 3.56272i) q^{63} +(-3.00813 - 7.41291i) q^{64} +(0.0404278 - 0.0506948i) q^{65} +(-0.418327 - 0.151352i) q^{66} +10.3163i q^{67} +(1.21388 + 5.88848i) q^{68} +(0.256473 - 0.532571i) q^{69} +(1.99707 + 2.70158i) q^{70} +(-3.56667 - 7.40627i) q^{71} +(4.70562 + 5.01335i) q^{72} +(11.0764 + 2.52812i) q^{73} +(11.1184 + 1.37169i) q^{74} +(-2.85029 + 1.37262i) q^{75} +(11.2410 - 8.58272i) q^{76} +(0.152077 - 1.09276i) q^{77} +(-0.0724439 - 0.0262104i) q^{78} +8.93692i q^{79} +(-1.42040 - 3.29875i) q^{80} +(-3.78628 - 1.82337i) q^{81} +(5.26360 - 8.18400i) q^{82} +(0.295384 - 1.29416i) q^{83} +(2.28072 - 3.27589i) q^{84} +(0.600626 + 2.63151i) q^{85} +(6.38304 + 2.30940i) q^{86} +(0.862303 + 3.77800i) q^{87} +(-0.424592 + 1.10040i) q^{88} +(3.97228 + 0.906646i) q^{89} +(2.15958 + 2.20564i) q^{90} +(0.0263359 - 0.189239i) q^{91} +(-1.39734 - 0.709628i) q^{92} +(-1.19588 - 1.49959i) q^{93} +(-1.82726 - 2.97735i) q^{94} +(4.96417 - 3.95879i) q^{95} +(-3.17230 + 2.85408i) q^{96} +12.4755i q^{97} +(9.12070 + 3.84874i) q^{98} -1.01372i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9} - 7 q^{10} - 42 q^{12} - 14 q^{13} + 21 q^{14} - 13 q^{16} - 14 q^{17} - 12 q^{18} - 7 q^{20} - 14 q^{21} + 3 q^{22} + 35 q^{24} - 7 q^{26} + 42 q^{28} - 30 q^{29} - 4 q^{30} - 5 q^{32} - 14 q^{33} + 77 q^{34} - 11 q^{36} + 10 q^{37} - 21 q^{38} - 63 q^{40} - 14 q^{41} - 7 q^{42} - 55 q^{44} - 14 q^{45} - 19 q^{46} - 132 q^{50} - 7 q^{52} - 2 q^{53} + 14 q^{54} - 70 q^{56} - 64 q^{57} - 3 q^{58} - 107 q^{60} + 14 q^{61} - 21 q^{62} - 11 q^{64} - 22 q^{65} + 161 q^{66} - 70 q^{69} - 77 q^{70} + 114 q^{72} - 14 q^{73} + 5 q^{74} + 70 q^{76} - 42 q^{77} + 61 q^{78} + 92 q^{81} - 42 q^{82} + 70 q^{84} - 6 q^{85} + 47 q^{86} + 65 q^{88} - 14 q^{89} + 112 q^{90} - 70 q^{92} - 48 q^{93} - 28 q^{94} + 238 q^{96} + 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33971 + 0.452975i −0.947316 + 0.320302i
\(3\) 0.470328 + 0.589772i 0.271544 + 0.340505i 0.898841 0.438275i \(-0.144410\pi\)
−0.627297 + 0.778780i \(0.715839\pi\)
\(4\) 1.58963 1.21371i 0.794813 0.606854i
\(5\) 0.701998 0.559824i 0.313943 0.250361i −0.453823 0.891092i \(-0.649940\pi\)
0.767765 + 0.640731i \(0.221369\pi\)
\(6\) −0.897253 0.577075i −0.366302 0.235590i
\(7\) 0.938659 2.47364i 0.354780 0.934950i
\(8\) −1.57985 + 2.34607i −0.558563 + 0.829462i
\(9\) 0.540940 2.37001i 0.180313 0.790004i
\(10\) −0.686884 + 1.06799i −0.217212 + 0.337727i
\(11\) 0.406550 0.0927925i 0.122580 0.0279780i −0.160791 0.986988i \(-0.551405\pi\)
0.283371 + 0.959010i \(0.408547\pi\)
\(12\) 1.46346 + 0.366677i 0.422464 + 0.105851i
\(13\) 0.0704045 0.0160694i 0.0195267 0.00445684i −0.212746 0.977107i \(-0.568241\pi\)
0.232273 + 0.972651i \(0.425384\pi\)
\(14\) −0.137027 + 3.73915i −0.0366221 + 0.999329i
\(15\) 0.660338 + 0.150718i 0.170499 + 0.0389152i
\(16\) 1.05383 3.85869i 0.263457 0.964671i
\(17\) −1.30432 + 2.70845i −0.316344 + 0.656895i −0.997140 0.0755781i \(-0.975920\pi\)
0.680796 + 0.732473i \(0.261634\pi\)
\(18\) 0.348856 + 3.42015i 0.0822262 + 0.806137i
\(19\) 7.07149 1.62231 0.811156 0.584830i \(-0.198839\pi\)
0.811156 + 0.584830i \(0.198839\pi\)
\(20\) 0.436451 1.74193i 0.0975934 0.389508i
\(21\) 1.90036 0.609829i 0.414694 0.133076i
\(22\) −0.502625 + 0.308472i −0.107160 + 0.0657664i
\(23\) −0.339993 0.706003i −0.0708934 0.147212i 0.862510 0.506039i \(-0.168891\pi\)
−0.933404 + 0.358828i \(0.883177\pi\)
\(24\) −2.12670 + 0.171670i −0.434110 + 0.0350419i
\(25\) −0.933207 + 4.08865i −0.186641 + 0.817730i
\(26\) −0.0870424 + 0.0534197i −0.0170704 + 0.0104765i
\(27\) 3.69112 1.77755i 0.710356 0.342089i
\(28\) −1.51017 5.07143i −0.285394 0.958410i
\(29\) 4.62837 + 2.22890i 0.859466 + 0.413897i 0.811082 0.584932i \(-0.198879\pi\)
0.0483835 + 0.998829i \(0.484593\pi\)
\(30\) −0.952931 + 0.0971991i −0.173981 + 0.0177461i
\(31\) −2.54266 −0.456675 −0.228337 0.973582i \(-0.573329\pi\)
−0.228337 + 0.973582i \(0.573329\pi\)
\(32\) 0.336071 + 5.64686i 0.0594095 + 0.998234i
\(33\) 0.245938 + 0.196129i 0.0428124 + 0.0341417i
\(34\) 0.520546 4.21935i 0.0892728 0.723612i
\(35\) −0.725871 2.26198i −0.122695 0.382344i
\(36\) −2.01661 4.42398i −0.336102 0.737329i
\(37\) −7.13701 3.43700i −1.17332 0.565040i −0.257360 0.966316i \(-0.582853\pi\)
−0.915957 + 0.401276i \(0.868567\pi\)
\(38\) −9.47372 + 3.20321i −1.53684 + 0.519629i
\(39\) 0.0425905 + 0.0339648i 0.00681993 + 0.00543871i
\(40\) 0.204336 + 2.53138i 0.0323084 + 0.400246i
\(41\) −5.37941 + 4.28994i −0.840123 + 0.669976i −0.945916 0.324413i \(-0.894833\pi\)
0.105793 + 0.994388i \(0.466262\pi\)
\(42\) −2.26969 + 1.67781i −0.350221 + 0.258892i
\(43\) −3.75265 2.99264i −0.572274 0.456373i 0.294096 0.955776i \(-0.404981\pi\)
−0.866370 + 0.499403i \(0.833553\pi\)
\(44\) 0.533640 0.640939i 0.0804493 0.0966252i
\(45\) −0.947052 1.96657i −0.141178 0.293159i
\(46\) 0.775292 + 0.791828i 0.114311 + 0.116749i
\(47\) 0.549665 + 2.40824i 0.0801768 + 0.351278i 0.999065 0.0432413i \(-0.0137684\pi\)
−0.918888 + 0.394519i \(0.870911\pi\)
\(48\) 2.77139 1.19333i 0.400016 0.172242i
\(49\) −5.23784 4.64382i −0.748263 0.663403i
\(50\) −0.601833 5.90031i −0.0851120 0.834430i
\(51\) −2.21083 + 0.504606i −0.309577 + 0.0706590i
\(52\) 0.0924134 0.110995i 0.0128154 0.0153922i
\(53\) −5.53554 + 2.66578i −0.760365 + 0.366172i −0.773546 0.633741i \(-0.781519\pi\)
0.0131807 + 0.999913i \(0.495804\pi\)
\(54\) −4.13983 + 4.05338i −0.563359 + 0.551595i
\(55\) 0.233450 0.292737i 0.0314784 0.0394726i
\(56\) 4.32041 + 6.11016i 0.577339 + 0.816504i
\(57\) 3.32592 + 4.17057i 0.440529 + 0.552405i
\(58\) −7.21029 0.889541i −0.946757 0.116802i
\(59\) −6.25588 + 7.84462i −0.814446 + 1.02128i 0.184813 + 0.982774i \(0.440832\pi\)
−0.999258 + 0.0385089i \(0.987739\pi\)
\(60\) 1.23262 0.561872i 0.159130 0.0725374i
\(61\) 5.42920 11.2738i 0.695137 1.44347i −0.191732 0.981447i \(-0.561410\pi\)
0.886869 0.462020i \(-0.152875\pi\)
\(62\) 3.40641 1.15176i 0.432615 0.146274i
\(63\) −5.35481 3.56272i −0.674642 0.448861i
