Properties

Label 196.2.j.a.111.24
Level $196$
Weight $2$
Character 196.111
Analytic conductor $1.565$
Analytic rank $0$
Dimension $156$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(27,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 111.24
Character \(\chi\) \(=\) 196.111
Dual form 196.2.j.a.83.24

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.32010 + 0.507284i) q^{2} +(-1.45168 - 1.82035i) q^{3} +(1.48533 + 1.33933i) q^{4} +(1.13412 - 0.904431i) q^{5} +(-0.992928 - 3.13945i) q^{6} +(-0.147062 - 2.64166i) q^{7} +(1.28136 + 2.52153i) q^{8} +(-0.538730 + 2.36033i) q^{9} +O(q^{10})\) \(q+(1.32010 + 0.507284i) q^{2} +(-1.45168 - 1.82035i) q^{3} +(1.48533 + 1.33933i) q^{4} +(1.13412 - 0.904431i) q^{5} +(-0.992928 - 3.13945i) q^{6} +(-0.147062 - 2.64166i) q^{7} +(1.28136 + 2.52153i) q^{8} +(-0.538730 + 2.36033i) q^{9} +(1.95596 - 0.618618i) q^{10} +(-0.655703 + 0.149660i) q^{11} +(0.281829 - 4.64809i) q^{12} +(1.04204 - 0.237840i) q^{13} +(1.14594 - 3.56186i) q^{14} +(-3.29276 - 0.751550i) q^{15} +(0.412390 + 3.97869i) q^{16} +(-0.527427 + 1.09521i) q^{17} +(-1.90853 + 2.84258i) q^{18} +3.97680 q^{19} +(2.89587 + 0.175587i) q^{20} +(-4.59525 + 4.10254i) q^{21} +(-0.941513 - 0.135061i) q^{22} +(2.80013 + 5.81454i) q^{23} +(2.72994 - 5.99297i) q^{24} +(-0.644370 + 2.82317i) q^{25} +(1.49625 + 0.214640i) q^{26} +(-1.21452 + 0.584884i) q^{27} +(3.31962 - 4.12069i) q^{28} +(-7.01088 - 3.37626i) q^{29} +(-3.96552 - 2.66248i) q^{30} -9.48293 q^{31} +(-1.47393 + 5.46146i) q^{32} +(1.22430 + 0.976349i) q^{33} +(-1.25184 + 1.17823i) q^{34} +(-2.55599 - 2.86296i) q^{35} +(-3.96145 + 2.78432i) q^{36} +(3.82889 + 1.84390i) q^{37} +(5.24978 + 2.01737i) q^{38} +(-1.94566 - 1.55161i) q^{39} +(3.73377 + 1.70082i) q^{40} +(-0.0397106 + 0.0316681i) q^{41} +(-8.14735 + 3.08467i) q^{42} +(1.03558 + 0.825848i) q^{43} +(-1.17438 - 0.655909i) q^{44} +(1.52377 + 3.16414i) q^{45} +(0.746836 + 9.09624i) q^{46} +(2.66423 + 11.6727i) q^{47} +(6.64393 - 6.52646i) q^{48} +(-6.95675 + 0.776975i) q^{49} +(-2.28278 + 3.39999i) q^{50} +(2.75932 - 0.629797i) q^{51} +(1.86632 + 1.04237i) q^{52} +(12.3270 - 5.93639i) q^{53} +(-1.90000 + 0.155997i) q^{54} +(-0.608289 + 0.762771i) q^{55} +(6.47259 - 3.75574i) q^{56} +(-5.77304 - 7.23916i) q^{57} +(-7.54234 - 8.01351i) q^{58} +(0.840007 - 1.05334i) q^{59} +(-3.88424 - 5.52639i) q^{60} +(3.30426 - 6.86136i) q^{61} +(-12.5184 - 4.81053i) q^{62} +(6.31442 + 1.07603i) q^{63} +(-4.71624 + 6.46197i) q^{64} +(0.966693 - 1.21220i) q^{65} +(1.12092 + 