Properties

Label 196.2.j.a.111.25
Level $196$
Weight $2$
Character 196.111
Analytic conductor $1.565$
Analytic rank $0$
Dimension $156$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(27,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 111.25
Character \(\chi\) \(=\) 196.111
Dual form 196.2.j.a.83.25

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.38475 - 0.287182i) q^{2} +(1.31156 + 1.64465i) q^{3} +(1.83505 - 0.795349i) q^{4} +(-2.15171 + 1.71594i) q^{5} +(2.28850 + 1.90077i) q^{6} +(-0.0757418 - 2.64467i) q^{7} +(2.31268 - 1.62835i) q^{8} +(-0.317107 + 1.38934i) q^{9} +O(q^{10})\) \(q+(1.38475 - 0.287182i) q^{2} +(1.31156 + 1.64465i) q^{3} +(1.83505 - 0.795349i) q^{4} +(-2.15171 + 1.71594i) q^{5} +(2.28850 + 1.90077i) q^{6} +(-0.0757418 - 2.64467i) q^{7} +(2.31268 - 1.62835i) q^{8} +(-0.317107 + 1.38934i) q^{9} +(-2.48680 + 2.99407i) q^{10} +(-5.04250 + 1.15092i) q^{11} +(3.71486 + 1.97487i) q^{12} +(4.41417 - 1.00751i) q^{13} +(-0.864384 - 3.64045i) q^{14} +(-5.64422 - 1.28826i) q^{15} +(2.73484 - 2.91902i) q^{16} +(-1.55736 + 3.23389i) q^{17} +(-0.0401206 + 2.01495i) q^{18} -1.68938 q^{19} +(-2.58374 + 4.86020i) q^{20} +(4.25021 - 3.59322i) q^{21} +(-6.65207 + 3.04185i) q^{22} +(-3.00519 - 6.24035i) q^{23} +(5.71129 + 1.66785i) q^{24} +(0.572838 - 2.50977i) q^{25} +(5.82318 - 2.66281i) q^{26} +(2.98492 - 1.43746i) q^{27} +(-2.24242 - 4.79286i) q^{28} +(-2.62766 - 1.26542i) q^{29} +(-8.18578 - 0.162991i) q^{30} -2.18485 q^{31} +(2.94877 - 4.82750i) q^{32} +(-8.50641 - 6.78364i) q^{33} +(-1.22783 + 4.92536i) q^{34} +(4.70105 + 5.56060i) q^{35} +(0.523100 + 2.80172i) q^{36} +(9.60088 + 4.62354i) q^{37} +(-2.33936 + 0.485158i) q^{38} +(7.44646 + 5.93835i) q^{39} +(-2.18207 + 7.47215i) q^{40} +(-2.45112 + 1.95471i) q^{41} +(4.85356 - 6.19628i) q^{42} +(-0.804546 - 0.641604i) q^{43} +(-8.33787 + 6.12254i) q^{44} +(-1.70169 - 3.53359i) q^{45} +(-5.95355 - 7.77827i) q^{46} +(0.583958 + 2.55849i) q^{47} +(8.38767 + 0.669372i) q^{48} +(-6.98853 + 0.400624i) q^{49} +(0.0724760 - 3.63990i) q^{50} +(-7.36118 + 1.68014i) q^{51} +(7.29892 - 5.35964i) q^{52} +(3.85172 - 1.85489i) q^{53} +(3.72054 - 2.84773i) q^{54} +(8.87512 - 11.1290i) q^{55} +(-4.48162 - 5.99292i) q^{56} +(-2.21572 - 2.77843i) q^{57} +(-4.00205 - 0.997664i) q^{58} +(-1.51285 + 1.89706i) q^{59} +(-11.3821 + 2.12511i) q^{60} +(-5.08482 + 10.5587i) q^{61} +(-3.02547 + 0.627450i) q^{62} +(3.69835 + 0.733411i) q^{63} +(2.69693 - 7.53170i) q^{64} +(-7.76922 + 9.74230i) q^{65} +(-13.7274 - 6.95074i) q^{66} +13.2842i q^{67} +(-0.285764 + 7.17300i) q^{68} +(6.32167 - 13.1271i) q^{69} +(8.10668 + 6.34997i) q^{70} +(1.49968 + 3.11413i) q^{71} +(1.52896 + 3.72944i) q^{72} +(-8.97767 - 2.04910i) q^{73} +(14.6226 + 3.64524i) q^{74} +(4.87900 - 2.34960i) q^{75} +(-3.10009 + 1.34364i) q^{76} +(3.42572 + 13.2486i) q^{77} +(12.0169 + 6.08463i) q^{78} -4.00244i q^{79} +(-0.875748 + 10.9737i) q^{80} +(10.1308 + 4.87876i) q^{81} +(-2.83283 + 3.41069i) q^{82} +(0.261589 - 1.14609i) q^{83} +(4.94149 - 9.97414i) q^{84} +(-2.19815 - 9.63073i) q^{85} +(-1.29835 - 0.657409i) q^{86} +(-1.36518 - 5.98125i) q^{87} +(-9.78756 + 10.8727i) q^{88} +(12.0984 + 2.76138i) q^{89} +(-3.37119 - 4.40444i) q^{90} +(-2.99886 - 11.5977i) q^{91} +(-10.4779 - 9.06119i) q^{92} +(-2.86557 - 3.59331i) q^{93} +(1.54339 + 3.37516i) q^{94} +(3.63505 - 2.89886i) q^{95} +(11.8070 - 1.48188i) q^{96} +2.97945i q^{97} +(-9.56229 + 2.56174i) q^{98} -7.37069i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9} - 7 q^{10} - 42 q^{12} - 14 q^{13} + 21 q^{14} - 13 q^{16} - 14 q^{17} - 12 q^{18} - 7 q^{20} - 14 q^{21} + 3 q^{22} + 35 q^{24} - 7 q^{26} + 42 q^{28} - 30 q^{29} - 4 q^{30} - 5 q^{32} - 14 q^{33} + 77 q^{34} - 11 q^{36} + 10 q^{37} - 21 q^{38} - 63 q^{40} - 14 q^{41} - 7 q^{42} - 55 q^{44} - 14 q^{45} - 19 q^{46} - 132 q^{50} - 7 q^{52} - 2 q^{53} + 14 q^{54} - 70 q^{56} - 64 q^{57} - 3 q^{58} - 107 q^{60} + 14 q^{61} - 21 q^{62} - 11 q^{64} - 22 q^{65} + 161 q^{66} - 70 q^{69} - 77 q^{70} + 114 q^{72} - 14 q^{73} + 5 q^{74} + 70 q^{76} - 42 q^{77} + 61 q^{78} + 92 q^{81} - 42 q^{82} + 70 q^{84} - 6 q^{85} + 47 q^{86} + 65 q^{88} - 14 q^{89} + 112 q^{90} - 70 q^{92} - 48 q^{93} - 28 q^{94} + 238 q^{96} + 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38475 0.287182i 0.979165 0.203068i
\(3\) 1.31156 + 1.64465i 0.757231 + 0.949538i 0.999788 0.0205993i \(-0.00655742\pi\)
−0.242557 + 0.970137i \(0.577986\pi\)
\(4\) 1.83505 0.795349i 0.917526 0.397675i
\(5\) −2.15171 + 1.71594i −0.962276 + 0.767390i −0.972583 0.232557i \(-0.925291\pi\)
0.0103065 + 0.999947i \(0.496719\pi\)
\(6\) 2.28850 + 1.90077i 0.934275 + 0.775984i
\(7\) −0.0757418 2.64467i −0.0286277 0.999590i
\(8\) 2.31268 1.62835i 0.817654 0.575710i
\(9\) −0.317107 + 1.38934i −0.105702 + 0.463112i
\(10\) −2.48680 + 2.99407i −0.786394 + 0.946809i
\(11\) −5.04250 + 1.15092i −1.52037 + 0.347015i −0.899508 0.436904i \(-0.856075\pi\)
−0.620863 + 0.783919i \(0.713218\pi\)
\(12\) 3.71486 + 1.97487i 1.07239 + 0.570094i
\(13\) 4.41417 1.00751i 1.22427 0.279432i 0.438945 0.898514i \(-0.355352\pi\)
0.785326 + 0.619082i \(0.212495\pi\)
\(14\) −0.864384 3.64045i −0.231016 0.972950i
\(15\) −5.64422 1.28826i −1.45733 0.332626i
\(16\) 2.73484 2.91902i 0.683710 0.729754i
\(17\) −1.55736 + 3.23389i −0.377715 + 0.784333i 0.622284 + 0.782792i \(0.286205\pi\)
−0.999999 + 0.00154143i \(0.999509\pi\)
\(18\) −0.0401206 + 2.01495i −0.00945653 + 0.474928i
\(19\) −1.68938 −0.387569 −0.193785 0.981044i \(-0.562076\pi\)
−0.193785 + 0.981044i \(0.562076\pi\)
\(20\) −2.58374 + 4.86020i −0.577742 + 1.08677i
\(21\) 4.25021 3.59322i 0.927471 0.784104i
\(22\) −6.65207 + 3.04185i −1.41823 + 0.648524i
\(23\) −3.00519 6.24035i −0.626626 1.30120i −0.936581 0.350451i \(-0.886028\pi\)
0.309955 0.950751i \(-0.399686\pi\)
\(24\) 5.71129 + 1.66785i 1.16581 + 0.340448i
\(25\) 0.572838 2.50977i 0.114568 0.501954i
\(26\) 5.82318 2.66281i 1.14202 0.522221i
\(27\) 2.98492 1.43746i 0.574448 0.276639i
\(28\) −2.24242 4.79286i −0.423778 0.905766i
\(29\) −2.62766 1.26542i −0.487945 0.234982i 0.173701 0.984798i \(-0.444427\pi\)
−0.661646 + 0.749817i \(0.730142\pi\)
\(30\) −8.18578 0.162991i −1.49451 0.0297580i