\(64\) −3.00813 7.41291i −0.376016 0.926613i
\(65\) 0.0404278 0.0506948i 0.00501445 0.00628792i
\(66\) −0.418327 0.151352i −0.0514925 0.0186301i
\(67\) 10.3163i 1.26033i 0.776460 + 0.630166i \(0.217013\pi\)
−0.776460 + 0.630166i \(0.782987\pi\)
\(68\) 1.21388 + 5.88848i 0.147205 + 0.714084i
\(69\) 0.256473 0.532571i 0.0308757 0.0641140i
\(70\) 1.99707 + 2.70158i 0.238696 + 0.322901i
\(71\) −3.56667 7.40627i −0.423286 0.878962i −0.998155 0.0607168i \(-0.980661\pi\)
0.574869 0.818245i \(-0.305053\pi\)
\(72\) 4.70562 + 5.01335i 0.554562 + 0.590830i
\(73\) 11.0764 + 2.52812i 1.29639 + 0.295894i 0.814412 0.580287i \(-0.197060\pi\)
0.481983 + 0.876181i \(0.339917\pi\)
\(74\) 11.1184 + 1.37169i 1.29249 + 0.159455i
\(75\) −2.85029 + 1.37262i −0.329123 + 0.158497i
\(76\) 11.2410 8.58272i 1.28943 0.984506i
\(77\) 0.152077 1.09276i 0.0173307 0.124532i
\(78\) −0.0724439 0.0262104i −0.00820266 0.00296774i
\(79\) 8.93692i 1.00548i 0.864437 + 0.502741i \(0.167675\pi\)
−0.864437 + 0.502741i \(0.832325\pi\)
\(80\) −1.42040 3.29875i −0.158806 0.368811i
\(81\) −3.78628 1.82337i −0.420697 0.202597i
\(82\) 5.26360 8.18400i 0.581267 0.903771i
\(83\) 0.295384 1.29416i 0.0324226 0.142053i −0.956126 0.292956i \(-0.905361\pi\)
0.988549 + 0.150903i \(0.0482182\pi\)
\(84\) 2.28072 3.27589i 0.248847 0.357429i
\(85\) 0.600626 + 2.63151i 0.0651470 + 0.285428i
\(86\) 6.38304 + 2.30940i 0.688301 + 0.249029i
\(87\) 0.862303 + 3.77800i 0.0924486 + 0.405044i
\(88\) −0.424592 + 1.10040i −0.0452617 + 0.117303i
\(89\) 3.97228 + 0.906646i 0.421060 + 0.0961043i 0.427801 0.903873i \(-0.359288\pi\)
−0.00674054 + 0.999977i \(0.502146\pi\)
\(90\) 2.15958 + 2.20564i 0.227640 + 0.232495i
\(91\) 0.0263359 0.189239i 0.00276075 0.0198377i
\(92\) −1.39734 0.709628i −0.145683 0.0739839i
\(93\) −1.19588 1.49959i −0.124007 0.155500i
\(94\) −1.82726 2.97735i −0.188468 0.307090i
\(95\) 4.96417 3.95879i 0.509313 0.406164i
\(96\) −3.17230 + 2.85408i −0.323771 + 0.291293i
\(97\) 12.4755i 1.26670i 0.773866 + 0.633349i \(0.218320\pi\)
−0.773866 + 0.633349i \(0.781680\pi\)
\(98\) 9.12070 + 3.84874i 0.921330 + 0.388782i
\(99\) 1.01372i 0.101883i
\(100\) 3.47897 + 7.63207i 0.347897 + 0.763207i
\(101\) 10.9604 8.74065i 1.09060 0.869727i 0.0984984 0.995137i \(-0.468596\pi\)
0.992105 + 0.125410i \(0.0400246\pi\)
\(102\) 2.73328 1.67747i 0.270635 0.166095i
\(103\) 2.98595 + 3.74426i 0.294214 + 0.368933i 0.906865 0.421420i \(-0.138468\pi\)
−0.612651 + 0.790353i \(0.709897\pi\)
\(104\) −0.0735289 + 0.190561i −0.00721010 + 0.0186861i
\(105\) 0.992655 1.49197i 0.0968732 0.145601i
\(106\) 6.20847 6.07882i 0.603020 0.590427i
\(107\) −11.8175 2.69727i −1.14244 0.260755i −0.390896 0.920435i \(-0.627835\pi\)
−0.751547 + 0.659680i \(0.770692\pi\)
\(108\) 3.71007 7.30557i 0.357002 0.702979i
\(109\) −1.69934 7.44530i −0.162767 0.713130i −0.988768 0.149460i \(-0.952246\pi\)
0.826000 0.563669i \(-0.190611\pi\)
\(110\) −0.180152 + 0.497929i −0.0171768 + 0.0474756i
\(111\) −1.32968 5.82573i −0.126208 0.552954i
\(112\) −8.55583 6.22878i −0.808450 0.588565i
\(113\) −0.152605 + 0.668607i −0.0143559 + 0.0628972i −0.981598 0.190957i \(-0.938841\pi\)
0.967243 + 0.253854i \(0.0816982\pi\)
\(114\) −6.34492 4.08078i −0.594256 0.382200i
\(115\) −0.633912 0.305276i −0.0591126 0.0284671i
\(116\) 10.0626 2.07436i 0.934290 0.192599i
\(117\) 0.175552i 0.0162298i
\(118\) 4.82762 13.3432i 0.444418 1.22835i
\(119\) 5.47543 + 5.76873i 0.501932 + 0.528819i
\(120\) −1.39683 + 1.31109i −0.127513 + 0.119686i
\(121\) −9.75398 + 4.69727i −0.886726 + 0.427025i
\(122\) −2.16676 + 17.5629i −0.196169 + 1.59007i
\(123\) −5.06017 1.15495i −0.456260 0.104138i
\(124\) −4.04187 + 3.08604i −0.362971 + 0.277135i
\(125\) 3.58171 + 7.43750i 0.320358 + 0.665231i
\(126\) 8.78770 + 2.34741i 0.782870 + 0.209124i
\(127\) −5.69720 + 11.8304i −0.505545 + 1.04977i 0.479511 + 0.877536i \(0.340814\pi\)
−0.985055 + 0.172238i \(0.944900\pi\)
\(128\) 7.38787 + 8.56851i 0.653002 + 0.757357i
\(129\) 3.62073i 0.318788i
\(130\) −0.0311978 + 0.0862290i −0.00273623 + 0.00756278i
\(131\) 3.04776 3.82177i 0.266284 0.333910i −0.630655 0.776063i \(-0.717214\pi\)
0.896939 + 0.442153i \(0.145785\pi\)
\(132\) 0.628994 + 0.0132751i 0.0547469 + 0.00115544i
\(133\) 6.63772 17.4924i 0.575563 1.51678i
\(134\) −4.67301 13.8208i −0.403687 1.19393i
\(135\) 1.59604 3.31421i 0.137365 0.285242i
\(136\) −4.29358 7.33898i −0.368172 0.629312i
\(137\) −11.9611 + 14.9987i −1.02191 + 1.28143i −0.0629073 + 0.998019i \(0.520037\pi\)
−0.958999 + 0.283410i \(0.908534\pi\)
\(138\) −0.102357 + 0.829665i −0.00871317 + 0.0706257i
\(139\) 10.7518 + 13.4823i 0.911957 + 1.14356i 0.989204 + 0.146546i \(0.0468156\pi\)
−0.0772468 + 0.997012i \(0.524613\pi\)
\(140\) −3.89924 2.71470i −0.329546 0.229434i
\(141\) −1.16179 + 1.45684i −0.0978403 + 0.122688i
\(142\) 8.13315 + 8.30661i 0.682519 + 0.697075i
\(143\) 0.0271319 0.0130660i 0.00226888 0.00109264i
\(144\) −8.57507 4.58490i −0.714589 0.382075i
\(145\) 4.49690 1.02639i 0.373447 0.0852368i
\(146\) −15.9843 + 1.63040i −1.32287 + 0.134933i
\(147\) 0.275294 5.27325i 0.0227059 0.434930i
\(148\) −15.5167 + 3.19869i −1.27546 + 0.262931i
\(149\) −2.30729 10.1089i −0.189020 0.828153i −0.977134 0.212623i \(-0.931799\pi\)
0.788114 0.615529i \(-0.211058\pi\)
\(150\) 3.19678 3.13002i 0.261016 0.255565i
\(151\) 0.0266286 + 0.0552948i 0.00216700 + 0.00449983i 0.902050 0.431632i \(-0.142062\pi\)
−0.899883 + 0.436132i \(0.856348\pi\)
\(152\) −11.1719 + 16.5902i −0.906162 + 1.34565i
\(153\) 5.71349 + 4.55636i 0.461909 + 0.368360i
\(154\) 0.291256 + 1.53287i 0.0234701 + 0.123522i
\(155\) −1.78494 + 1.42344i −0.143370 + 0.114334i
\(156\) 0.108926 + 0.00229891i 0.00872108 + 0.000184060i
\(157\) 7.50286 + 5.98333i 0.598794 + 0.477522i 0.875359 0.483473i \(-0.160625\pi\)
−0.276566 + 0.960995i \(0.589196\pi\)
\(158\) −4.04821 11.9729i −0.322058 0.952509i
\(159\) −4.17572 2.01092i −0.331156 0.159476i
\(160\) 3.39717 + 3.77594i 0.268570 + 0.298515i
\(161\) −2.06554 + 0.178326i −0.162787 + 0.0140541i