1.90995i) q^{66} -9.72058i q^{67} +(-2.25025 + 0.920350i) q^{68} +(6.51958 - 13.5381i) q^{69} +(-1.92183 - 5.07600i) q^{70} +(1.46244 + 3.03678i) q^{71} +(-6.64195 + 1.66601i) q^{72} +(-1.66705 - 0.380492i) q^{73} +(4.11914 + 4.37646i) q^{74} +(6.07457 - 2.92536i) q^{75} +(5.90685 + 5.32625i) q^{76} +(0.491780 + 1.71014i) q^{77} +(-1.78136 - 3.03529i) q^{78} -11.0108i q^{79} +(4.06615 + 4.13933i) q^{80} +(9.37161 + 4.51313i) q^{81} +(-0.0684866 + 0.0216605i) q^{82} +(0.0444993 - 0.194964i) q^{83} +(-12.3201 - 0.0609416i) q^{84} +(0.392379 + 1.71912i) q^{85} +(0.948130 + 1.61553i) q^{86} +(4.03158 + 17.6635i) q^{87} +(-1.21756 - 1.46161i) q^{88} +(-14.2293 - 3.24775i) q^{89} +(0.406412 + 4.94997i) q^{90} +(-0.781536 - 2.71775i) q^{91} +(-3.62847 + 12.3868i) q^{92} +(13.7662 + 17.2622i) q^{93} +(-2.40435 + 16.7607i) q^{94} +(4.51018 - 3.59674i) q^{95} +(12.0814 - 5.24522i) q^{96} -14.5971i q^{97} +(-9.57774 - 2.50336i) q^{98} -1.62830i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9} - 7 q^{10} - 42 q^{12} - 14 q^{13} + 21 q^{14} - 13 q^{16} - 14 q^{17} - 12 q^{18} - 7 q^{20} - 14 q^{21} + 3 q^{22} + 35 q^{24} - 7 q^{26} + 42 q^{28} - 30 q^{29} - 4 q^{30} - 5 q^{32} - 14 q^{33} + 77 q^{34} - 11 q^{36} + 10 q^{37} - 21 q^{38} - 63 q^{40} - 14 q^{41} - 7 q^{42} - 55 q^{44} - 14 q^{45} - 19 q^{46} - 132 q^{50} - 7 q^{52} - 2 q^{53} + 14 q^{54} - 70 q^{56} - 64 q^{57} - 3 q^{58} - 107 q^{60} + 14 q^{61} - 21 q^{62} - 11 q^{64} - 22 q^{65} + 161 q^{66} - 70 q^{69} - 77 q^{70} + 114 q^{72} - 14 q^{73} + 5 q^{74} + 70 q^{76} - 42 q^{77} + 61 q^{78} + 92 q^{81} - 42 q^{82} + 70 q^{84} - 6 q^{85} + 47 q^{86} + 65 q^{88} - 14 q^{89} + 112 q^{90} - 70 q^{92} - 48 q^{93} - 28 q^{94} + 238 q^{96} + 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.32010 + 0.507284i 0.933451 + 0.358704i
\(3\) −1.45168 1.82035i −0.838127 1.05098i −0.997961 0.0638337i \(-0.979667\pi\)
0.159834 0.987144i \(-0.448904\pi\)
\(4\) 1.48533 + 1.33933i 0.742663 + 0.669665i
\(5\) 1.13412 0.904431i 0.507194 0.404474i −0.336182 0.941797i \(-0.609136\pi\)
0.843377 + 0.537323i \(0.180564\pi\)
\(6\) −0.992928 3.13945i −0.405361 1.28168i
\(7\) −0.147062 2.64166i −0.0555841 0.998454i
\(8\) 1.28136 + 2.52153i 0.453029 + 0.891496i
\(9\) −0.538730 + 2.36033i −0.179577 + 0.786777i
\(10\) 1.95596 0.618618i 0.618528 0.195624i
\(11\) −0.655703 + 0.149660i −0.197702 + 0.0451242i −0.320225 0.947341i \(-0.603759\pi\)
0.122523 + 0.992466i \(0.460901\pi\)
\(12\) 0.281829 4.64809i 0.0813571 1.34179i