\(31\) −2.18485 −0.392410 −0.196205 0.980563i \(-0.562862\pi\)
−0.196205 + 0.980563i \(0.562862\pi\)
\(32\) 2.94877 4.82750i 0.521274 0.853389i
\(33\) −8.50641 6.78364i −1.48078 1.18088i
\(34\) −1.22783 + 4.92536i −0.210572 + 0.844693i
\(35\) 4.70105 + 5.56060i 0.794623 + 0.939913i
\(36\) 0.523100 + 2.80172i 0.0871833 + 0.466953i
\(37\) 9.60088 + 4.62354i 1.57837 + 0.760105i 0.998508 0.0546059i \(-0.0173902\pi\)
0.579867 + 0.814711i \(0.303105\pi\)
\(38\) −2.33936 + 0.485158i −0.379494 + 0.0787031i
\(39\) 7.44646 + 5.93835i 1.19239 + 0.950897i
\(40\) −2.18207 + 7.47215i −0.345016 + 1.18145i
\(41\) −2.45112 + 1.95471i −0.382801 + 0.305274i −0.795918 0.605404i \(-0.793012\pi\)
0.413117 + 0.910678i \(0.364440\pi\)
\(42\) 4.85356 6.19628i 0.748920 0.956107i
\(43\) −0.804546 0.641604i −0.122692 0.0978437i 0.560221 0.828343i \(-0.310716\pi\)
−0.682914 + 0.730499i \(0.739287\pi\)
\(44\) −8.33787 + 6.12254i −1.25698 + 0.923008i
\(45\) −1.70169 3.53359i −0.253672 0.526756i
\(46\) −5.95355 7.77827i −0.877803 1.14684i
\(47\) 0.583958 + 2.55849i 0.0851790 + 0.373194i 0.999494 0.0318104i \(-0.0101273\pi\)
−0.914315 + 0.405004i \(0.867270\pi\)
\(48\) 8.38767 + 0.669372i 1.21066 + 0.0966155i
\(49\) −6.98853 + 0.400624i −0.998361 + 0.0572319i
\(50\) 0.0724760 3.63990i 0.0102497 0.514760i
\(51\) −7.36118 + 1.68014i −1.03077 + 0.235267i
\(52\) 7.29892 5.35964i 1.01218 0.743248i
\(53\) 3.85172 1.85489i 0.529074 0.254789i −0.150223 0.988652i \(-0.547999\pi\)
0.679297 + 0.733864i \(0.262285\pi\)
\(54\) 3.72054 2.84773i 0.506302 0.387528i
\(55\) 8.87512 11.1290i 1.19672 1.50064i
\(56\) −4.48162 5.99292i −0.598881 0.800838i
\(57\) −2.21572 2.77843i −0.293480 0.368012i
\(58\) −4.00205 0.997664i −0.525495 0.131000i
\(59\) −1.51285 + 1.89706i −0.196957 + 0.246976i −0.870496 0.492176i \(-0.836202\pi\)
0.673539 + 0.739151i \(0.264773\pi\)
\(60\) −11.3821 + 2.12511i −1.46942 + 0.274350i
\(61\) −5.08482 + 10.5587i −0.651045 + 1.35191i 0.270154 + 0.962817i \(0.412925\pi\)
−0.921199 + 0.389092i \(0.872789\pi\)
\(62\) −3.02547 + 0.627450i −0.384234 + 0.0796862i
\(63\) 3.69835 + 0.733411i 0.465948 + 0.0924011i
\(64\) 2.69693 7.53170i 0.337117 0.941463i
\(65\) −7.76922 + 9.74230i −0.963654 + 1.20838i
\(66\) −13.7274 6.95074i −1.68972 0.855577i
\(67\) 13.2842i 1.62293i 0.584403 + 0.811464i \(0.301329\pi\)
−0.584403 + 0.811464i \(0.698671\pi\)
\(68\) −0.285764 + 7.17300i −0.0346540 + 0.869854i
\(69\) 6.32167 13.1271i 0.761040 1.58032i
\(70\) 8.10668 + 6.34997i 0.968933 + 0.758967i
\(71\) 1.49968 + 3.11413i 0.177980 + 0.369579i 0.970805 0.239870i \(-0.0771049\pi\)
−0.792825 + 0.609449i \(0.791391\pi\)
\(72\) 1.52896 + 3.72944i 0.180190 + 0.439519i
\(73\) −8.97767 2.04910i −1.05076 0.239828i −0.337932 0.941170i \(-0.609727\pi\)
−0.712825 + 0.701342i \(0.752585\pi\)
\(74\) 14.6226 + 3.64524i 1.69984 + 0.423750i
\(75\) 4.87900 2.34960i 0.563378 0.271309i
\(76\) −3.10009 + 1.34364i −0.355605 + 0.154127i
\(77\) 3.42572 + 13.2486i 0.390397 + 1.50981i
\(78\) 12.0169 + 6.08463i 1.36064 + 0.688949i
\(79\) 4.00244i 0.450309i −0.974323 0.225155i \(-0.927711\pi\)
0.974323 0.225155i \(-0.0722887\pi\)
\(80\) −0.875748 + 10.9737i −0.0979116 + 1.22690i
\(81\) 10.1308 + 4.87876i 1.12565 + 0.542084i
\(82\) −2.83283 + 3.41069i −0.312834 + 0.376648i
\(83\) 0.261589 1.14609i 0.0287131 0.125800i −0.958540 0.284957i \(-0.908021\pi\)
0.987253 + 0.159157i \(0.0508777\pi\)
\(84\) 4.94149 9.97414i 0.539161 1.08827i
\(85\) −2.19815 9.63073i −0.238423 1.04460i
\(86\) −1.29835 0.657409i −0.140005 0.0708902i
\(87\) −1.36518 5.98125i −0.146363 0.641257i
\(88\) −9.78756 + 10.8727i −1.04336 + 1.15903i
\(89\) 12.0984 + 2.76138i 1.28243 + 0.292705i 0.808833 0.588039i \(-0.200100\pi\)
0.473593 + 0.880744i \(0.342957\pi\)
\(90\) −3.37119 4.40444i −0.355355 0.464268i
\(91\) −2.99886 11.5977i −0.314365 1.21577i
\(92\) −10.4779 9.06119i −1.09240 0.944694i
\(93\) −2.86557 3.59331i −0.297146 0.372609i
\(94\) 1.54339 + 3.37516i 0.159188 + 0.348121i
\(95\) 3.63505 2.89886i 0.372949 0.297417i
\(96\) 11.8070 1.48188i 1.20505 0.151243i
\(97\) 2.97945i 0.302518i 0.988494 + 0.151259i \(0.0483327\pi\)
−0.988494 + 0.151259i \(0.951667\pi\)
\(98\) −9.56229 + 2.56174i −0.965938 + 0.258775i
\(99\) 7.37069i 0.740782i
\(100\) −0.944954 5.06116i −0.0944954 0.506116i
\(101\) 10.8317 8.63801i 1.07780 0.859514i 0.0871812 0.996192i \(-0.472214\pi\)
0.990615 + 0.136678i \(0.0436427\pi\)
\(102\) −9.71087 + 4.44057i −0.961520 + 0.439682i
\(103\) 2.03455 + 2.55124i 0.200470 + 0.251381i 0.871897 0.489689i \(-0.162890\pi\)
−0.671427 + 0.741071i \(0.734318\pi\)
\(104\) 8.56797 9.51786i 0.840159 0.933303i
\(105\) −2.97951 + 15.0247i −0.290770 + 1.46626i
\(106\) 4.80097 3.67470i 0.466311 0.356918i
\(107\) 6.21411 + 1.41833i 0.600740 + 0.137115i 0.512067 0.858946i \(-0.328880\pi\)
0.0886736 + 0.996061i \(0.471737\pi\)
\(108\) 4.33420 5.01187i 0.417058 0.482267i
\(109\) −0.236079 1.03433i −0.0226122 0.0990706i 0.962363 0.271769i \(-0.0876086\pi\)
−0.984975 + 0.172698i \(0.944751\pi\)
\(110\) 9.09374 17.9597i 0.867054 1.71239i
\(111\) 4.98806 + 21.8541i 0.473446 + 2.07430i
\(112\) −7.92697 7.01165i −0.749028 0.662538i
\(113\) 2.84764 12.4763i 0.267883 1.17367i −0.644587 0.764531i \(-0.722971\pi\)
0.912471 0.409142i \(-0.134172\pi\)
\(114\) −3.86613 3.21111i −0.362096 0.300748i
\(115\) 17.1743 + 8.27073i 1.60152 + 0.771249i
\(116\) −5.82835 0.232194i −0.541148 0.0215587i
\(117\) 6.45225i 0.596511i
\(118\) −1.55012 + 3.06141i −0.142700 + 0.281826i
\(119\) 8.67051 + 3.87375i 0.794825 + 0.355106i
\(120\) −15.1510 + 6.21146i −1.38309 + 0.567026i
\(121\) 14.1915 6.83428i 1.29014 0.621298i
\(122\) −4.00892 + 16.0815i −0.362950 + 1.45595i
\(123\) −6.42961 1.46752i −0.579738 0.132321i
\(124\) −4.00931 + 1.73772i −0.360047 + 0.156052i
\(125\) −2.89654 6.01473i −0.259075 0.537974i
\(126\) 5.33190 0.0465099i 0.475004 0.00414343i
\(127\) 3.12141 6.48167i 0.276980 0.575155i −0.715351 0.698766i \(-0.753733\pi\)
0.992331 + 0.123610i \(0.0394473\pi\)
\(128\) 1.57160 11.2040i 0.138912 0.990305i
\(129\) 2.16470i 0.190591i
\(130\) −7.96060 + 15.7218i −0.698191 + 1.37889i
\(131\) −5.94039 + 7.44901i −0.519014 + 0.650823i −0.970399 0.241506i \(-0.922359\pi\)