\(162\) 5.89844 + 0.727697i 0.463425 + 0.0571733i
\(163\) −5.57334 4.44459i −0.436537 0.348127i 0.380431 0.924809i \(-0.375776\pi\)
−0.816968 + 0.576682i \(0.804347\pi\)
\(164\) −3.34453 + 13.3484i −0.261164 + 1.04234i
\(165\) 0.282446 0.0219884
\(166\) 0.190496 + 1.86760i 0.0147853 + 0.144954i
\(167\) −19.2852 9.28724i −1.49233 0.718669i −0.502990 0.864292i \(-0.667767\pi\)
−0.989340 + 0.145623i \(0.953481\pi\)
\(168\) −1.57159 + 5.42184i −0.121251 + 0.418304i
\(169\) −11.7079 + 5.63823i −0.900607 + 0.433710i
\(170\) −1.99667 3.25339i −0.153138 0.249523i
\(171\) 3.82525 16.7595i 0.292524 1.28163i
\(172\) −9.59750 0.202557i −0.731803 0.0154449i
\(173\) 4.84437 + 10.0594i 0.368310 + 0.764805i 0.999945 0.0104615i \(-0.00333006\pi\)
−0.631635 + 0.775266i \(0.717616\pi\)
\(174\) −2.86657 4.67081i −0.217314 0.354093i
\(175\) 9.23790 + 6.14627i 0.698320 + 0.464614i
\(176\) 0.0703766 1.66654i 0.00530484 0.125620i
\(177\) −7.56885 −0.568910
\(178\) −5.73237 + 0.584703i −0.429659 + 0.0438254i
\(179\) 2.97622 6.18018i 0.222453 0.461929i −0.759635 0.650349i \(-0.774623\pi\)
0.982088 + 0.188421i \(0.0603368\pi\)
\(180\) −3.89231 1.97667i −0.290115 0.147333i
\(181\) −4.10373 0.936649i −0.305028 0.0696206i 0.0672674 0.997735i \(-0.478572\pi\)
−0.372295 + 0.928114i \(0.621429\pi\)
\(182\) 0.0504384 + 0.265455i 0.00373874 + 0.0196768i
\(183\) 9.20250 2.10041i 0.680269 0.155267i
\(184\) 2.19347 + 0.317732i 0.161705 + 0.0234235i
\(185\) −6.93428 + 1.58270i −0.509819 + 0.116363i
\(186\) 2.28141 + 1.46730i 0.167281 + 0.107588i
\(187\) −0.278948 + 1.22215i −0.0203987 + 0.0893726i
\(188\) 3.79666 + 3.16107i 0.276900 + 0.230545i
\(189\) −0.932323 10.7990i −0.0678165 0.785513i
\(190\) −4.85729 + 7.55227i −0.352385 + 0.547899i
\(191\) 21.3388 17.0171i 1.54402 1.23131i 0.673494 0.739193i \(-0.264793\pi\)
0.870526 0.492122i \(-0.163779\pi\)
\(192\) 2.95712 5.26060i 0.213412 0.379651i
\(193\) −10.3202 12.9411i −0.742866 0.931524i 0.256521 0.966539i \(-0.417424\pi\)
−0.999387 + 0.0350147i \(0.988852\pi\)
\(194\) −5.65111 16.7135i −0.405726 1.19996i
\(195\) 0.0489127 0.00350271
\(196\) −13.9624 1.02473i −0.997318 0.0731951i
\(197\) 5.99663 0.427242 0.213621 0.976917i \(-0.431474\pi\)
0.213621 + 0.976917i \(0.431474\pi\)
\(198\) 0.459192 + 1.35809i 0.0326334 + 0.0965154i
\(199\) 10.2193 + 12.8146i 0.724425 + 0.908400i 0.998579 0.0532859i \(-0.0169695\pi\)
−0.274155 + 0.961686i \(0.588398\pi\)
\(200\) −8.11794 8.64884i −0.574025 0.611565i
\(201\) −6.08425 + 4.85202i −0.429150 + 0.342235i
\(202\) −10.7245 + 16.6747i −0.754570 + 1.17323i
\(203\) 9.85797 9.35675i 0.691894 0.656715i
\(204\) −2.90194 + 3.48543i −0.203177 + 0.244029i
\(205\) −1.37472 + 6.02305i −0.0960148 + 0.420668i
\(206\) −5.69635 3.66365i −0.396884 0.255259i
\(207\) −1.85715 + 0.423882i −0.129081 + 0.0294619i
\(208\) 0.0121875 0.288603i 0.000845051 0.0200110i
\(209\) 2.87492 0.656181i 0.198862 0.0453890i
\(210\) −0.654041 + 2.44845i −0.0451331 + 0.168959i
\(211\) 15.6255 + 3.56641i 1.07570 + 0.245522i 0.723445 0.690382i \(-0.242557\pi\)
0.352256 + 0.935904i \(0.385415\pi\)
\(212\) −5.56397 + 10.9561i −0.382135 + 0.752469i
\(213\) 2.69051 5.58690i 0.184351 0.382808i
\(214\) 17.0538 1.73949i 1.16577 0.118909i
\(215\) −4.30970 −0.293919
\(216\) −1.66116 + 11.4679i −0.113028 + 0.780291i
\(217\) −2.38669 + 6.28963i −0.162019 + 0.426968i
\(218\) 5.64915 + 9.20475i 0.382609 + 0.623424i
\(219\) 3.71853 + 7.72160i 0.251275 + 0.521777i
\(220\) 0.0158011 0.748683i 0.00106531 0.0504762i
\(221\) −0.0483069 + 0.211647i −0.00324948 + 0.0142369i
\(222\) 4.42030 + 7.20245i 0.296671 + 0.483397i
\(223\) 3.62551 1.74595i 0.242782 0.116918i −0.308537 0.951212i \(-0.599839\pi\)
0.551318 + 0.834295i \(0.314125\pi\)
\(224\) 14.2838 + 4.46916i 0.954376 + 0.298608i
\(225\) 9.18533 + 4.42342i 0.612356 + 0.294895i
\(226\) −0.0984163 0.964863i −0.00654655 0.0641817i
\(227\) 21.1949 1.40676 0.703378 0.710816i \(-0.251674\pi\)
0.703378 + 0.710816i \(0.251674\pi\)
\(228\) 10.3488 + 2.59296i 0.685367 + 0.171723i
\(229\) −14.3732 11.4623i −0.949810 0.757448i 0.0203801 0.999792i \(-0.493512\pi\)
−0.970190 + 0.242344i \(0.922084\pi\)
\(230\) 0.987538 + 0.121834i 0.0651163 + 0.00803347i
\(231\) 0.716006 0.424266i 0.0471098 0.0279146i
\(232\) −12.5413 + 7.33715i −0.823378 + 0.481707i
\(233\) 7.37493 + 3.55158i 0.483148 + 0.232672i 0.659570 0.751643i \(-0.270738\pi\)
−0.176423 + 0.984315i \(0.556453\pi\)
\(234\) 0.0795207 + 0.235188i 0.00519843 + 0.0153747i
\(235\) 1.73405 + 1.38286i 0.113117 + 0.0902080i
\(236\) −0.423430 + 20.0628i −0.0275630 + 1.30598i
\(237\) −5.27075 + 4.20328i −0.342372 + 0.273033i
\(238\) −9.94856 5.24817i −0.644869 0.340189i
\(239\) −8.17046 6.51572i −0.528503 0.421467i 0.322546 0.946554i \(-0.395461\pi\)
−0.851049 + 0.525087i \(0.824033\pi\)
\(240\) 1.27745 2.38921i 0.0824593 0.154223i
\(241\) 9.20491 + 19.1142i 0.592940 + 1.23125i 0.954307 + 0.298829i \(0.0965960\pi\)
−0.361367 + 0.932424i \(0.617690\pi\)
\(242\) 10.9397 10.7113i 0.703232 0.688547i
\(243\) −3.44031 15.0730i −0.220696 0.966931i
\(244\) −5.05276 24.5107i −0.323470 1.56913i
\(245\) −6.27667 0.327679i −0.401002 0.0209346i
\(246\) 7.30231 0.744837i 0.465578 0.0474891i
\(247\) 0.497865 0.113634i 0.0316784 0.00723038i
\(248\) 4.01702 5.96526i 0.255081 0.378794i
\(249\) 0.902188 0.434471i 0.0571738 0.0275335i
\(250\) −8.16745 8.34164i −0.516555 0.527572i
\(251\) −4.35853 + 5.46543i −0.275108 + 0.344975i −0.900121 0.435640i \(-0.856522\pi\)
0.625013 + 0.780614i \(0.285094\pi\)
\(252\) −12.8363 + 0.835771i −0.808608 + 0.0526486i
\(253\) −0.203736 0.255477i −0.0128088 0.0160617i
\(254\) 2.27371 18.4299i 0.142666 1.15639i
\(255\) −1.26950 + 1.59191i −0.0794994 + 0.0996891i
\(256\) −13.7789 8.13277i −0.861181 0.508298i
\(257\) 11.7963 24.4954i 0.735836 1.52798i −0.109643 0.993971i \(-0.534971\pi\)
0.845479 0.534008i \(-0.179315\pi\)
\(258\) 1.64010 + 4.85072i 0.102108 + 0.301992i
\(259\) −15.2011 + 14.4283i −0.944553 + 0.896528i