\(13\) 1.04204 0.237840i 0.289011 0.0659648i −0.0755576 0.997141i \(-0.524074\pi\)
0.364568 + 0.931177i \(0.381217\pi\)
\(14\) 1.14594 3.56186i 0.306264 0.951947i
\(15\) −3.29276 0.751550i −0.850186 0.194049i
\(16\) 0.412390 + 3.97869i 0.103097 + 0.994671i
\(17\) −0.527427 + 1.09521i −0.127920 + 0.265628i −0.955086 0.296330i \(-0.904237\pi\)
0.827166 + 0.561958i \(0.189952\pi\)
\(18\) −1.90853 + 2.84258i −0.449846 + 0.670003i
\(19\) 3.97680 0.912341 0.456171 0.889892i \(-0.349221\pi\)
0.456171 + 0.889892i \(0.349221\pi\)
\(20\) 2.89587 + 0.175587i 0.647537 + 0.0392623i
\(21\) −4.59525 + 4.10254i −1.00277 + 0.895249i
\(22\) −0.941513 0.135061i −0.200731 0.0287952i
\(23\) 2.80013 + 5.81454i 0.583868 + 1.21242i 0.958460 + 0.285226i \(0.0920685\pi\)
−0.374592 + 0.927190i \(0.622217\pi\)
\(24\) 2.72994 5.99297i 0.557247 1.22331i
\(25\) −0.644370 + 2.82317i −0.128874 + 0.564634i
\(26\) 1.49625 + 0.214640i 0.293439 + 0.0420943i
\(27\) −1.21452 + 0.584884i −0.233735 + 0.112561i
\(28\) 3.31962 4.12069i 0.627349 0.778738i
\(29\) −7.01088 3.37626i −1.30189 0.626956i −0.350967 0.936388i \(-0.614147\pi\)
−0.950922 + 0.309431i \(0.899861\pi\)
\(30\) −3.96552 2.66248i −0.724001 0.486101i
\(31\) −9.48293 −1.70318 −0.851592 0.524205i \(-0.824363\pi\)
−0.851592 + 0.524205i \(0.824363\pi\)
\(32\) −1.47393 + 5.46146i −0.260556 + 0.965459i
\(33\) 1.22430 + 0.976349i 0.213124 + 0.169961i
\(34\) −1.25184 + 1.17823i −0.214689 + 0.202066i
\(35\) −2.55599 2.86296i −0.432041 0.483928i
\(36\) −3.96145 + 2.78432i −0.660242 + 0.464054i
\(37\) 3.82889 + 1.84390i 0.629465 + 0.303135i 0.721282 0.692641i \(-0.243553\pi\)
−0.0918168 + 0.995776i \(0.529267\pi\)
\(38\) 5.24978 + 2.01737i 0.851626 + 0.327260i
\(39\) −1.94566 1.55161i −0.311555 0.248457i
\(40\) 3.73377 + 1.70082i 0.590360 + 0.268923i
\(41\) −0.0397106 + 0.0316681i −0.00620175 + 0.00494573i −0.626586 0.779352i \(-0.715548\pi\)
0.620384 + 0.784298i \(0.286977\pi\)
\(42\) −8.14735 + 3.08467i −1.25716 + 0.475975i
\(43\) 1.03558 + 0.825848i 0.157925 + 0.125941i 0.699264 0.714863i \(-0.253511\pi\)
−0.541339 + 0.840804i \(0.682083\pi\)
\(44\) −1.17438 0.655909i −0.177044 0.0988820i
\(45\) 1.52377 + 3.16414i 0.227150 + 0.471683i
\(46\) 0.746836 + 9.09624i 0.110115 + 1.34117i
\(47\) 2.66423 + 11.6727i 0.388617 + 1.70264i 0.669425 + 0.742880i \(0.266541\pi\)
−0.280808 + 0.959764i \(0.590602\pi\)
\(48\) 6.64393 6.52646i 0.958969 0.942014i
\(49\) −6.95675 + 0.776975i −0.993821 + 0.110996i
\(50\) −2.28278 + 3.39999i −0.322834 + 0.480831i
\(51\) 2.75932 0.629797i 0.386382 0.0881892i