0.451385 + 0.892329i \(0.350930\pi\)
\(132\) −21.0051 5.68276i −1.82826 0.494621i
\(133\) 0.127956 + 4.46784i 0.0110952 + 0.387410i
\(134\) 3.81499 + 18.3953i 0.329565 + 1.58911i
\(135\) −3.95610 + 8.21493i −0.340487 + 0.707029i
\(136\) 1.66425 + 10.0149i 0.142708 + 0.858767i
\(137\) −4.85034 + 6.08213i −0.414392 + 0.519631i −0.944594 0.328240i \(-0.893545\pi\)
0.530202 + 0.847871i \(0.322116\pi\)
\(138\) 4.98406 19.9932i 0.424271 1.70193i
\(139\) −4.55940 5.71730i −0.386723 0.484935i 0.549922 0.835216i \(-0.314658\pi\)
−0.936645 + 0.350281i \(0.886086\pi\)
\(140\) 13.0493 + 6.46502i 1.10287 + 0.546394i
\(141\) −3.44191 + 4.31602i −0.289861 + 0.363475i
\(142\) 2.97101 + 3.88160i 0.249321 + 0.325736i
\(143\) −21.0989 + 10.1607i −1.76438 + 0.849680i
\(144\) 3.18826 + 4.72525i 0.265688 + 0.393771i
\(145\) 7.82535 1.78609i 0.649860 0.148326i
\(146\) −13.0203 0.259253i −1.07757 0.0214560i
\(147\) −9.82478 10.9682i −0.810334 0.904644i
\(148\) 21.2955 + 0.848386i 1.75048 + 0.0697369i
\(149\) 1.46650 + 6.42516i 0.120140 + 0.526369i 0.998802 + 0.0489252i \(0.0155796\pi\)
−0.878662 + 0.477444i \(0.841563\pi\)
\(150\) 6.08142 4.65477i 0.496546 0.380060i
\(151\) −8.80109 18.2757i −0.716223 1.48725i −0.866801 0.498654i \(-0.833828\pi\)
0.150579 0.988598i \(-0.451886\pi\)
\(152\) −3.90698 + 2.75090i −0.316898 + 0.223127i
\(153\) −3.99911 3.18918i −0.323309 0.257830i
\(154\) 8.54851 + 17.3621i 0.688859 + 1.39908i
\(155\) 4.70117 3.74906i 0.377607 0.301132i
\(156\) 18.3877 + 4.97465i 1.47220 + 0.398291i
\(157\) −14.6082 11.6496i −1.16586 0.929741i −0.167435 0.985883i \(-0.553549\pi\)
−0.998423 + 0.0561423i \(0.982120\pi\)
\(158\) −1.14943 5.54236i −0.0914436 0.440927i
\(159\) 8.10241 + 3.90192i 0.642563 + 0.309442i
\(160\) 1.93876 + 15.4473i 0.153272 + 1.22122i
\(161\) −16.2760 + 8.42039i −1.28273 + 0.663619i
\(162\) 15.4298 + 3.84645i 1.21228 + 0.302206i
\(163\) 13.4632 + 10.7365i 1.05452 + 0.840949i 0.987629 0.156811i \(-0.0501214\pi\)
0.0668885 + 0.997760i \(0.478693\pi\)
\(164\) −2.94327 + 5.53649i −0.229831 + 0.432327i
\(165\) 29.9437 2.33111
\(166\) 0.0330964 1.66218i 0.00256878 0.129010i
\(167\) −0.0376482 0.0181304i −0.00291331 0.00140297i 0.432427 0.901669i \(-0.357657\pi\)
−0.435340 + 0.900266i \(0.643372\pi\)
\(168\) 3.97832 15.2308i 0.306934 1.17508i
\(169\) 6.75725 3.25412i 0.519789 0.250317i
\(170\) −5.80966 12.7049i −0.445581 0.974419i
\(171\) 0.535712 2.34711i 0.0409670 0.179488i
\(172\) −1.98668 0.537482i −0.151483 0.0409826i
\(173\) −5.73277 11.9042i −0.435854 0.905060i −0.997004 0.0773463i \(-0.975355\pi\)
0.561150 0.827714i \(-0.310359\pi\)
\(174\) −3.60814 7.89047i −0.273532 0.598175i
\(175\) −6.68089 1.32487i −0.505028 0.100151i
\(176\) −10.4309 + 17.8667i −0.786257 + 1.34675i
\(177\) −5.10420 −0.383655
\(178\) 17.5462 + 0.349372i 1.31514 + 0.0261865i
\(179\) 4.54679 9.44150i 0.339843 0.705691i −0.659081 0.752072i \(-0.729055\pi\)
0.998924 + 0.0463810i \(0.0147688\pi\)
\(180\) −5.93312 5.13089i −0.442229 0.382434i
\(181\) 6.52436 + 1.48914i 0.484952 + 0.110687i 0.458005 0.888950i \(-0.348564\pi\)
0.0269471 + 0.999637i \(0.491421\pi\)
\(182\) −7.48331 15.1987i −0.554700 1.12660i
\(183\) −24.0345 + 5.48571i −1.77668 + 0.405516i
\(184\) −17.1115 9.53838i −1.26148 0.703179i
\(185\) −28.5921 + 6.52595i −2.10213 + 0.479797i
\(186\) −5.00002 4.15289i −0.366619 0.304504i
\(187\) 4.13104 18.0993i 0.302092 1.32355i
\(188\) 3.10648 + 4.23051i 0.226564 + 0.308541i
\(189\) −4.02769 7.78524i −0.292971 0.566293i
\(190\) 4.20113 5.05811i 0.304782 0.366954i
\(191\) −0.761958 + 0.607641i −0.0551334 + 0.0439674i −0.650669 0.759362i \(-0.725511\pi\)
0.595535 + 0.803329i \(0.296940\pi\)
\(192\) 15.9242 5.44279i 1.14923 0.392800i
\(193\) −6.31736 7.92172i −0.454733 0.570218i 0.500626 0.865664i \(-0.333103\pi\)
−0.955359 + 0.295446i \(0.904532\pi\)
\(194\) 0.855645 + 4.12579i 0.0614318 + 0.296214i
\(195\) −26.2125 −1.87711
\(196\) −12.5057 + 6.29349i −0.893263 + 0.449535i
\(197\) −13.6250 −0.970743 −0.485372 0.874308i \(-0.661316\pi\)
−0.485372 + 0.874308i \(0.661316\pi\)
\(198\) −2.11673 10.2065i −0.150429 0.725347i
\(199\) −8.18702 10.2662i −0.580362 0.727752i 0.401812 0.915722i \(-0.368380\pi\)
−0.982175 + 0.187971i \(0.939809\pi\)
\(200\) −2.76200 6.73706i −0.195303 0.476382i
\(201\) −21.8479 + 17.4231i −1.54103 + 1.22893i
\(202\) 12.5185 15.0721i 0.880800 1.06047i
\(203\) −3.14758 + 7.04514i −0.220917 + 0.494472i
\(204\) −12.1719 + 8.93786i −0.852200 + 0.625775i
\(205\) 1.91997 8.41194i 0.134097 0.587516i
\(206\) 3.55001 + 2.94854i 0.247341 + 0.205435i
\(207\) 9.62290 2.19636i 0.668838 0.152658i
\(208\) 9.13112 15.6404i 0.633129 1.08447i
\(209\) 8.51867 1.94433i 0.589249 0.134492i
\(210\) 0.188948 + 21.6610i 0.0130387 + 1.49475i
\(211\) 25.6087 + 5.84501i 1.76297 + 0.402387i 0.976549 0.215297i \(-0.0690721\pi\)
0.786426 + 0.617685i \(0.211929\pi\)
\(212\) 5.59282 6.46728i 0.384116 0.444175i
\(213\) −3.15471 + 6.55082i −0.216157 + 0.448855i
\(214\) 9.01229 + 0.179448i 0.616067 + 0.0122668i
\(215\) 2.83211 0.193148
\(216\) 4.56245 8.18488i 0.310436 0.556910i
\(217\) 0.165484 + 5.77820i 0.0112338 + 0.392250i
\(218\) −0.623950 1.36449i −0.0422592 0.0924146i
\(219\) −8.40474 17.4526i −0.567940 1.17934i
\(220\) 7.43483 27.4812i 0.501256 1.85278i
\(221\) −3.61629 + 15.8440i −0.243258 + 1.06578i
\(222\) 13.1833 + 28.8300i 0.884807 + 1.93494i
\(223\) −8.82199 + 4.24845i −0.590764 + 0.284497i −0.705285 0.708924i \(-0.749181\pi\)
0.114521 + 0.993421i \(0.463467\pi\)
\(224\) −12.9905 7.43288i −0.867962 0.496630i
\(225\) 3.30526 + 1.59173i 0.220351 + 0.106115i
\(226\) 0.360286 18.0943i 0.0239658 1.20362i
\(227\) −16.6986 −1.10833 −0.554163 0.832408i \(-0.686962\pi\)
−0.554163 + 0.832408i \(0.686962\pi\)
\(228\) −6.27579 3.33629i −0.415624 0.220951i
\(229\) −16.2562 12.9639i −1.07424 0.856677i −0.0840565 0.996461i \(-0.526788\pi\)
−0.990182 + 0.139784i \(0.955359\pi\)
\(230\) 26.1573 + 6.52071i 1.72476 + 0.429963i
\(231\) −17.2962 + 23.0104i −1.13800 + 1.51397i
\(232\) −8.13747 + 1.35227i −0.534251 + 0.0887806i
\(233\) 12.4902 + 6.01495i 0.818259 + 0.394053i 0.795699 0.605693i \(-0.207104\pi\)
0.0225603 + 0.999745i \(0.492818\pi\)