\(260\) 0.00273636 0.129653i 0.000169702 0.00804076i
\(261\) 7.78619 9.76358i 0.481953 0.604350i
\(262\) −2.35194 + 6.50061i −0.145303 + 0.401609i
\(263\) 13.8027i 0.851113i −0.904932 0.425557i \(-0.860078\pi\)
0.904932 0.425557i \(-0.139922\pi\)
\(264\) −0.848680 + 0.267134i −0.0522327 + 0.0164410i
\(265\) −2.39357 + 4.97030i −0.147036 + 0.305323i
\(266\) −0.968988 + 26.4413i −0.0594124 + 1.62122i
\(267\) 1.33356 + 2.76916i 0.0816123 + 0.169470i
\(268\) 12.5209 + 16.3990i 0.764837 + 1.00173i
\(269\) 4.52148 + 1.03200i 0.275679 + 0.0629220i 0.358125 0.933674i \(-0.383416\pi\)
−0.0824459 + 0.996596i \(0.526273\pi\)
\(270\) −0.636969 + 5.16304i −0.0387647 + 0.314212i
\(271\) −14.3127 + 6.89261i −0.869432 + 0.418696i −0.814753 0.579808i \(-0.803128\pi\)
−0.0546783 + 0.998504i \(0.517413\pi\)
\(272\) 9.07652 + 7.88719i 0.550345 + 0.478231i
\(273\) 0.123995 0.0734724i 0.00750450 0.00444675i
\(274\) 9.23030 25.5120i 0.557623 1.54124i
\(275\) 1.74884i 0.105459i
\(276\) −0.238690 1.15787i −0.0143674 0.0696957i
\(277\) 24.0701 + 11.5916i 1.44624 + 0.696470i 0.981937 0.189209i \(-0.0605923\pi\)
0.464298 + 0.885679i \(0.346307\pi\)
\(278\) −20.5114 13.1921i −1.23019 0.791209i
\(279\) −1.37542 + 6.02612i −0.0823445 + 0.360775i
\(280\) 6.45354 + 1.87065i 0.385673 + 0.111793i
\(281\) 2.51382 + 11.0138i 0.149962 + 0.657027i 0.992894 + 0.119006i \(0.0379708\pi\)
−0.842931 + 0.538021i \(0.819172\pi\)
\(282\) 0.896545 2.47800i 0.0533885 0.147563i
\(283\) −4.32781 18.9614i −0.257262 1.12714i −0.924165 0.381993i \(-0.875238\pi\)
0.666904 0.745144i \(-0.267619\pi\)
\(284\) −14.6587 7.44430i −0.869835 0.441738i
\(285\) 4.66957 + 1.06580i 0.276602 + 0.0631325i
\(286\) −0.0304302 + 0.0297947i −0.00179937 + 0.00176180i
\(287\) 5.56235 + 17.3335i 0.328335 + 1.02317i
\(288\) 13.5649 + 2.25812i 0.799321 + 0.133061i
\(289\) 4.96489 + 6.22577i 0.292052 + 0.366222i
\(290\) −5.55959 + 3.41204i −0.326471 + 0.200362i
\(291\) −7.35772 + 5.86759i −0.431317 + 0.343964i
\(292\) 20.6757 9.42475i 1.20996 0.551542i
\(293\) 18.1872i 1.06251i −0.847212 0.531254i \(-0.821721\pi\)
0.847212 0.531254i \(-0.178279\pi\)
\(294\) 2.01984 + 7.18931i 0.117799 + 0.419289i
\(295\) 9.00910i 0.524530i
\(296\) 19.3389 11.3140i 1.12405 0.657612i
\(297\) 1.33568 1.06517i 0.0775041 0.0618075i
\(298\) 7.67017 + 12.4978i 0.444321 + 0.723978i
\(299\) −0.0352821 0.0442423i −0.00204041 0.00255860i
\(300\) −2.86492 + 5.64137i −0.165406 + 0.325705i
\(301\) −10.9252 + 6.47366i −0.629717 + 0.373135i
\(302\) −0.0607217 0.0620168i −0.00349414 0.00356866i
\(303\) 10.3100 + 2.35319i 0.592293 + 0.135187i
\(304\) 7.45212 27.2867i 0.427409 1.56500i
\(305\) −2.50009 10.9536i −0.143155 0.627202i
\(306\) −9.71832 3.51611i −0.555559 0.201003i
\(307\) −1.10214 4.82878i −0.0629023 0.275593i 0.933690 0.358083i \(-0.116570\pi\)
−0.996592 + 0.0824907i \(0.973713\pi\)
\(308\) −1.08455 1.92166i −0.0617979 0.109497i
\(309\) −0.803887 + 3.52206i −0.0457315 + 0.200363i
\(310\) 1.74651 2.71553i 0.0991951 0.154232i
\(311\) −28.7608 13.8505i −1.63088 0.785389i −0.999954 0.00954398i \(-0.996962\pi\)
−0.630923 0.775845i \(-0.717324\pi\)
\(312\) −0.146971 + 0.0462610i −0.00832057 + 0.00261902i
\(313\) 1.48340i 0.0838468i −0.999121 0.0419234i \(-0.986651\pi\)
0.999121 0.0419234i \(-0.0133485\pi\)
\(314\) −12.7619 4.61730i −0.720198 0.260569i
\(315\) −5.75356 + 0.496728i −0.324177 + 0.0279875i
\(316\) 10.8468 + 14.2064i 0.610181 + 0.799171i
\(317\) −2.38613 + 1.14910i −0.134019 + 0.0645400i −0.499691 0.866204i \(-0.666553\pi\)
0.365673 + 0.930744i \(0.380839\pi\)
\(318\) 6.50513 + 0.802545i 0.364790 + 0.0450045i
\(319\) 2.08849 + 0.476684i 0.116933 + 0.0266892i
\(320\) −6.26162 3.51982i −0.350035 0.196764i
\(321\) −3.96733 8.23824i −0.221435 0.459814i
\(322\) 2.68644 1.17454i 0.149709 0.0654547i
\(323\) −9.22348 + 19.1528i −0.513208 + 1.06569i
\(324\) −8.23181 + 1.69695i −0.457323 + 0.0942749i
\(325\) 0.302855i 0.0167994i
\(326\) 9.47992 + 3.42986i 0.525044 + 0.189962i
\(327\) 3.59178 4.50395i 0.198626 0.249069i
\(328\) −1.56583 19.3980i −0.0864584 1.07107i
\(329\) 6.47307 + 0.900839i 0.356872 + 0.0496649i
\(330\) −0.378395 + 0.127941i −0.0208300 + 0.00704293i
\(331\) −0.330449 + 0.686185i −0.0181631 + 0.0377161i −0.909853 0.414931i \(-0.863806\pi\)
0.891690 + 0.452647i \(0.149520\pi\)
\(332\) −1.10118 2.41574i −0.0604353 0.132581i
\(333\) −12.0064 + 15.0556i −0.657948 + 0.825041i
\(334\) 30.0433 + 3.70648i 1.64390 + 0.202810i
\(335\) 5.77530 + 7.24199i 0.315538 + 0.395672i
\(336\) −0.350483 7.97556i −0.0191204 0.435103i
\(337\) 10.2210 12.8168i 0.556776 0.698175i −0.421182 0.906976i \(-0.638385\pi\)
0.977958 + 0.208801i \(0.0669561\pi\)
\(338\) 13.1312 12.8570i 0.714241 0.699326i
\(339\) −0.466100 + 0.224462i −0.0253151 + 0.0121911i
\(340\) 4.14866 + 3.45414i 0.224993 + 0.187327i
\(341\) −1.03372 + 0.235939i −0.0559790 + 0.0127768i
\(342\) 2.46693 + 24.1856i 0.133397 + 1.30781i
\(343\) −16.4037 + 8.59759i −0.885717 + 0.464226i
\(344\) 12.9496 4.07606i 0.698195 0.219767i
\(345\) −0.118103 0.517443i −0.00635845 0.0278582i
\(346\) −11.0467 11.2823i −0.593875 0.606541i
\(347\) −6.57185 13.6466i −0.352796 0.732588i 0.646751 0.762701i \(-0.276127\pi\)
−0.999546 + 0.0301137i \(0.990413\pi\)
\(348\) 5.95613 + 4.95902i 0.319282 + 0.265831i
\(349\) −11.1313 8.87693i −0.595846 0.475171i 0.278525 0.960429i \(-0.410154\pi\)
−0.874371 + 0.485258i \(0.838726\pi\)
\(350\) −15.1602 4.04966i −0.810346 0.216463i
\(351\) 0.231307 0.184461i 0.0123463 0.00984581i
\(352\) 0.660616 + 2.26455i 0.0352110 + 0.120701i
\(353\) −25.5541 20.3787i −1.36011 1.08465i −0.987663 0.156594i \(-0.949949\pi\)
−0.372443 0.928055i \(-0.621480\pi\)
\(354\) 10.1400 3.42850i 0.538937 0.182223i
\(355\) −6.65000 3.20247i −0.352946 0.169970i
\(356\) 7.41484 3.37995i 0.392986 0.179137i
\(357\) −0.826994 + 5.94245i −0.0437691 + 0.314508i
\(358\) −1.18779 + 9.62779i −0.0627766 + 0.508844i
\(359\) 7.56955 + 6.03652i 0.399506 + 0.318595i 0.802550 0.596585i \(-0.203476\pi\)