\(52\) 1.86632 + 1.04237i 0.258812 + 0.144551i
\(53\) 12.3270 5.93639i 1.69325 0.815426i 0.698215 0.715888i \(-0.253978\pi\)
0.995034 0.0995380i \(-0.0317365\pi\)
\(54\) −1.90000 + 0.155997i −0.258557 + 0.0212285i
\(55\) −0.608289 + 0.762771i −0.0820217 + 0.102852i
\(56\) 6.47259 3.75574i 0.864936 0.501881i
\(57\) −5.77304 7.23916i −0.764657 0.958850i
\(58\) −7.54234 8.01351i −0.990358 1.05223i
\(59\) 0.840007 1.05334i 0.109360 0.137133i −0.724139 0.689654i \(-0.757763\pi\)
0.833499 + 0.552521i \(0.186334\pi\)
\(60\) −3.88424 5.52639i −0.501454 0.713453i
\(61\) 3.30426 6.86136i 0.423067 0.878507i −0.575106 0.818079i \(-0.695039\pi\)
0.998173 0.0604280i \(-0.0192466\pi\)
\(62\) −12.5184 4.81053i −1.58984 0.610939i
\(63\) 6.31442 + 1.07603i 0.795542 + 0.135567i
\(64\) −4.71624 + 6.46197i −0.589530 + 0.807747i
\(65\) 0.966693 1.21220i 0.119904 0.150354i
\(66\) 1.12092 + 1.90995i 0.137975 + 0.235098i
\(67\) 9.72058i 1.18756i −0.804628 0.593779i \(-0.797635\pi\)
0.804628 0.593779i \(-0.202365\pi\)
\(68\) −2.25025 + 0.920350i −0.272883 + 0.111609i
\(69\) 6.51958 13.5381i 0.784866 1.62979i
\(70\) −1.92183 5.07600i −0.229702 0.606698i
\(71\) 1.46244 + 3.03678i 0.173559 + 0.360400i 0.969544 0.244917i \(-0.0787607\pi\)
−0.795985 + 0.605317i \(0.793046\pi\)
\(72\) −6.64195 + 1.66601i −0.782762 + 0.196341i
\(73\) −1.66705 0.380492i −0.195113 0.0445333i 0.123848 0.992301i \(-0.460477\pi\)
−0.318961 + 0.947768i \(0.603334\pi\)
\(74\) 4.11914 + 4.37646i 0.478840 + 0.508753i
\(75\) 6.07457 2.92536i 0.701431 0.337791i
\(76\) 5.90685 + 5.32625i 0.677562 + 0.610963i
\(77\) 0.491780 + 1.71014i 0.0560435 + 0.194888i
\(78\) −1.78136 3.03529i −0.201699 0.343679i
\(79\) 11.0108i 1.23881i −0.785072 0.619404i \(-0.787374\pi\)
0.785072 0.619404i \(-0.212626\pi\)
\(80\) 4.06615 + 4.13933i 0.454609 + 0.462791i
\(81\) 9.37161 + 4.51313i 1.04129 + 0.501459i
\(82\) −0.0684866 + 0.0216605i −0.00756308 + 0.00239201i
\(83\) 0.0444993 0.194964i 0.00488444 0.0214001i −0.972427 0.233208i \(-0.925078\pi\)
0.977311 + 0.211807i \(0.0679350\pi\)
\(84\) −12.3201 0.0609416i −1.34423 0.00664928i
\(85\) 0.392379 + 1.71912i 0.0425595 + 0.186465i
\(86\) 0.948130 + 1.61553i 0.102240 + 0.174208i
\(87\) 4.03158 + 17.6635i 0.432230 + 1.89372i
\(88\) −1.21756 1.46161i −0.129793 0.155808i
\(89\) −14.2293 3.24775i −1.50831 0.344261i −0.613133 0.789979i \(-0.710091\pi\)
−0.895173 + 0.445718i \(0.852948\pi\)
\(90\) 0.406412 + 4.94997i 0.0428395 + 0.521773i
\(91\) −0.781536 2.71775i −0.0819273 0.284897i
\(92\) −3.62847 + 12.3868i −0.378295 + 1.29141i