\(234\) 1.85297 + 8.93474i 0.121133 + 0.584082i
\(235\) −5.64671 4.50310i −0.368351 0.293750i
\(236\) −1.26734 + 4.68445i −0.0824969 + 0.304932i
\(237\) 6.58260 5.24945i 0.427586 0.340988i
\(238\) 13.1189 + 2.87416i 0.850375 + 0.186304i
\(239\) 7.78316 + 6.20687i 0.503451 + 0.401489i 0.842015 0.539455i \(-0.181370\pi\)
−0.338564 + 0.940944i \(0.609941\pi\)
\(240\) −19.1965 + 12.9524i −1.23913 + 0.836074i
\(241\) 2.53901 + 5.27230i 0.163552 + 0.339619i 0.966598 0.256298i \(-0.0825030\pi\)
−0.803046 + 0.595917i \(0.796789\pi\)
\(242\) 17.6890 13.5393i 1.13709 0.870340i
\(243\) 3.05176 + 13.3706i 0.195770 + 0.857726i
\(244\) −0.933028 + 23.4201i −0.0597310 + 1.49932i
\(245\) 14.3499 12.8539i 0.916780 0.821205i
\(246\) −9.32483 0.185672i −0.594530 0.0118380i
\(247\) −7.45719 + 1.70206i −0.474490 + 0.108299i
\(248\) −5.05285 + 3.55771i −0.320856 + 0.225915i
\(249\) 2.22801 1.07295i 0.141195 0.0679957i
\(250\) −5.73831 7.49705i −0.362922 0.474155i
\(251\) −5.55141 + 6.96125i −0.350402 + 0.439390i −0.925531 0.378673i \(-0.876381\pi\)
0.575129 + 0.818063i \(0.304952\pi\)
\(252\) 7.36998 1.59563i 0.464265 0.100515i
\(253\) 22.3358 + 28.0082i 1.40424 + 1.76086i
\(254\) 2.46094 9.87189i 0.154413 0.619417i
\(255\) 12.9561 16.2465i 0.811346 1.01740i
\(256\) −1.04132 15.9661i −0.0650824 0.997880i
\(257\) 1.47642 3.06581i 0.0920963 0.191240i −0.849832 0.527053i \(-0.823297\pi\)
0.941929 + 0.335813i \(0.109011\pi\)
\(258\) −0.621663 2.99756i −0.0387031 0.186620i
\(259\) 11.5005 25.7413i 0.714609 1.59949i
\(260\) −6.50841 + 24.0569i −0.403634 + 1.49194i
\(261\) 2.59134 3.24943i 0.160400 0.201135i
\(262\) −6.08671 + 12.0210i −0.376038 + 0.742658i
\(263\) 8.97986i 0.553722i −0.960910 0.276861i \(-0.910706\pi\)
0.960910 0.276861i \(-0.0892942\pi\)
\(264\) −30.7187 1.83691i −1.89061 0.113054i
\(265\) −5.10493 + 10.6005i −0.313593 + 0.651183i
\(266\) 1.46027 + 6.15008i 0.0895349 + 0.377085i
\(267\) 11.3263 + 23.5193i 0.693158 + 1.43936i
\(268\) 10.5656 + 24.3773i 0.645397 + 1.48908i
\(269\) 30.7940 + 7.02853i 1.87754 + 0.428537i 0.998810 0.0487737i \(-0.0155313\pi\)
0.878734 + 0.477311i \(0.158388\pi\)
\(270\) −3.11902 + 12.5117i −0.189818 + 0.761439i
\(271\) −6.49165 + 3.12622i −0.394340 + 0.189904i −0.620536 0.784178i \(-0.713085\pi\)
0.226197 + 0.974082i \(0.427371\pi\)
\(272\) 5.18065 + 13.3901i 0.314123 + 0.811895i
\(273\) 15.1410 20.1432i 0.916372 1.21912i
\(274\) −4.96981 + 9.81514i −0.300237 + 0.592955i
\(275\) 13.3148i 0.802912i
\(276\) 1.15998 29.1168i 0.0698226 1.75263i
\(277\) 1.15076 + 0.554178i 0.0691426 + 0.0332973i 0.468136 0.883657i \(-0.344926\pi\)
−0.398993 + 0.916954i \(0.630640\pi\)
\(278\) −7.95552 6.60765i −0.477140 0.396300i
\(279\) 0.692830 3.03549i 0.0414787 0.181730i
\(280\) 19.9266 + 5.20489i 1.19084 + 0.311052i
\(281\) −6.34115 27.7824i −0.378281 1.65736i −0.702731 0.711456i \(-0.748036\pi\)
0.324450 0.945903i \(-0.394821\pi\)
\(282\) −3.52670 + 6.96506i −0.210012 + 0.414763i
\(283\) −1.84538 8.08514i −0.109696 0.480611i −0.999696 0.0246503i \(-0.992153\pi\)
0.890000 0.455961i \(-0.150704\pi\)
\(284\) 5.22882 + 4.52181i 0.310273 + 0.268320i
\(285\) 9.53521 + 2.17635i 0.564817 + 0.128916i
\(286\) −26.2987 + 20.1292i −1.55507 + 1.19027i
\(287\) 5.35520 + 6.33436i 0.316108 + 0.373905i
\(288\) 5.77194 + 5.62767i 0.340115 + 0.331613i
\(289\) 2.56666 + 3.21849i 0.150980 + 0.189323i
\(290\) 10.3232 4.72058i 0.606200 0.277202i
\(291\) −4.90015 + 3.90774i −0.287252 + 0.229076i
\(292\) −18.1043 + 3.38019i −1.05947 + 0.197811i
\(293\) 21.7010i 1.26779i −0.773420 0.633894i \(-0.781456\pi\)
0.773420 0.633894i \(-0.218544\pi\)
\(294\) −16.7547 12.3667i −0.977155 0.721242i
\(295\) 6.67789i 0.388802i
\(296\) 29.7325 4.94087i 1.72816 0.287182i
\(297\) −13.3970 + 10.6838i −0.777375 + 0.619936i
\(298\) 3.87592 + 8.47607i 0.224526 + 0.491006i
\(299\) −19.5526 24.5182i −1.13076 1.41792i
\(300\) 7.08447 8.19215i 0.409022 0.472974i
\(301\) −1.63589 + 2.17635i −0.0942912 + 0.125443i
\(302\) −17.4357 22.7797i −1.00331 1.31082i
\(303\) 28.4130 + 6.48508i 1.63228 + 0.372558i
\(304\) −4.62017 + 4.93132i −0.264985 + 0.282830i
\(305\) −7.17703 31.4446i −0.410956 1.80051i
\(306\) −6.45363 3.26774i −0.368929 0.186804i
\(307\) 2.54507 + 11.1507i 0.145255 + 0.636402i 0.994165 + 0.107866i \(0.0344017\pi\)
−0.848911 + 0.528536i \(0.822741\pi\)
\(308\) 16.8236 + 21.5872i 0.958614 + 1.23004i
\(309\) −1.52746 + 6.69223i −0.0868940 + 0.380708i
\(310\) 5.43328 6.54160i 0.308589 0.371538i
\(311\) 21.7728 + 10.4852i 1.23462 + 0.594563i 0.933347 0.358975i \(-0.116874\pi\)
0.301275 + 0.953537i \(0.402588\pi\)
\(312\) 26.8910 + 1.60802i 1.52240 + 0.0910362i
\(313\) 0.769036i 0.0434685i −0.999764 0.0217342i \(-0.993081\pi\)
0.999764 0.0217342i \(-0.00691877\pi\)
\(314\) −23.5742 11.9366i −1.33037 0.673620i
\(315\) −9.21628 + 4.76803i −0.519278 + 0.268648i
\(316\) −3.18333 7.34468i −0.179077 0.413171i
\(317\) −12.7385 + 6.13452i −0.715463 + 0.344549i −0.755948 0.654631i \(-0.772824\pi\)
0.0404855 + 0.999180i \(0.487110\pi\)
\(318\) 12.3404 + 3.07630i 0.692013 + 0.172510i
\(319\) 14.7064 + 3.35663i 0.823399 + 0.187935i
\(320\) 7.12088 + 20.8338i 0.398069 + 1.16465i
\(321\) 5.81754 + 12.0802i 0.324703 + 0.674254i
\(322\) −20.1200 + 16.3343i −1.12124 + 0.910275i
\(323\) 2.63096 5.46325i 0.146391 0.303983i
\(324\) 22.4709 + 0.895216i 1.24839 + 0.0497342i
\(325\) 11.6557i 0.646541i
\(326\) 21.7264 + 11.0010i 1.20332 + 0.609289i
\(327\) 1.39147 1.74485i 0.0769486 0.0964905i
\(328\) −2.48570 + 8.51190i −0.137250 + 0.469991i
\(329\) 6.72211 1.73816i 0.370602 0.0958278i
\(330\) 41.4644 8.59928i 2.28254 0.473375i
\(331\) 1.29330 2.68555i 0.0710859 0.147611i −0.862398 0.506231i \(-0.831038\pi\)
0.933484 + 0.358620i \(0.116753\pi\)
\(332\) −0.431517 2.31120i −0.0236826 0.126843i
\(333\) −9.46815 + 11.8727i −0.518852 + 0.650619i
\(334\) −0.0573400 0.0142942i −0.00313751 0.000782142i
\(335\) −22.7949 28.5839i −1.24542 1.56170i
\(336\) 1.13497 22.2333i 0.0619176 1.21293i
\(337\) −7.69347 + 9.64731i −0.419090 + 0.525522i −0.945899 0.324461i \(-0.894817\pi\)
0.526809 + 0.849984i \(0.323388\pi\)
\(338\) 8.42256 6.44670i 0.458127 0.350654i
\(339\) 24.2540 11.6801i 1.31730 0.634377i
\(340\) −11.6935 15.9246i −0.634170 0.863633i