−0.403044 + 0.915181i \(0.632048\pi\)
\(360\) 6.10993 + 0.885044i 0.322022 + 0.0466459i
\(361\) 31.0060 1.63189
\(362\) 5.92207 0.604053i 0.311257 0.0317483i
\(363\) −7.35789 3.54337i −0.386189 0.185979i
\(364\) −0.187817 0.332784i −0.00984429 0.0174426i
\(365\) 9.19091 4.42611i 0.481074 0.231673i
\(366\) −11.3772 + 6.98244i −0.594697 + 0.364978i
\(367\) 2.28021 9.99026i 0.119026 0.521487i −0.879900 0.475159i \(-0.842391\pi\)
0.998926 0.0463287i \(-0.0147522\pi\)
\(368\) −3.08253 + 0.567921i −0.160688 + 0.0296050i
\(369\) 7.25726 + 15.0699i 0.377798 + 0.784506i
\(370\) 8.57298 5.26142i 0.445688 0.273528i
\(371\) 1.39820 + 16.1952i 0.0725908 + 0.840814i
\(372\) −3.72107 0.932335i −0.192928 0.0483393i
\(373\) −3.75925 −0.194647 −0.0973233 0.995253i \(-0.531028\pi\)
−0.0973233 + 0.995253i \(0.531028\pi\)
\(374\) −0.179896 1.76368i −0.00930219 0.0911978i
\(375\) −2.70185 + 5.61046i −0.139523 + 0.289723i
\(376\) −6.51829 2.51511i −0.336155 0.129707i
\(377\) 0.361675 + 0.0825499i 0.0186272 + 0.00425154i
\(378\) 6.14073 + 14.0452i 0.315845 + 0.722407i
\(379\) 29.7964 6.80084i 1.53054 0.349336i 0.627406 0.778693i \(-0.284117\pi\)
0.903135 + 0.429357i \(0.141260\pi\)
\(380\) 3.08636 12.3181i 0.158327 0.631903i
\(381\) −9.65677 + 2.20409i −0.494731 + 0.112919i
\(382\) −20.8794 + 32.4639i −1.06828 + 1.66100i
\(383\) −5.84418 + 25.6050i −0.298624 + 1.30836i 0.573554 + 0.819168i \(0.305564\pi\)
−0.872178 + 0.489189i \(0.837293\pi\)
\(384\) −1.57875 + 8.38717i −0.0805653 + 0.428006i
\(385\) −0.504997 0.852252i −0.0257371 0.0434348i
\(386\) 19.6881 + 12.6625i 1.00210 + 0.644506i
\(387\) −9.12254 + 7.27499i −0.463725 + 0.369808i
\(388\) 15.1416 + 19.8314i 0.768701 + 1.00679i
\(389\) −4.36161 5.46929i −0.221142 0.277304i 0.658868 0.752259i \(-0.271036\pi\)
−0.880010 + 0.474955i \(0.842464\pi\)
\(390\) −0.0655287 + 0.0221563i −0.00331817 + 0.00112193i
\(391\) 2.35563 0.119129
\(392\) 19.1698 4.95181i 0.968219 0.250104i
\(393\) 3.68742 0.186006
\(394\) −8.03372 + 2.71632i −0.404733 + 0.136846i
\(395\) 5.00311 + 6.27370i 0.251734 + 0.315664i
\(396\) −1.23036 1.61144i −0.0618282 0.0809781i
\(397\) −8.09339 + 6.45427i −0.406196 + 0.323930i −0.805183 0.593026i \(-0.797933\pi\)
0.398988 + 0.916956i \(0.369362\pi\)
\(398\) −19.4955 12.5387i −0.977221 0.628507i
\(399\) 13.4384 4.31240i 0.672762 0.215890i
\(400\) 14.7934 + 7.90968i 0.739668 + 0.395484i
\(401\) 1.95429 8.56232i 0.0975927 0.427582i −0.902402 0.430896i \(-0.858198\pi\)
0.999995 + 0.00331389i \(0.00105485\pi\)
\(402\) 5.95326 9.25630i 0.296921 0.461662i
\(403\) −0.179014 + 0.0408589i −0.00891735 + 0.00203533i
\(404\) 6.81439 27.1971i 0.339029 1.35311i
\(405\) −3.67873 + 0.839645i −0.182797 + 0.0417223i
\(406\) −8.96841 + 17.0007i −0.445095 + 0.843732i
\(407\) −3.22048 0.735054i −0.159633 0.0364353i
\(408\) 2.30894 5.98396i 0.114309 0.296250i
\(409\) −10.1190 + 21.0123i −0.500351 + 1.03899i 0.485942 + 0.873991i \(0.338476\pi\)
−0.986294 + 0.164999i \(0.947238\pi\)
\(410\) −0.886570 8.69184i −0.0437845 0.429259i
\(411\) −14.4715 −0.713826
\(412\) 9.29098 + 2.32791i 0.457734 + 0.114688i
\(413\) 13.5327 + 22.8382i 0.665899 + 1.12380i
\(414\) 2.29603 1.40912i 0.112844 0.0692545i
\(415\) −0.517145 1.07386i −0.0253856 0.0527138i
\(416\) 0.114402 + 0.392164i 0.00560904 + 0.0192274i
\(417\) −2.89464 + 12.6822i −0.141751 + 0.621052i
\(418\) −3.55431 + 2.18136i −0.173847 + 0.106694i
\(419\) −21.6233 + 10.4132i −1.05637 + 0.508720i −0.879689 0.475549i \(-0.842250\pi\)
−0.176678 + 0.984269i \(0.556535\pi\)
\(420\) −0.232864 3.57647i −0.0113626 0.174514i
\(421\) −26.5389 12.7805i −1.29343 0.622882i −0.344622 0.938741i \(-0.611993\pi\)
−0.948806 + 0.315859i \(0.897707\pi\)
\(422\) −22.5490 + 2.30001i −1.09767 + 0.111963i
\(423\) 6.00489 0.291968
\(424\) 2.49124 17.1983i 0.120985 0.835224i
\(425\) −9.85669 7.86045i −0.478120 0.381288i
\(426\) −1.07376 + 8.70353i −0.0520240 + 0.421688i
\(427\) −22.7913 24.0122i −1.10295 1.16203i
\(428\) −22.0591 + 10.0554i −1.06627 + 0.486044i
\(429\) 0.0204668 + 0.00985631i 0.000988149 + 0.000475867i
\(430\) 5.77374 1.95219i 0.278434 0.0941430i
\(431\) −12.3711 9.86566i −0.595897 0.475212i 0.278491 0.960439i \(-0.410166\pi\)
−0.874388 + 0.485227i \(0.838737\pi\)
\(432\) −2.96920 16.1161i −0.142856 0.775385i
\(433\) 9.11835 7.27164i 0.438200 0.349453i −0.379407 0.925230i \(-0.623872\pi\)
0.817607 + 0.575777i \(0.195300\pi\)
\(434\) 0.348413 9.50737i 0.0167244 0.456368i
\(435\) 2.72035 + 2.16941i 0.130431 + 0.104015i
\(436\) −11.7377 9.77274i −0.562135 0.468029i
\(437\) −2.40426 4.99249i −0.115011 0.238823i
\(438\) −8.47943 8.66027i −0.405163 0.413804i
\(439\) −0.427086 1.87119i −0.0203837 0.0893069i 0.963713 0.266941i \(-0.0860128\pi\)
−0.984097 + 0.177634i \(0.943156\pi\)
\(440\) 0.317966 + 1.01017i 0.0151584 + 0.0481581i
\(441\) −13.8393 + 9.90171i −0.659012 + 0.471510i
\(442\) −0.0311535 0.305426i −0.00148182 0.0145276i
\(443\) 15.8880 3.62634i 0.754863 0.172292i 0.172262 0.985051i \(-0.444892\pi\)
0.582601 + 0.812759i \(0.302035\pi\)
\(444\) −9.18444 7.64689i −0.435874 0.362905i
\(445\) 3.29609 1.58731i 0.156250 0.0752459i
\(446\) −4.06624 + 3.98133i −0.192542 + 0.188521i
\(447\) 4.87676 6.11527i 0.230663 0.289242i
\(448\) −21.1605 + 0.482845i −0.999740 + 0.0228123i
\(449\) −22.8747 28.6840i −1.07953 1.35368i −0.931102 0.364759i \(-0.881151\pi\)
−0.148424 0.988924i \(-0.547420\pi\)
\(450\) −14.3094 1.76536i −0.674549 0.0832199i
\(451\) −1.78893 + 2.24324i −0.0842373 + 0.105630i
\(452\) 0.568908 + 1.24805i 0.0267592 + 0.0587035i
\(453\) −0.0200872 + 0.0417115i −0.000943779 + 0.00195978i
\(454\) −28.3950 + 9.60077i −1.33264 + 0.450587i
\(455\) −0.0874531 0.147589i −0.00409987 0.00691909i
\(456\) −15.0389 + 1.21396i −0.704262 + 0.0568489i
\(457\) −6.61337 + 8.29291i −0.309361 + 0.387926i −0.912070 0.410035i \(-0.865516\pi\)
0.602709 + 0.797961i \(0.294088\pi\)
\(458\) 24.4480 + 8.84536i 1.14238 + 0.413317i
\(459\) 12.3157i 0.574847i
\(460\) −1.37820 + 0.284109i −0.0642588 + 0.0132467i