\(93\) 13.7662 + 17.2622i 1.42748 + 1.79001i
\(94\) −2.40435 + 16.7607i −0.247989 + 1.72873i
\(95\) 4.51018 3.59674i 0.462734 0.369018i
\(96\) 12.0814 5.24522i 1.23305 0.535338i
\(97\) 14.5971i 1.48211i −0.671444 0.741056i \(-0.734326\pi\)
0.671444 0.741056i \(-0.265674\pi\)
\(98\) −9.57774 2.50336i −0.967498 0.252878i
\(99\) 1.62830i 0.163651i
\(100\) −4.73826 + 3.33031i −0.473826 + 0.333031i
\(101\) −7.46988 + 5.95703i −0.743281 + 0.592747i −0.920186 0.391481i \(-0.871963\pi\)
0.176905 + 0.984228i \(0.443391\pi\)
\(102\) 3.96206 + 0.568364i 0.392303 + 0.0562764i
\(103\) 5.85519 + 7.34217i 0.576929 + 0.723446i 0.981586 0.191023i \(-0.0611805\pi\)
−0.404657 + 0.914469i \(0.632609\pi\)
\(104\) 1.93495 + 2.32279i 0.189738 + 0.227768i
\(105\) −1.50110 + 8.80887i −0.146493 + 0.859658i
\(106\) 19.2844 1.58332i 1.87306 0.153786i
\(107\) −1.58578 0.361943i −0.153303 0.0349904i 0.145181 0.989405i \(-0.453624\pi\)
−0.298484 + 0.954415i \(0.596481\pi\)
\(108\) −2.58732 0.757905i −0.248965 0.0729295i
\(109\) −1.75220 7.67689i −0.167830 0.735313i −0.986862 0.161565i \(-0.948346\pi\)
0.819032 0.573748i \(-0.194511\pi\)
\(110\) −1.18994 + 0.698358i −0.113457 + 0.0665858i
\(111\) −2.20178 9.64665i −0.208984 0.915619i
\(112\) 10.4497 1.67451i 0.987403 0.158226i
\(113\) −2.41363 + 10.5748i −0.227055 + 0.994793i 0.724972 + 0.688779i \(0.241853\pi\)
−0.952027 + 0.306015i \(0.901004\pi\)
\(114\) −3.94868 12.4850i −0.369828 1.16933i
\(115\) 8.43454 + 4.06186i 0.786525 + 0.378771i
\(116\) −5.89152 14.4047i −0.547014 1.33745i
\(117\) 2.58770i 0.239233i
\(118\) 1.64323 0.964386i 0.151272 0.0887790i
\(119\) 2.97074 + 1.23222i 0.272328 + 0.112957i
\(120\) −2.32415 9.26579i −0.212164 0.845847i
\(121\) −9.50311 + 4.57646i −0.863919 + 0.416041i
\(122\) 7.84260 7.38148i 0.710036 0.668288i
\(123\) 0.115294 + 0.0263151i 0.0103957 + 0.00237275i
\(124\) −14.0852 12.7008i −1.26489 1.14056i
\(125\) 4.96952 + 10.3193i 0.444487 + 0.922987i
\(126\) 7.78981 + 4.62367i 0.693972 + 0.411909i
\(127\) 7.90715 16.4194i 0.701646 1.45698i −0.179313 0.983792i \(-0.557388\pi\)
0.880960 0.473192i \(-0.156898\pi\)
\(128\) −9.50396 + 6.13798i −0.840039 + 0.542526i
\(129\) 3.08398i 0.271529i
\(130\) 1.89106 1.10983i 0.165857 0.0973386i
\(131\) −4.50176 + 5.64503i −0.393321 + 0.493209i −0.938581 0.345058i \(-0.887859\pi\)
0.545261 + 0.838267i \(0.316431\pi\)
\(132\) 0.510836 + 3.08994i 0.0444626 + 0.268945i
\(133\) −0.584836 10.5054i −0.0507117 0.910931i
\(134\) 4.93109 12.8321i 0.425981 1.10853i