\(341\) 11.0171 2.51458i 0.596609 0.136172i
\(342\) 0.0677788 3.40400i 0.00366506 0.184067i
\(343\) 1.58884 + 18.4520i 0.0857893 + 0.996313i
\(344\) −2.90541 0.173737i −0.156649 0.00936728i
\(345\) 8.92280 + 39.0933i 0.480387 + 2.10471i
\(346\) −11.3571 14.8380i −0.610562 0.797695i
\(347\) 3.83747 + 7.96860i 0.206006 + 0.427777i 0.978216 0.207592i \(-0.0665625\pi\)
−0.772209 + 0.635368i \(0.780848\pi\)
\(348\) −7.26237 9.89012i −0.389304 0.530166i
\(349\) 10.4432 + 8.32819i 0.559013 + 0.445798i 0.861791 0.507263i \(-0.169343\pi\)
−0.302779 + 0.953061i \(0.597914\pi\)
\(350\) −9.63182 + 0.0840180i −0.514843 + 0.00449095i
\(351\) 11.7277 9.35252i 0.625978 0.499201i
\(352\) −9.31313 + 27.7365i −0.496391 + 1.47836i
\(353\) 13.5359 + 10.7946i 0.720446 + 0.574536i 0.913591 0.406634i \(-0.133298\pi\)
−0.193145 + 0.981170i \(0.561869\pi\)
\(354\) −7.06802 + 1.46583i −0.375661 + 0.0779082i
\(355\) −8.57053 4.12735i −0.454877 0.219057i
\(356\) 24.3974 4.55517i 1.29306 0.241423i
\(357\) 5.00096 + 19.3406i 0.264679 + 1.02361i
\(358\) 3.58472 14.3799i 0.189459 0.759999i
\(359\) 16.7079 + 13.3241i 0.881808 + 0.703218i 0.955793 0.294041i \(-0.0950002\pi\)
−0.0739849 + 0.997259i \(0.523572\pi\)
\(360\) −9.68938 5.40110i −0.510675 0.284663i
\(361\) −16.1460 −0.849790
\(362\) 9.46225 + 0.188408i 0.497325 + 0.00990249i
\(363\) 29.8531 + 14.3765i 1.56688 + 0.754570i
\(364\) −14.7273 18.8973i −0.771920 0.990486i
\(365\) 22.8335 10.9960i 1.19516 0.575559i
\(366\) −31.7063 + 14.4986i −1.65731 + 0.757854i
\(367\) −2.30913 + 10.1170i −0.120536 + 0.528102i 0.878221 + 0.478255i \(0.158730\pi\)
−0.998757 + 0.0498468i \(0.984127\pi\)
\(368\) −26.4344 8.29413i −1.37799 0.432361i
\(369\) −1.93848 4.02529i −0.100913 0.209548i
\(370\) −37.7186 + 17.2479i −1.96090 + 0.896677i
\(371\) −5.19730 10.0460i −0.269830 0.521563i
\(372\) −8.11640 4.31478i −0.420816 0.223711i
\(373\) −9.57610 −0.495831 −0.247916 0.968782i \(-0.579746\pi\)
−0.247916 + 0.968782i \(0.579746\pi\)
\(374\) 0.522663 26.2493i 0.0270263 1.35732i
\(375\) 6.09312 12.6525i 0.314647 0.653372i
\(376\) 5.51662 + 4.96606i 0.284498 + 0.256105i
\(377\) −12.8739 2.93838i −0.663038 0.151334i
\(378\) −7.81311 9.62391i −0.401863 0.495000i
\(379\) −8.72335 + 1.99105i −0.448088 + 0.102273i −0.440610 0.897699i \(-0.645238\pi\)
−0.00747858 + 0.999972i \(0.502381\pi\)
\(380\) 4.36491 8.21070i 0.223915 0.421200i
\(381\) 14.7540 3.36750i 0.755870 0.172522i
\(382\) −0.880616 + 1.06025i −0.0450562 + 0.0542472i
\(383\) −6.02445 + 26.3949i −0.307835 + 1.34871i 0.550161 + 0.835058i \(0.314566\pi\)
−0.857996 + 0.513656i \(0.828291\pi\)
\(384\) 20.4879 12.1100i 1.04552 0.617988i
\(385\) −30.1048 22.6288i −1.53429 1.15327i
\(386\) −11.0229 9.15535i −0.561052 0.465995i
\(387\) 1.14653 0.914328i 0.0582814 0.0464779i
\(388\) 2.36971 + 5.46745i 0.120304 + 0.277568i
\(389\) −3.37734 4.23505i −0.171238 0.214725i 0.688806 0.724946i \(-0.258135\pi\)
−0.860044 + 0.510220i \(0.829564\pi\)
\(390\) −36.2977 + 7.52776i −1.83800 + 0.381183i
\(391\) 24.8607 1.25726
\(392\) −15.5098 + 12.3063i −0.783365 + 0.621562i
\(393\) −20.0422 −1.01099
\(394\) −18.8672 + 3.91287i −0.950518 + 0.197127i
\(395\) 6.86792 + 8.61210i 0.345563 + 0.433322i
\(396\) −5.86227 13.5256i −0.294590 0.679687i
\(397\) −29.1515 + 23.2476i −1.46307 + 1.16676i −0.511524 + 0.859269i \(0.670919\pi\)
−0.951550 + 0.307493i \(0.900510\pi\)
\(398\) −14.2852 11.8649i −0.716054 0.594735i
\(399\) −7.18019 + 6.07029i −0.359459 + 0.303895i
\(400\) −5.75943 8.53593i −0.287972 0.426797i
\(401\) 2.83819 12.4349i 0.141732 0.620970i −0.853300 0.521420i \(-0.825403\pi\)
0.995033 0.0995498i \(-0.0317403\pi\)
\(402\) −25.2502 + 30.4009i −1.25937 + 1.51626i
\(403\) −9.64430 + 2.20125i −0.480417 + 0.109652i
\(404\) 13.0065 24.4662i 0.647100 1.21724i
\(405\) −30.1703 + 6.88618i −1.49917 + 0.342177i
\(406\) −2.33537 + 10.6597i −0.115902 + 0.529030i
\(407\) −53.7337 12.2644i −2.66348 0.607923i
\(408\) −14.2882 + 15.8722i −0.707369 + 0.785792i
\(409\) 7.67598 15.9393i 0.379553 0.788150i −0.620439 0.784254i \(-0.713046\pi\)
0.999992 0.00389554i \(-0.00123999\pi\)
\(410\) 0.242917 12.1998i 0.0119968 0.602505i
\(411\) −16.3645 −0.807200
\(412\) 5.76263 + 3.06349i 0.283904 + 0.150927i
\(413\) 5.13167 + 3.85731i 0.252513 + 0.189806i
\(414\) 12.6945 5.80494i 0.623902 0.285297i
\(415\) 1.40376 + 2.91494i 0.0689079 + 0.143089i
\(416\) 8.15265 24.2803i 0.399717 1.19044i
\(417\) 3.42301 14.9972i 0.167626 0.734416i
\(418\) 11.2378 5.13882i 0.549661 0.251348i
\(419\) 8.56384 4.12413i 0.418371 0.201477i −0.212842 0.977087i \(-0.568272\pi\)
0.631213 + 0.775610i \(0.282558\pi\)
\(420\) 6.48230 + 29.9408i 0.316304 + 1.46096i
\(421\) −17.7403 8.54328i −0.864609 0.416374i −0.0516297 0.998666i \(-0.516442\pi\)
−0.812979 + 0.582293i \(0.802156\pi\)
\(422\) 37.1401 + 0.739517i 1.80795 + 0.0359991i
\(423\) −3.73977 −0.181834
\(424\) 5.88736 10.5617i 0.285915 0.512922i
\(425\) 7.22419 + 5.76110i 0.350425 + 0.279455i
\(426\) −2.48720 + 9.97722i −0.120505 + 0.483398i
\(427\) 28.3095 + 12.6479i 1.36999 + 0.612076i
\(428\) 12.5313 2.33968i 0.605722 0.113093i
\(429\) −44.3833 21.3739i −2.14285 1.03194i
\(430\) 3.92175 0.813330i 0.189124 0.0392223i
\(431\) −8.34212 6.65262i −0.401826 0.320445i 0.401639 0.915798i \(-0.368441\pi\)
−0.803464 + 0.595353i \(0.797012\pi\)
\(432\) 3.96729 12.6442i 0.190877 0.608346i
\(433\) 14.3008 11.4045i 0.687254 0.548067i −0.216413 0.976302i \(-0.569436\pi\)
0.903667 + 0.428235i \(0.140864\pi\)
\(434\) 1.88855 + 7.95382i 0.0906533 + 0.381796i
\(435\) 13.2009 + 10.5274i 0.632936 + 0.504749i
\(436\) −1.25587 1.71028i −0.0601452 0.0819076i
\(437\) 5.07690 + 10.5423i 0.242861 + 0.504306i
\(438\) −16.6505 21.7538i −0.795593 1.03944i
\(439\) −6.76654 29.6462i −0.322949 1.41493i −0.832276 0.554361i \(-0.812963\pi\)
0.509327 0.860573i \(-0.329894\pi\)
\(440\) 2.40325 40.1897i 0.114571 1.91597i
\(441\) 1.65951 9.83645i 0.0790242 0.468402i
\(442\) −0.457536 + 22.9785i −0.0217628 + 1.09297i
\(443\) 18.1146 4.13455i 0.860653 0.196438i 0.230655 0.973036i \(-0.425913\pi\)
0.629998 + 0.776597i \(0.283056\pi\)
\(444\) 26.5350 + 36.1362i 1.25930 + 1.71495i
\(445\) −30.7706 + 14.8183i −1.45867 + 0.702457i