\(461\) 4.76737 9.89954i 0.222038 0.461067i −0.759957 0.649974i \(-0.774780\pi\)
0.981995 + 0.188906i \(0.0604942\pi\)
\(462\) −0.767057 + 0.892725i −0.0356867 + 0.0415333i
\(463\) −14.8579 30.8528i −0.690507 1.43385i −0.890929 0.454142i \(-0.849946\pi\)
0.200423 0.979710i \(-0.435768\pi\)
\(464\) 13.4781 15.5105i 0.625707 0.720058i
\(465\) −1.67901 0.383224i −0.0778623 0.0177716i
\(466\) −11.4890 1.41741i −0.532219 0.0656604i
\(467\) 13.7753 6.63382i 0.637444 0.306977i −0.0871062 0.996199i \(-0.527762\pi\)
0.724550 + 0.689222i \(0.242048\pi\)
\(468\) −0.213069 0.279062i −0.00984911 0.0128997i
\(469\) 25.5188 + 9.68345i 1.17835 + 0.447140i
\(470\) −2.94953 1.06715i −0.136051 0.0492237i
\(471\) 7.23911i 0.333560i
\(472\) −8.52069 27.0701i −0.392197 1.24600i
\(473\) −1.80334 0.868441i −0.0829175 0.0399310i
\(474\) 5.15727 8.01868i 0.236881 0.368310i
\(475\) −6.59917 + 28.9128i −0.302791 + 1.32661i
\(476\) 15.7054 + 2.52456i 0.719858 + 0.115713i
\(477\) 3.32353 + 14.5613i 0.152174 + 0.666717i
\(478\) 13.8975 + 5.02814i 0.635656 + 0.229982i
\(479\) 6.49214 + 28.4439i 0.296633 + 1.29964i 0.875105 + 0.483933i \(0.160792\pi\)
−0.578471 + 0.815703i \(0.696351\pi\)
\(480\) −0.629162 + 3.77949i −0.0287172 + 0.172509i
\(481\) −0.557708 0.127293i −0.0254293 0.00580407i
\(482\) −20.9901 21.4378i −0.956074 0.976465i
\(483\) −1.07665 1.13432i −0.0489893 0.0516136i
\(484\) −9.80408 + 19.3054i −0.445640 + 0.877518i
\(485\) 6.98411 + 8.75779i 0.317132 + 0.397671i
\(486\) 11.4367 + 18.6350i 0.518778 + 0.845300i
\(487\) 10.3993 8.29316i 0.471237 0.375799i −0.358884 0.933382i \(-0.616843\pi\)
0.830121 + 0.557583i \(0.188271\pi\)
\(488\) 17.8719 + 30.5483i 0.809024 + 1.38286i
\(489\) 5.37741i 0.243175i
\(490\) 8.55733 2.40418i 0.386581 0.108610i
\(491\) 17.4012i 0.785306i 0.919687 + 0.392653i \(0.128443\pi\)
−0.919687 + 0.392653i \(0.871557\pi\)
\(492\) −9.44556 + 4.30563i −0.425839 + 0.194113i
\(493\) −12.0737 + 9.62848i −0.543774 + 0.433645i
\(494\) −0.615519 + 0.377757i −0.0276935 + 0.0169961i
\(495\) −0.567508 0.711632i −0.0255076 0.0319855i
\(496\) −2.67952 + 9.81131i −0.120314 + 0.440541i
\(497\) −21.6684 + 1.87072i −0.971959 + 0.0839131i
\(498\) −1.01186 + 0.990732i −0.0453426 + 0.0443958i
\(499\) −19.4764 4.44536i −0.871882 0.199001i −0.236905 0.971533i \(-0.576133\pi\)
−0.634977 + 0.772531i \(0.718990\pi\)
\(500\) 14.7205 + 7.47570i 0.658323 + 0.334324i
\(501\) −3.59299 15.7419i −0.160523 0.703296i
\(502\) 3.36345 9.29637i 0.150118 0.414917i
\(503\) −8.21716 36.0017i −0.366385 1.60524i −0.736625 0.676301i \(-0.763582\pi\)
0.370241 0.928936i \(-0.379275\pi\)
\(504\) 16.8182 6.93419i 0.749143 0.308874i
\(505\) 2.80097 12.2718i 0.124641 0.546089i
\(506\) 0.388671 + 0.249977i 0.0172785 + 0.0111128i
\(507\) −8.83182 4.25318i −0.392235 0.188890i
\(508\) 5.30218 + 25.7206i 0.235246 + 1.14117i
\(509\) 39.8681i 1.76712i 0.468317 + 0.883560i \(0.344860\pi\)
−0.468317 + 0.883560i \(0.655140\pi\)
\(510\) 0.979667 2.70774i 0.0433804 0.119901i
\(511\) 16.6506 25.0260i 0.736580 1.10709i
\(512\) 22.1436 + 4.65402i 0.978619 + 0.205681i
\(513\) 26.1017 12.5699i 1.15242 0.554975i
\(514\) −4.70785 + 38.1601i −0.207654 + 1.68317i
\(515\) 4.19226 + 0.956856i 0.184733 + 0.0421641i
\(516\) −4.39451 5.75561i −0.193457 0.253377i
\(517\) 0.446933 + 0.928065i 0.0196561 + 0.0408163i
\(518\) 13.8294 26.2154i 0.607630 1.15184i
\(519\) −3.65433 + 7.58830i −0.160407 + 0.333090i
\(520\) 0.0550639 + 0.174937i 0.00241471 + 0.00767149i
\(521\) 22.1676i 0.971181i −0.874186 0.485591i \(-0.838605\pi\)
0.874186 0.485591i \(-0.161395\pi\)
\(522\) −6.00855 + 16.6073i −0.262987 + 0.726881i
\(523\) 16.4332 20.6066i 0.718574 0.901064i −0.279682 0.960093i \(-0.590229\pi\)
0.998256 + 0.0590291i \(0.0188005\pi\)
\(524\) 0.206288 9.77428i 0.00901174 0.426991i
\(525\) 0.719941 + 8.33902i 0.0314208 + 0.363945i
\(526\) 6.25230 + 18.4916i 0.272613 + 0.806273i
\(527\) 3.31644 6.88665i 0.144466 0.299987i
\(528\) 1.01598 0.742312i 0.0442147 0.0323050i
\(529\) 13.9574 17.5021i 0.606844 0.760959i
\(530\) 0.955258 7.74297i 0.0414938 0.336333i
\(531\) 15.2078 + 19.0700i 0.659962 + 0.827566i
\(532\) −10.6791 35.8626i −0.462998 1.55484i
\(533\) −0.309798 + 0.388475i −0.0134189 + 0.0168267i
\(534\) −3.04093 3.10579i −0.131594 0.134401i
\(535\) −9.80587 + 4.72226i −0.423945 + 0.204161i
\(536\) −24.2027 16.2982i −1.04540 0.703974i
\(537\) 5.04470 1.15142i 0.217695 0.0496874i
\(538\) −6.52492 + 0.665544i −0.281309 + 0.0286936i
\(539\) −2.56036 1.40191i −0.110282 0.0603847i
\(540\) −1.48538 7.20549i −0.0639204 0.310075i
\(541\) 5.67668 + 24.8712i 0.244060 + 1.06930i 0.937282 + 0.348572i \(0.113333\pi\)
−0.693222 + 0.720724i \(0.743810\pi\)
\(542\) 16.0526 15.7174i 0.689517 0.675118i
\(543\) −1.37769 2.86080i −0.0591222 0.122769i
\(544\) −15.7326 6.45508i −0.674529 0.276759i
\(545\) −5.36099 4.27525i −0.229640 0.183132i
\(546\) −0.132835 + 0.154598i −0.00568483 + 0.00661618i
\(547\) 9.53754 7.60594i 0.407796 0.325206i −0.398015 0.917379i \(-0.630301\pi\)
0.805811 + 0.592172i \(0.201730\pi\)
\(548\) −0.809590 + 38.3597i −0.0345840 + 1.63865i
\(549\) −23.7823 18.9657i −1.01500 0.809437i
\(550\) −0.792180 2.34293i −0.0337787 0.0999028i
\(551\) 32.7294 + 15.7617i 1.39432 + 0.671470i
\(552\) 0.844262 + 1.44309i 0.0359342 + 0.0614219i
\(553\) 22.1068 + 8.38872i 0.940076 + 0.356725i
\(554\) −37.4976 4.62612i −1.59312 0.196545i
\(555\) −4.19482 3.34526i −0.178060 0.141998i
\(556\) 33.4550 + 8.38234i 1.41881 + 0.355490i
\(557\) 29.9024 1.26701 0.633503 0.773740i \(-0.281616\pi\)
0.633503 + 0.773740i \(0.281616\pi\)
\(558\) −0.887022 8.69627i −0.0375506 0.368142i
\(559\) −0.312293 0.150393i −0.0132086 0.00636093i
\(560\) −9.49320 + 0.417175i −0.401161 + 0.0176288i
\(561\) −0.851988 + 0.410296i −0.0359710 + 0.0173227i
\(562\) −8.35676 13.6165i −0.352508 0.574379i
\(563\) 5.19380 22.7555i 0.218893 0.959031i −0.739405 0.673261i \(-0.764893\pi\)
0.958298 0.285771i \(-0.0922496\pi\)
\(564\) −0.0786360 + 3.72590i −0.00331117 + 0.156889i