\(446\) −10.9962 + 8.41654i −0.520683 + 0.398535i
\(447\) −8.64372 + 10.8389i −0.408834 + 0.512661i
\(448\) −20.1231 6.56203i −0.950728 0.310027i
\(449\) 0.385716 + 0.483673i 0.0182031 + 0.0228259i 0.790850 0.612010i \(-0.209639\pi\)
−0.772647 + 0.634836i \(0.781068\pi\)
\(450\) 5.03407 + 1.25493i 0.237308 + 0.0591581i
\(451\) 10.1101 12.6777i 0.476065 0.596967i
\(452\) −4.69746 25.1596i −0.220950 1.18341i
\(453\) 18.5138 38.4444i 0.869856 1.80627i
\(454\) −23.1234 + 4.79554i −1.08523 + 0.225066i
\(455\) 26.3536 + 19.8091i 1.23548 + 0.928666i
\(456\) −9.64851 2.81762i −0.451833 0.131947i
\(457\) 15.5436 19.4911i 0.727100 0.911754i −0.271617 0.962406i \(-0.587558\pi\)
0.998716 + 0.0506512i \(0.0161297\pi\)
\(458\) −26.2337 13.2832i −1.22582 0.620683i
\(459\) 11.8915i 0.555049i
\(460\) 38.0940 + 1.51762i 1.77614 + 0.0707593i
\(461\) −16.1258 + 33.4856i −0.751055 + 1.55958i 0.0757727 + 0.997125i \(0.475858\pi\)
−0.826827 + 0.562456i \(0.809857\pi\)
\(462\) −17.3426 + 36.8308i −0.806853 + 1.71352i
\(463\) 10.2266 + 21.2357i 0.475268 + 0.986905i 0.991457 + 0.130430i \(0.0416358\pi\)
−0.516189 + 0.856475i \(0.672650\pi\)
\(464\) −10.8800 + 4.20948i −0.505091 + 0.195420i
\(465\) 12.3318 + 2.81465i 0.571872 + 0.130526i
\(466\) 19.0231 + 4.74224i 0.881230 + 0.219680i
\(467\) 21.7051 10.4526i 1.00439 0.483690i 0.141966 0.989872i \(-0.454658\pi\)
0.862427 + 0.506181i \(0.168943\pi\)
\(468\) 5.13180 + 11.8402i 0.237217 + 0.547315i
\(469\) 35.1324 1.00617i 1.62226 0.0464607i
\(470\) −9.11248 4.61402i −0.420327 0.212829i
\(471\) 39.3045i 1.81106i
\(472\) −0.409659 + 6.85074i −0.0188561 + 0.315331i
\(473\) 4.79536 + 2.30932i 0.220491 + 0.106183i
\(474\) 7.60769 9.15956i 0.349433 0.420713i
\(475\) −0.967739 + 4.23994i −0.0444029 + 0.194542i
\(476\) 18.9918 + 0.212454i 0.870490 + 0.00973783i
\(477\) 1.35566 + 5.93953i 0.0620713 + 0.271952i
\(478\) 12.5602 + 6.35976i 0.574491 + 0.290889i
\(479\) −2.11086 9.24830i −0.0964478 0.422565i 0.903535 0.428515i \(-0.140963\pi\)
−0.999982 + 0.00594995i \(0.998106\pi\)
\(480\) −22.8626 + 23.4487i −1.04353 + 1.07028i
\(481\) 47.0382 + 10.7362i 2.14476 + 0.489527i
\(482\) 5.02999 + 6.57165i 0.229110 + 0.299330i
\(483\) −35.1956 15.7245i −1.60146 0.715487i
\(484\) 20.6066 23.8285i 0.936662 1.08311i
\(485\) −5.11255 6.41093i −0.232149 0.291105i
\(486\) 8.06572 + 17.6385i 0.365869 + 0.800101i
\(487\) −13.0469 + 10.4046i −0.591213 + 0.471477i −0.872813 0.488055i \(-0.837706\pi\)
0.281600 + 0.959532i \(0.409135\pi\)
\(488\) 5.43381 + 32.6988i 0.245977 + 1.48021i
\(489\) 36.2238i 1.63810i
\(490\) 16.1795 21.9204i 0.730917 0.990264i
\(491\) 20.5029i 0.925282i 0.886546 + 0.462641i \(0.153098\pi\)
−0.886546 + 0.462641i \(0.846902\pi\)
\(492\) −12.9659 + 2.42082i −0.584546 + 0.109139i
\(493\) 8.18442 6.52686i 0.368608 0.293955i
\(494\) −9.83753 + 4.49849i −0.442612 + 0.202397i
\(495\) 12.6476 + 15.8596i 0.568468 + 0.712837i
\(496\) −5.97521 + 6.37761i −0.268295 + 0.286363i
\(497\) 8.12224 4.20203i 0.364332 0.188487i
\(498\) 2.77710 2.12562i 0.124445 0.0952511i
\(499\) −40.6641 9.28132i −1.82038 0.415489i −0.830452 0.557090i \(-0.811918\pi\)
−0.989924 + 0.141601i \(0.954775\pi\)
\(500\) −10.0991 8.73359i −0.451647 0.390578i
\(501\) −0.0195598 0.0856972i −0.000873869 0.00382867i
\(502\) −5.68816 + 11.2338i −0.253875 + 0.501391i
\(503\) −7.97393 34.9361i −0.355540 1.55772i −0.764165 0.645020i \(-0.776849\pi\)
0.408625 0.912702i \(-0.366008\pi\)
\(504\) 9.74733 4.32607i 0.434181 0.192699i
\(505\) −8.48451 + 37.1731i −0.377556 + 1.65418i
\(506\) 38.9729 + 32.3699i 1.73256 + 1.43902i
\(507\) 14.2144 + 6.84532i 0.631286 + 0.304011i
\(508\) 0.572755 14.3768i 0.0254119 0.637868i
\(509\) 1.06757i 0.0473193i −0.999720 0.0236597i \(-0.992468\pi\)
0.999720 0.0236597i \(-0.00753181\pi\)
\(510\) 13.2753 26.2181i 0.587840 1.16096i
\(511\) −4.73919 + 23.8982i −0.209649 + 1.05719i
\(512\) −6.02713 21.8099i −0.266364 0.963872i
\(513\) −5.04265 + 2.42841i −0.222638 + 0.107217i
\(514\) 1.16402 4.66938i 0.0513427 0.205957i
\(515\) −8.75553 1.99839i −0.385815 0.0880597i
\(516\) −1.72169 3.97234i −0.0757933 0.174872i
\(517\) −5.88921 12.2291i −0.259007 0.537834i
\(518\) 8.53289 38.9480i 0.374914 1.71128i
\(519\) 12.0594 25.0415i 0.529347 1.09920i
\(520\) −2.10379 + 35.1818i −0.0922575 + 1.54282i
\(521\) 27.4146i 1.20106i −0.799603 0.600529i \(-0.794957\pi\)
0.799603 0.600529i \(-0.205043\pi\)
\(522\) 2.65517 5.24383i 0.116214 0.229516i
\(523\) 4.06277 5.09456i 0.177653 0.222769i −0.685030 0.728515i \(-0.740211\pi\)
0.862683 + 0.505745i \(0.168782\pi\)
\(524\) −4.97636 + 18.3940i −0.217393 + 0.803546i
\(525\) −6.58346 12.7254i −0.287326 0.555380i
\(526\) −2.57886 12.4348i −0.112443 0.542185i
\(527\) 3.40259 7.06556i 0.148219 0.307781i
\(528\) −43.0652 + 6.27821i −1.87417 + 0.273224i
\(529\) −15.5705 + 19.5247i −0.676977 + 0.848902i
\(530\) −4.02477 + 16.1450i −0.174825 + 0.701296i
\(531\) −2.15591 2.70343i −0.0935587 0.117319i
\(532\) 3.78830 + 8.09694i 0.164244 + 0.351047i
\(533\) −8.85031 + 11.0979i −0.383349 + 0.480705i
\(534\) 22.4384 + 29.3156i 0.971003 + 1.26861i
\(535\) −15.8047 + 7.61116i −0.683299 + 0.329059i
\(536\) 21.6314 + 30.7221i 0.934335 + 1.32699i
\(537\) 21.4913 4.90526i 0.927420 0.211678i
\(538\) 44.6604 + 0.889256i 1.92545 + 0.0383386i
\(539\) 34.7786 10.0634i 1.49802 0.433460i
\(540\) −0.725916 + 18.2213i −0.0312384 + 0.784120i
\(541\) −7.61056 33.3441i −0.327204 1.43357i −0.824436 0.565956i \(-0.808507\pi\)
0.497232 0.867618i \(-0.334350\pi\)
\(542\) −8.09151 + 6.19331i −0.347560 + 0.266025i
\(543\) 6.10799 + 12.6834i 0.262119 + 0.544296i
\(544\) 11.0193 + 17.0541i 0.472448 + 0.731190i
\(545\) 2.28281 + 1.82048i 0.0977850 + 0.0779809i
\(546\) 15.1816 32.2414i 0.649714 1.37981i
\(547\) −23.0956 + 18.4181i −0.987496 + 0.787502i −0.977173 0.212445i \(-0.931857\pi\)
−0.0103232 + 0.999947i \(0.503286\pi\)
\(548\) −4.06321 + 15.0187i −0.173572 + 0.641569i
\(549\) −13.0572 10.4128i −0.557268 0.444406i
\(550\) 3.82377 + 18.4376i 0.163046 + 0.786183i
\(551\) 4.43911 + 2.13776i 0.189112 + 0.0910717i
\(552\) −6.75555 40.6526i −0.287536 1.73029i
\(553\) −10.5851 + 0.303152i −0.450125 + 0.0128913i
\(554\) 1.75267 + 0.436918i 0.0744636 + 0.0185629i