\(565\) 0.267174 + 0.554792i 0.0112401 + 0.0233403i
\(566\) 14.3870 + 23.4423i 0.604732 + 0.985353i
\(567\) −8.06440 + 7.65438i −0.338673 + 0.321454i
\(568\) 23.0105 + 3.33314i 0.965498 + 0.139856i
\(569\) 36.2215 1.51848 0.759242 0.650809i \(-0.225570\pi\)
0.759242 + 0.650809i \(0.225570\pi\)
\(570\) −6.73864 + 0.687343i −0.282251 + 0.0287896i
\(571\) −8.21485 + 17.0583i −0.343781 + 0.713868i −0.999141 0.0414487i \(-0.986803\pi\)
0.655360 + 0.755317i \(0.272517\pi\)
\(572\) 0.0272712 0.0537003i 0.00114027 0.00224532i
\(573\) 20.0724 + 4.58140i 0.838538 + 0.191391i
\(574\) −15.3036 20.7023i −0.638759 0.864095i
\(575\) 3.20388 0.731265i 0.133611 0.0304958i
\(576\) −19.1959 + 3.11936i −0.799829 + 0.129973i
\(577\) 13.5434 3.09119i 0.563818 0.128688i 0.0688938 0.997624i \(-0.478053\pi\)
0.494924 + 0.868936i \(0.335196\pi\)
\(578\) −9.47161 6.09174i −0.393967 0.253383i
\(579\) 2.77844 12.1732i 0.115468 0.505899i
\(580\) 5.90265 7.08949i 0.245094 0.294375i
\(581\) −2.92403 1.94545i −0.121309 0.0807109i
\(582\) 7.19931 11.1937i 0.298421 0.463994i
\(583\) −2.00311 + 1.59743i −0.0829604 + 0.0661587i
\(584\) −23.4302 + 21.9920i −0.969550 + 0.910035i
\(585\) −0.0982783 0.123237i −0.00406331 0.00509523i
\(586\) 8.23836 + 24.3655i 0.340324 + 1.00653i
\(587\) 43.2157 1.78370 0.891851 0.452330i \(-0.149407\pi\)
0.891851 + 0.452330i \(0.149407\pi\)
\(588\) −5.96257 8.71662i −0.245892 0.359468i
\(589\) −17.9804 −0.740868
\(590\) −4.08090 12.0695i −0.168008 0.496895i
\(591\) 2.82038 + 3.53665i 0.116015 + 0.145478i
\(592\) −20.7835 + 23.9175i −0.854196 + 0.983002i
\(593\) −36.8648 + 29.3987i −1.51385 + 1.20726i −0.600814 + 0.799389i \(0.705157\pi\)
−0.913040 + 0.407869i \(0.866272\pi\)
\(594\) −1.30693 + 2.03205i −0.0536238 + 0.0833759i
\(595\) 7.07321 + 0.984359i 0.289974 + 0.0403548i
\(596\) −15.9370 13.2690i −0.652804 0.543519i
\(597\) −2.75127 + 12.0541i −0.112602 + 0.493341i
\(598\) 0.0673083 + 0.0432898i 0.00275244 + 0.00177025i
\(599\) 32.2430 7.35926i 1.31741 0.300691i 0.494659 0.869087i \(-0.335293\pi\)
0.822755 + 0.568396i \(0.192436\pi\)
\(600\) 1.28275 8.85553i 0.0523682 0.361525i
\(601\) 4.29972 0.981383i 0.175389 0.0400315i −0.133924 0.990992i \(-0.542758\pi\)
0.309314 + 0.950960i \(0.399901\pi\)
\(602\) 11.7041 13.6216i 0.477025 0.555177i
\(603\) 24.4497 + 5.58047i 0.995667 + 0.227254i
\(604\) 0.109441 + 0.0555788i 0.00445310 + 0.00226147i
\(605\) −4.21763 + 8.75799i −0.171471 + 0.356063i
\(606\) −14.8783 + 1.51759i −0.604389 + 0.0616479i
\(607\) 19.3206 0.784199 0.392100 0.919923i \(-0.371749\pi\)
0.392100 + 0.919923i \(0.371749\pi\)
\(608\) 2.37652 + 39.9317i 0.0963807 + 1.61945i
\(609\) 10.1548 + 1.41322i 0.411495 + 0.0572665i
\(610\) 8.31110 + 13.5421i 0.336507 + 0.548305i
\(611\) 0.0773977 + 0.160718i 0.00313118 + 0.00650196i
\(612\) 14.6124 + 0.308398i 0.590672 + 0.0124663i
\(613\) 3.97479 17.4147i 0.160540 0.703373i −0.829016 0.559225i \(-0.811099\pi\)
0.989556 0.144148i \(-0.0460441\pi\)
\(614\) 3.66386 + 5.96990i 0.147861 + 0.240926i
\(615\) −4.19880 + 2.02204i −0.169312 + 0.0815363i
\(616\) 2.32344 + 2.08319i 0.0936141 + 0.0839340i
\(617\) −14.9436 7.19648i −0.601608 0.289719i 0.108183 0.994131i \(-0.465497\pi\)
−0.709792 + 0.704412i \(0.751211\pi\)
\(618\) −0.518433 5.08267i −0.0208544 0.204455i
\(619\) 39.5914 1.59131 0.795657 0.605748i \(-0.207126\pi\)
0.795657 + 0.605748i \(0.207126\pi\)
\(620\) −1.10974 + 4.42913i −0.0445684 + 0.177878i
\(621\) −2.50991 2.00158i −0.100719 0.0803208i
\(622\) 44.8050 + 5.52764i 1.79652 + 0.221638i
\(623\) 5.97133 8.97497i 0.239236 0.359574i
\(624\) 0.175942 0.128550i 0.00704333 0.00514613i
\(625\) −12.2143 5.88212i −0.488574 0.235285i
\(626\) 0.671944 + 1.98732i 0.0268563 + 0.0794293i
\(627\) 1.73915 + 1.38693i 0.0694550 + 0.0553885i
\(628\) 19.1888 + 0.404983i 0.765715 + 0.0161606i
\(629\) 18.6179 14.8473i 0.742344 0.591999i
\(630\) 7.48308 3.27169i 0.298133 0.130347i
\(631\) −28.2461 22.5255i −1.12446 0.896726i −0.128974 0.991648i \(-0.541168\pi\)
−0.995485 + 0.0949224i \(0.969740\pi\)
\(632\) −20.9667 14.1190i −0.834010 0.561625i
\(633\) 5.24572 + 10.8929i 0.208499 + 0.432952i
\(634\) 2.67620 2.62032i 0.106286 0.104066i
\(635\) 2.62350 + 11.4943i 0.104110 + 0.456138i
\(636\) −9.07850 + 1.87149i −0.359986 + 0.0742094i
\(637\) −0.443391 0.242777i −0.0175678 0.00961917i
\(638\) −3.01389 + 0.307417i −0.119321 + 0.0121708i
\(639\) −19.4823 + 4.44671i −0.770707 + 0.175909i
\(640\) 9.98313 + 1.87917i 0.394618 + 0.0742805i
\(641\) 14.8442 7.14861i 0.586312 0.282353i −0.117117 0.993118i \(-0.537365\pi\)
0.703430 + 0.710765i \(0.251651\pi\)
\(642\) 9.04678 + 9.23973i 0.357048 + 0.364663i
\(643\) 18.5192 23.2223i 0.730325 0.915799i −0.268548 0.963266i \(-0.586544\pi\)
0.998873 + 0.0474678i \(0.0151152\pi\)
\(644\) −3.06700 + 2.79043i −0.120857 + 0.109958i
\(645\) −2.02697 2.54174i −0.0798120 0.100081i
\(646\) 3.68103 29.8371i 0.144828 1.17392i
\(647\) −30.3485 + 38.0558i −1.19312 + 1.49613i −0.369273 + 0.929321i \(0.620393\pi\)
−0.823850 + 0.566808i \(0.808178\pi\)
\(648\) 10.2595 6.00222i 0.403033 0.235789i
\(649\) −1.81541 + 3.76973i −0.0712610 + 0.147975i
\(650\) −0.137186 0.405737i −0.00538088 0.0159143i
\(651\) −4.83197 + 1.55059i −0.189380 + 0.0607722i
\(652\) −14.2540 0.300833i −0.558228 0.0117815i
\(653\) −1.65427 + 2.07440i −0.0647368 + 0.0811774i −0.813146 0.582060i \(-0.802247\pi\)
0.748409 + 0.663238i \(0.230818\pi\)
\(654\) −2.77175 + 7.66096i −0.108384 + 0.299567i
\(655\) 4.38908i 0.171496i
\(656\) 10.8846 + 25.2783i 0.424970 + 0.986952i
\(657\) 11.9833 24.8836i 0.467514 0.970803i
\(658\) −9.08008 + 1.72528i −0.353978 + 0.0672585i
\(659\) −13.9113 28.8872i −0.541909 1.12529i −0.974643 0.223764i \(-0.928166\pi\)
0.432735 0.901521i \(-0.357549\pi\)
\(660\) 0.448984 0.342807i 0.0174767 0.0133437i
\(661\) 7.49465 + 1.71060i 0.291508 + 0.0665348i 0.365774 0.930704i \(-0.380804\pi\)
−0.0742661 + 0.997238i \(0.523661\pi\)
\(662\) 0.131880 1.06897i 0.00512567 0.0415468i
\(663\) −0.147543 + 0.0710531i −0.00573011 + 0.00275948i
\(664\) 2.56954 + 2.73758i 0.0997173 + 0.106239i
\(665\) −5.13299 15.9956i −0.199049 0.620281i
\(666\) 9.26528 25.6087i 0.359022 0.992316i
\(667\) 4.02545i 0.155866i
\(668\) −41.9282 + 8.64330i −1.62225 + 0.334419i
\(669\) 2.73489 + 1.31705i 0.105737 + 0.0509202i
\(670\) −11.0176 7.08608i −0.425649 0.273759i
\(671\) 1.16111 5.08717i 0.0448243 0.196388i
\(672\) 4.08228 + 10.5262i 0.157477 + 0.406055i
\(673\) −6.95028 30.4512i −0.267914 1.17381i −0.912436 0.409220i \(-0.865801\pi\)
0.644522 0.764586i \(-0.277056\pi\)
\(674\) −7.88752 + 21.8006i −0.303816 + 0.839729i
\(675\) 3.82319 + 16.7505i 0.147155 + 0.644727i
\(676\) −11.7680 + 23.1726i −0.452616 + 0.891255i
\(677\) −2.67823 0.611288i −0.102933 0.0234937i 0.170744 0.985315i \(-0.445383\pi\)
−0.273677 + 0.961822i \(0.588240\pi\)
\(678\) 0.522762 0.511845i 0.0200765 0.0196573i
\(679\) 30.8600 + 11.7103i 1.18430 + 0.449399i
\(680\) −7.12263 2.74829i −0.273140 0.105392i
\(681\) 9.96856 + 12.5002i 0.381996 + 0.479008i
\(682\) 1.27800 0.784338i 0.0489373 0.0300339i
\(683\) −20.0308 + 15.9740i −0.766457 + 0.611229i −0.926680 0.375852i \(-0.877350\pi\)
0.160223 + 0.987081i \(0.448779\pi\)
\(684\) −14.2604 31.2841i −0.545261 1.19618i
\(685\) 17.2252i 0.658141i
\(686\) 18.0816 18.9487i 0.690360 0.723466i
\(687\) 13.8680i 0.529096i
\(688\) −15.5023 + 11.3266i −0.591019 + 0.431822i
\(689\) −0.346890 + 0.276635i −0.0132154 + 0.0105390i
\(690\) 0.392612 + 0.639724i 0.0149465 + 0.0243539i
\(691\) −23.5923 29.5838i −0.897494 1.12542i −0.991533 0.129854i \(-0.958549\pi\)
0.0940389 0.995569i \(-0.470022\pi\)
\(692\) 19.9100 + 10.1111i 0.756863 + 0.384366i
\(693\) −2.50759 0.951541i −0.0952556 0.0361461i
\(694\) 14.9859 + 15.3055i 0.568858 + 0.580990i
\(695\) 15.0955 + 3.44545i 0.572605 + 0.130693i
\(696\) −10.2258 3.94566i −0.387607 0.149560i
\(697\) −4.60260 20.1653i −0.174336 0.763815i
\(698\) 18.9337 + 6.85027i 0.716652 + 0.259286i
\(699\) 1.37401 + 6.01994i 0.0519699 + 0.227695i
\(700\) 22.1446 1.44184i 0.836987 0.0544964i
\(701\) −4.21036 + 18.4468i −0.159023 + 0.696725i 0.831053 + 0.556193i \(0.187738\pi\)
−0.990076 + 0.140532i \(0.955119\pi\)
\(702\) −0.226327 + 0.351900i −0.00854217 + 0.0132816i
\(703\) −50.4693 24.3047i −1.90349 0.916670i
\(704\) −1.91082 2.73459i −0.0720166 0.103064i
\(705\) 1.67310i 0.0630124i
\(706\) 43.4660 + 15.7261i 1.63586 + 0.591860i
\(707\) −11.3332 35.3167i −0.426227 1.32822i
\(708\) −12.0317 + 9.18638i −0.452177 + 0.345245i
\(709\) −12.1149 + 5.83424i −0.454985 + 0.219109i −0.647317 0.762221i \(-0.724109\pi\)
0.192332 + 0.981330i \(0.438395\pi\)
\(710\) 10.3597 + 1.27809i 0.388792 + 0.0479657i
\(711\) 21.1806 + 4.83434i 0.794335 + 0.181302i
\(712\) −8.40267 + 7.88688i −0.314903 + 0.295573i
\(713\) 0.864485 + 1.79512i 0.0323752 + 0.0672278i
\(714\) −1.58385 8.33575i −0.0592743 0.311957i
\(715\) 0.0117318 0.0243614i 0.000438746 0.000911065i
\(716\) −2.76986 13.4364i −0.103514 0.502144i
\(717\) 7.88323i 0.294405i
\(718\) −12.8754 4.65834i −0.480505 0.173848i
\(719\) −27.3330 + 34.2744i −1.01935 + 1.27822i −0.0593423 + 0.998238i \(0.518900\pi\)
−0.960005 + 0.279983i \(0.909671\pi\)
\(720\) −8.58642 + 1.58195i −0.319997 + 0.0589557i
\(721\) 12.0648 3.87159i 0.449315 0.144186i
\(722\) −41.5389 + 14.0449i −1.54592 + 0.522699i
\(723\) −6.94369 + 14.4187i −0.258239 + 0.536238i
\(724\) −7.66022 + 3.49181i −0.284690 + 0.129772i
\(725\) −13.4324 + 16.8437i −0.498868 + 0.625561i
\(726\) 11.4625 + 1.41414i 0.425412 + 0.0524836i
\(727\) −12.8273 16.0849i −0.475737 0.596555i 0.484829 0.874609i \(-0.338882\pi\)
−0.960565 + 0.278054i \(0.910311\pi\)
\(728\) 0.402363 + 0.360757i 0.0149126 + 0.0133705i
\(729\) −0.589008 + 0.738592i −0.0218151 + 0.0273553i
\(730\) −10.3082 + 10.0929i −0.381524 + 0.373556i
\(731\) 13.0001 6.26050i 0.480825 0.231553i
\(732\) 12.0793 14.5080i 0.446462 0.536232i
\(733\) −44.2709 + 10.1045i −1.63518 + 0.373220i −0.938803 0.344454i \(-0.888064\pi\)
−0.696379 + 0.717674i \(0.745207\pi\)
\(734\) 1.47053 + 14.4169i 0.0542781 + 0.532137i
\(735\) −2.75884 3.85593i −0.101761 0.142228i
\(736\) 3.87244 2.15716i 0.142740 0.0795140i
\(737\) 0.957271 + 4.19408i 0.0352615 + 0.154491i
\(738\) −16.5489 16.9018i −0.609173 0.622165i
\(739\) 18.9640 + 39.3792i 0.697603 + 1.44859i 0.884659 + 0.466238i \(0.154391\pi\)
−0.187056 + 0.982349i \(0.559895\pi\)
\(740\) −9.10198 + 10.9321i −0.334595 + 0.401872i
\(741\) 0.301178 + 0.240181i 0.0110641 + 0.00882329i
\(742\) −9.20921 21.0635i −0.338081 0.773265i
\(743\) −27.3585 + 21.8177i −1.00369 + 0.800412i −0.979937 0.199306i \(-0.936131\pi\)
−0.0237478 + 0.999718i \(0.507560\pi\)
\(744\) 5.40746 0.436497i 0.198247 0.0160028i
\(745\) −7.27892 5.80474i −0.266679 0.212669i
\(746\) 5.03629 1.70285i 0.184392 0.0623457i
\(747\) −2.90739 1.40013i −0.106376 0.0512280i
\(748\) 1.03991 + 2.28133i 0.0380229 + 0.0834135i
\(749\) −17.7647 + 26.7005i −0.649108 + 0.975616i
\(750\) 1.07829 8.74024i 0.0393737 0.319149i
\(751\) −9.37349 7.47511i −0.342044 0.272771i 0.437368 0.899282i \(-0.355911\pi\)
−0.779412 + 0.626512i \(0.784482\pi\)
\(752\) 9.87188 + 0.416882i 0.359991 + 0.0152021i
\(753\) −5.27330 −0.192170
\(754\) −0.521931 + 0.0532371i −0.0190076 + 0.00193878i
\(755\) 0.0496486 + 0.0239095i 0.00180690 + 0.000870156i
\(756\) −14.5889 16.0348i −0.530593 0.583182i
\(757\) 9.99027 4.81106i 0.363103 0.174861i −0.243432 0.969918i \(-0.578273\pi\)
0.606535 + 0.795057i \(0.292559\pi\)
\(758\) −36.8379 + 22.6082i −1.33801 + 0.821166i
\(759\) 0.0548505 0.240316i 0.00199095 0.00872291i
\(760\) 1.44496 + 17.9006i 0.0524142 + 0.649324i
\(761\) 7.16016 + 14.8682i 0.259556 + 0.538973i 0.989500 0.144534i \(-0.0461683\pi\)
−0.729944 + 0.683507i \(0.760454\pi\)
\(762\) 11.9388 7.32712i 0.432498 0.265433i
\(763\) −20.0121 2.78503i −0.724487 0.100825i
\(764\) 13.2669 52.9499i 0.479980 1.91566i
\(765\) 6.56162 0.237236
\(766\) −3.76896 36.9505i −0.136178 1.33508i
\(767\) −0.314384 + 0.652825i −0.0113517 +