\(555\) −48.2332 38.4647i −2.04738 1.63273i
\(556\) −12.9140 6.86524i −0.547675 0.291151i
\(557\) 36.8155 1.55992 0.779962 0.625827i \(-0.215238\pi\)
0.779962 + 0.625827i \(0.215238\pi\)
\(558\) 0.0876576 4.40235i 0.00371084 0.186367i
\(559\) −4.19783 2.02157i −0.177549 0.0855032i
\(560\) 29.0881 + 1.48490i 1.22920 + 0.0627483i
\(561\) 35.1850 16.9442i 1.48551 0.715386i
\(562\) −16.7595 36.6505i −0.706957 1.54601i
\(563\) −9.79198 + 42.9015i −0.412683 + 1.80808i 0.158617 + 0.987340i \(0.449297\pi\)
−0.571299 + 0.820742i \(0.693561\pi\)
\(564\) −2.88335 + 10.6577i −0.121411 + 0.448768i
\(565\) 15.2812 + 31.7318i 0.642887 + 1.33497i
\(566\) −4.87729 10.6659i −0.205008 0.448322i
\(567\) 12.1354 27.1622i 0.509637 1.14071i
\(568\) 8.53918 + 4.75995i 0.358296 + 0.199723i
\(569\) −11.4574 −0.480318 −0.240159 0.970734i \(-0.577200\pi\)
−0.240159 + 0.970734i \(0.577200\pi\)
\(570\) 13.8289 + 0.275354i 0.579227 + 0.0115333i
\(571\) −17.8429 + 37.0512i −0.746702 + 1.55054i 0.0856683 + 0.996324i \(0.472697\pi\)
−0.832371 + 0.554220i \(0.813017\pi\)
\(572\) −30.6363 + 35.4264i −1.28097 + 1.48125i
\(573\) −1.99871 0.456193i −0.0834974 0.0190577i
\(574\) 9.23472 + 7.23357i 0.385450 + 0.301923i
\(575\) −17.3833 + 3.96763i −0.724934 + 0.165461i
\(576\) 9.60885 + 6.13530i 0.400369 + 0.255638i
\(577\) 23.7265 5.41542i 0.987747 0.225447i 0.302017 0.953303i \(-0.402340\pi\)
0.685730 + 0.727856i \(0.259483\pi\)
\(578\) 4.47847 + 3.71970i 0.186280 + 0.154719i
\(579\) 4.74282 20.7797i 0.197105 0.863573i
\(580\) 12.9394 9.50145i 0.537278 0.394526i
\(581\) −3.05085 0.605007i −0.126571 0.0250999i
\(582\) −5.66324 + 6.81847i −0.234749 + 0.282635i
\(583\) −17.2875 + 13.7863i −0.715973 + 0.570970i
\(584\) −24.0991 + 9.87993i −0.997228 + 0.408834i
\(585\) −11.0717 13.8834i −0.457756 0.574008i
\(586\) −6.23215 30.0505i −0.257448 1.24137i
\(587\) −8.99640 −0.371321 −0.185661 0.982614i \(-0.559443\pi\)
−0.185661 + 0.982614i \(0.559443\pi\)
\(588\) −26.7526 12.3131i −1.10326 0.507785i
\(589\) 3.69103 0.152086
\(590\) −1.91777 9.24719i −0.0789533 0.380701i
\(591\) −17.8701 22.4084i −0.735077 0.921758i
\(592\) 39.7530 15.3805i 1.63384 0.632134i
\(593\) 17.2415 13.7497i 0.708025 0.564631i −0.201899 0.979406i \(-0.564711\pi\)
0.909924 + 0.414775i \(0.136140\pi\)
\(594\) −15.4833 + 18.6417i −0.635289 + 0.764880i
\(595\) −25.3036 + 6.54283i −1.03735 + 0.268230i
\(596\) 7.80135 + 10.6241i 0.319556 + 0.435181i
\(597\) 6.14649 26.9295i 0.251559 1.10215i
\(598\) −34.1166 28.3364i −1.39513 1.15876i
\(599\) 20.4136 4.65927i 0.834076 0.190372i 0.215904 0.976415i \(-0.430730\pi\)
0.618173 + 0.786042i \(0.287873\pi\)
\(600\) 7.45756 13.3786i 0.304454 0.546179i
\(601\) 2.56199 0.584758i 0.104506 0.0238528i −0.169948 0.985453i \(-0.554360\pi\)
0.274454 + 0.961600i \(0.411503\pi\)
\(602\) −1.64029 + 3.48350i −0.0668532 + 0.141977i
\(603\) −18.4563 4.21252i −0.751597 0.171547i
\(604\) −30.6860 26.5368i −1.24860 1.07977i
\(605\) −18.8089 + 39.0572i −0.764692 + 1.58790i
\(606\) 41.2072 + 0.820498i 1.67393 + 0.0333304i
\(607\) −18.5115 −0.751358 −0.375679 0.926750i \(-0.622590\pi\)
−0.375679 + 0.926750i \(0.622590\pi\)
\(608\) −4.98158 + 8.15546i −0.202030 + 0.330747i
\(609\) −15.7150 + 4.06348i −0.636805 + 0.164661i
\(610\) −18.9687 41.4818i −0.768021 1.67955i
\(611\) 5.15538 + 10.7053i 0.208564 + 0.433088i
\(612\) −9.87509 2.67163i −0.399177 0.107994i
\(613\) −5.00080 + 21.9099i −0.201980 + 0.884933i 0.767749 + 0.640751i \(0.221377\pi\)
−0.969729 + 0.244183i \(0.921480\pi\)
\(614\) 6.72654 + 14.7100i 0.271461 + 0.593645i
\(615\) 16.3528 7.87512i 0.659411 0.317555i
\(616\) 29.4959 + 25.0613i 1.18842 + 1.00975i
\(617\) 9.84970 + 4.74337i 0.396534 + 0.190961i 0.621515 0.783403i \(-0.286518\pi\)
−0.224981 + 0.974363i \(0.572232\pi\)
\(618\) −0.193255 + 9.70571i −0.00777387 + 0.390421i
\(619\) −0.478977 −0.0192517 −0.00962586 0.999954i \(-0.503064\pi\)
−0.00962586 + 0.999954i \(0.503064\pi\)
\(620\) 5.64509 10.6188i 0.226712 0.426461i
\(621\) −17.9405 14.3071i −0.719927 0.574123i
\(622\) 33.1610 + 8.26664i 1.32963 + 0.331462i
\(623\) 6.38657 32.2053i 0.255872 1.29028i
\(624\) 37.6990 5.49590i 1.50917 0.220012i
\(625\) 28.1503 + 13.5565i 1.12601 + 0.542259i
\(626\) −0.220853 1.06492i −0.00882707 0.0425628i
\(627\) 14.3705 + 11.4601i 0.573903 + 0.457673i
\(628\) −36.0723 9.75907i −1.43944 0.389429i
\(629\) −29.9040 + 23.8477i −1.19235 + 0.950869i
\(630\) −11.3929 + 9.24928i −0.453905 + 0.368500i
\(631\) 19.4128 + 15.4812i 0.772812 + 0.616297i 0.928424 0.371521i \(-0.121164\pi\)
−0.155613 + 0.987818i \(0.549735\pi\)
\(632\) −6.51738 9.25633i −0.259247 0.368197i
\(633\) 23.9744 + 49.7834i 0.952897 + 1.97871i
\(634\) −15.8778 + 12.1530i −0.630589 + 0.482658i
\(635\) 4.40575 + 19.3028i 0.174837 + 0.766010i
\(636\) 17.9717 + 0.715973i 0.712626 + 0.0283902i
\(637\) −30.4449 + 8.80940i −1.20627 + 0.349041i
\(638\) 21.3286 + 0.424684i 0.844407 + 0.0168134i
\(639\) −4.80213 + 1.09605i −0.189969 + 0.0433592i
\(640\) 15.8437 + 26.8046i 0.626278 + 1.05955i
\(641\) 14.1715 6.82465i 0.559742 0.269558i −0.132548 0.991177i \(-0.542316\pi\)
0.692291 + 0.721619i \(0.256602\pi\)
\(642\) 11.5251 + 15.0574i 0.454858 + 0.594268i
\(643\) −18.8208 + 23.6005i −0.742220 + 0.930714i −0.999364 0.0356591i \(-0.988647\pi\)
0.257144 + 0.966373i \(0.417218\pi\)
\(644\) −23.1702 + 28.3970i −0.913034 + 1.11900i
\(645\) 3.71449 + 4.65782i 0.146258 + 0.183401i
\(646\) 2.07427 8.32079i 0.0816112 0.327377i
\(647\) 9.63166 12.0777i 0.378660 0.474824i −0.555583 0.831461i \(-0.687505\pi\)
0.934243 + 0.356636i \(0.116076\pi\)
\(648\) 31.3737 5.21360i 1.23247 0.204810i
\(649\) 5.44521 11.3071i 0.213743 0.443842i
\(650\) −3.34730 16.1402i −0.131292 0.633070i
\(651\) −9.28606 + 7.85064i −0.363949 + 0.307691i
\(652\) 33.2449 + 8.99416i 1.30197 + 0.352238i
\(653\) −26.5214 + 33.2568i −1.03786 + 1.30144i −0.0855426 + 0.996335i \(0.527262\pi\)
−0.952319 + 0.305103i \(0.901309\pi\)
\(654\) 1.42575 2.81579i 0.0557512 0.110106i
\(655\) 26.2215i 1.02456i
\(656\) −0.997608 + 12.5007i −0.0389501 + 0.488070i
\(657\) 5.69376 11.8232i 0.222135 0.461268i
\(658\) 8.80927 4.33738i 0.343421 0.169089i
\(659\) −11.2074 23.2724i −0.436579 0.906565i −0.996929 0.0783095i \(-0.975048\pi\)
0.560350 0.828256i \(-0.310667\pi\)
\(660\) 54.9482 23.8157i 2.13886 0.927024i
\(661\) −10.3371 2.35938i −0.402068 0.0917694i 0.0167047 0.999860i \(-0.494682\pi\)
−0.418773 + 0.908091i \(0.637540\pi\)
\(662\) 1.01964 4.09023i 0.0396296 0.158971i
\(663\) −30.8008 + 14.8329i −1.19620 + 0.576061i
\(664\) −1.26128 3.07650i −0.0489470 0.119391i
\(665\) −7.94184 9.39394i −0.307971 0.364281i
\(666\) −9.70138 + 19.1598i −0.375921 + 0.742426i
\(667\) 20.2003i 0.782160i
\(668\) −0.0835065 0.00332680i −0.00323096 0.000128718i
\(669\) −18.5578 8.93696i −0.717486 0.345523i
\(670\) −39.7739 33.0352i −1.53660 1.27626i
\(671\) 13.4880 59.0947i 0.520697 2.28132i
\(672\) −4.81336 31.1134i −0.185679 1.20023i
\(673\) 9.95220 + 43.6035i 0.383629 + 1.68079i 0.686002 + 0.727600i \(0.259364\pi\)
−0.302372 + 0.953190i \(0.597779\pi\)
\(674\) −7.88298 + 15.5685i −0.303641 + 0.599677i
\(675\) −1.89782 8.31488i −0.0730470 0.320040i
\(676\) 9.81175 11.3459i 0.377375 0.436379i
\(677\) −8.77794 2.00351i −0.337364 0.0770011i 0.0504830 0.998725i \(-0.483924\pi\)
−0.387847 + 0.921724i \(0.626781\pi\)
\(678\) 30.2314 23.1393i 1.16103 0.888660i
\(679\) 7.87966 0.225669i 0.302394 0.00866038i
\(680\) −20.7658 18.6934i −0.796334 0.716859i
\(681\) −21.9013 27.4633i −0.839259 1.05240i
\(682\) 14.5338 6.64597i 0.556527 0.254488i
\(683\) −5.66188 + 4.51520i −0.216646 + 0.172769i −0.725799 0.687906i \(-0.758530\pi\)
0.509154 + 0.860676i \(0.329958\pi\)
\(684\) −0.883712 4.73315i −0.0337896 0.180976i
\(685\) 21.4099i 0.818029i
\(686\) 7.49922 + 25.0951i 0.286322 + 0.958134i
\(687\) 43.7386i 1.66873i
\(688\) −4.07316 + 0.593800i −0.155288 + 0.0226384i
\(689\) 15.1333 12.0684i 0.576534 0.459771i
\(690\) 23.5827 + 51.5719i 0.897779 + 1.96331i
\(691\) 21.9397 + 27.5115i 0.834626 + 1.04659i 0.998195 + 0.0600558i \(0.0191279\pi\)
−0.163569 + 0.986532i \(0.552301\pi\)
\(692\) −19.9879 17.2853i −0.759827 0.657089i
\(693\) −19.4930 + 0.558269i −0.740478 + 0.0212069i
\(694\) 7.60237 + 9.93245i 0.288582 + 0.377030i
\(695\) 19.6210 + 4.47838i 0.744269 + 0.169874i
\(696\) −12.8968 11.6097i −0.488852 0.440064i
\(697\) −2.50402 10.9708i −0.0948466 0.415550i
\(698\) 16.8529 + 8.53334i 0.637893 + 0.322992i
\(699\) 6.48918 + 28.4309i 0.245443 + 1.07536i
\(700\) −13.3135 + 2.88243i −0.503204 + 0.108946i
\(701\) −9.42493 + 41.2933i −0.355975 + 1.55963i 0.407141 + 0.913365i \(0.366526\pi\)
−0.763116 + 0.646262i \(0.776331\pi\)
\(702\) 13.5540 16.3189i 0.511563 0.615916i
\(703\) −16.2195 7.81089i −0.611730 0.294593i
\(704\) −4.93092 + 41.0826i −0.185841 + 1.54836i
\(705\) 15.1929i 0.572199i
\(706\) 21.8439 + 11.0605i 0.822105 + 0.416266i
\(707\) −23.6651 27.9920i −0.890017 1.05275i
\(708\) −9.36647 + 4.05962i −0.352014 + 0.152570i
\(709\) 31.4308 15.1363i 1.18041 0.568455i 0.262378 0.964965i \(-0.415493\pi\)
0.918030 + 0.396510i \(0.129779\pi\)
\(710\) −13.0533 3.25404i −0.489883 0.122122i
\(711\) 5.56073 + 1.26920i 0.208544 + 0.0475987i
\(712\) 32.4761 13.3143i 1.21709 0.498973i
\(713\) 6.56589 + 13.6342i 0.245895 + 0.510605i
\(714\) 12.4794 + 25.3457i 0.467028 + 0.948539i
\(715\) 27.9637 58.0673i 1.04578 2.17159i
\(716\) 0.834302 20.9419i 0.0311793 0.782637i
\(717\) 20.9413i 0.782066i
\(718\) 26.9626 + 13.6523i 1.00624 + 0.509499i
\(719\) −11.4455 + 14.3522i −0.426844 + 0.535246i −0.948023 0.318202i \(-0.896921\pi\)
0.521179 + 0.853448i \(0.325492\pi\)
\(720\) −14.9684 4.69654i −0.557841 0.175030i
\(721\) 6.59309 5.57394i 0.245539 0.207584i
\(722\) −22.3582 + 4.63684i −0.832084 + 0.172565i
\(723\) −5.34101 + 11.0907i −0.198634 + 0.412469i
\(724\) 13.1569 2.45649i 0.488974 0.0912947i
\(725\) −4.68112 + 5.86994i −0.173853 + 0.218004i
\(726\) 45.4677 + 11.3345i 1.68746 + 0.420664i
\(727\) 10.2179 + 12.8128i 0.378960 + 0.475201i 0.934333 0.356400i \(-0.115996\pi\)
−0.555373 + 0.831601i \(0.687425\pi\)
\(728\) −25.8205 21.9385i −0.956973 0.813096i
\(729\) 3.04487 3.81815i 0.112773 0.141413i
\(730\) 28.4608 21.7841i 1.05338 0.806266i
\(731\) 3.32784 1.60261i 0.123085 0.0592745i
\(732\) −39.7415 + 29.1824i −1.46889 + 1.07861i
\(733\) 2.85067 0.650648i 0.105292 0.0240322i −0.169550 0.985522i \(-0.554231\pi\)
0.274842 + 0.961489i \(0.411374\pi\)
\(734\) −0.292154 + 14.6726i −0.0107836 + 0.541575i
\(735\) 39.9609 + 6.74181i 1.47398 + 0.248675i
\(736\) −38.9869 3.89380i −1.43708 0.143527i
\(737\) −15.2891 66.9857i −0.563180 2.46745i
\(738\) −3.84029 5.01731i −0.141363 0.184690i
\(739\) 8.70837 + 18.0831i 0.320343 + 0.665199i 0.997502 0.0706379i \(-0.0225035\pi\)
−0.677159 + 0.735836i \(0.736789\pi\)
\(740\) −47.2775 + 34.7161i −1.73796 + 1.27619i
\(741\) −12.5799 10.0321i −0.462133 0.368539i
\(742\) −10.0820 12.4186i −0.370121 0.455902i
\(743\) −2.18383 + 1.74154i −0.0801168 + 0.0638910i −0.662729 0.748859i \(-0.730602\pi\)
0.582612 + 0.812750i \(0.302031\pi\)
\(744\) −12.4783 3.64400i −0.457477 0.133596i
\(745\) −14.1806 11.3087i −0.519539 0.414318i
\(746\) −13.2605 + 2.75008i −0.485501 + 0.100688i
\(747\) 1.50936 + 0.726869i 0.0552245 + 0.0265947i
\(748\) −6.81457 36.4987i −0.249165 1.33453i
\(749\) 3.28034 16.5417i 0.119861 0.604419i
\(750\) 4.80387 19.2704i 0.175412 0.703654i
\(751\) 9.18263 + 7.32290i 0.335079 + 0.267217i 0.776545 0.630061i \(-0.216970\pi\)
−0.441467 + 0.897278i \(0.645542\pi\)
\(752\) 9.06530 + 5.29246i 0.330577 + 0.192996i
\(753\) −18.7298 −0.682553
\(754\) −18.6709 0.371766i −0.679954 0.0135389i
\(755\) 50.2973 + 24.2219i 1.83051 + 0.881525i
\(756\) −13.5830 11.0829i −0.494009 0.403081i
\(757\) −20.4941 + 9.86943i −0.744870 + 0.358711i −0.767513 0.641033i \(-0.778506\pi\)
0.0226431 + 0.999744i \(0.492792\pi\)
\(758\) −11.5078 + 5.26229i −0.417984 + 0.191135i
\(759\) −16.7688 + 73.4691i −0.608670 + 2.66676i
\(760\) 3.68634 12.6233i 0.133717 0.457894i
\(761\) −15.0105 31.1696i −0.544129 1.12990i −0.973904 0.226960i \(-0.927121\pi\)
0.429775 0.902936i \(-0.358593\pi\)
\(762\) 19.4635 8.90022i 0.705087 0.322421i
\(763\) −2.71757 + 0.702691i −0.0983827 + 0.0254391i
\(764\) −0.914946 + 1.72108i −0.0331016 + 0.0622664i
\(765\) 14.0774 0.508968
\(766\) −0.762219 + 38.2803i −0.0275401 + 1.38312i
\(767\) −4.76670 + 9.89815i −0.172116 + 0.357402i
\(768\)