\(135\) −0.848430 + 1.76178i −0.0730212 + 0.151630i
\(136\) −3.43744 + 0.0734377i −0.294758 + 0.00629723i
\(137\) −2.76229 + 3.46380i −0.235998 + 0.295933i −0.885701 0.464256i \(-0.846322\pi\)
0.649703 + 0.760188i \(0.274893\pi\)
\(138\) 15.4741 14.5643i 1.31725 1.23980i
\(139\) −2.00893 2.51912i −0.170395 0.213669i 0.689300 0.724476i \(-0.257918\pi\)
−0.859695 + 0.510807i \(0.829347\pi\)
\(140\) 0.0379681 7.67573i 0.00320889 0.648718i
\(141\) 17.3808 21.7949i 1.46373 1.83546i
\(142\) 0.390053 + 4.75073i 0.0327325 + 0.398672i
\(143\) −0.647676 + 0.311904i −0.0541614 + 0.0260827i
\(144\) −9.61318 1.17006i −0.801098 0.0975051i
\(145\) −11.0048 + 2.51177i −0.913898 + 0.208591i
\(146\) −2.00765 1.34795i −0.166154 0.111557i
\(147\) 11.5133 + 11.5358i 0.949602 + 0.951454i
\(148\) 3.21756 + 7.86693i 0.264482 + 0.646658i
\(149\) −0.268808 1.17772i −0.0220216 0.0964829i 0.962723 0.270490i \(-0.0871856\pi\)
−0.984744 + 0.174007i \(0.944328\pi\)
\(150\) 9.50302 0.780235i 0.775919 0.0637059i
\(151\) 6.83128 + 14.1853i 0.555922 + 1.15438i 0.969766 + 0.244036i \(0.0784714\pi\)
−0.413844 + 0.910348i \(0.635814\pi\)
\(152\) 5.09571 + 10.0276i 0.413317 + 0.813348i
\(153\) −2.30092 1.83492i −0.186019 0.148345i
\(154\) −0.218326 + 2.50702i −0.0175932 + 0.202022i
\(155\) −10.7548 + 8.57666i −0.863845 + 0.688894i
\(156\) −0.811820 4.91054i −0.0649976 0.393158i
\(157\) −16.2069 12.9246i −1.29346 1.03150i −0.997075 0.0764261i \(-0.975649\pi\)
−0.296380 0.955070i \(-0.595780\pi\)
\(158\) 5.58558 14.5353i 0.444365 1.15637i
\(159\) −28.7012 13.8218i −2.27615 1.09614i
\(160\) 3.26790 + 7.52702i 0.258350 + 0.595063i
\(161\) 14.9483 8.25210i 1.17809 0.650357i
\(162\) 10.0820 + 10.7118i 0.792119 + 0.841602i
\(163\) −12.1633 9.69992i −0.952705 0.759757i 0.0180483 0.999837i \(-0.494255\pi\)
−0.970753 + 0.240080i \(0.922826\pi\)
\(164\) −0.101397 0.00614806i −0.00791779 0.000480083i
\(165\) 2.27155 0.176840
\(166\) 0.157646 0.234799i 0.0122357 0.0182239i
\(167\) −2.91840 1.40543i −0.225832 0.108755i 0.317547 0.948243i \(-0.397141\pi\)
−0.543379 + 0.839488i \(0.682855\pi\)
\(168\) −16.2329 6.33024i −1.25239 0.488389i
\(169\) −10.6833 + 5.14481i −0.821793 + 0.395755i
\(170\) −0.354104 + 2.46846i −0.0271586 + 0.189322i
\(171\) −2.14242 + 9.38657i −0.163835 + 0.717809i
\(172\) 0.432092 + 2.61364i 0.0329467 + 0.199288i
\(173\) 8.07860 + 16.7754i 0.614205 + 1.27541i 0.943559 + 0.331203i \(0.107455\pi\)
−0.329354 + 0.944206i \(0.606831\pi\)
\(174\) −3.63832 + 25.3627i −0.275820 + 1.92274i
\(175\) 7.55262 + 1.28703i 0.570925 + 0.0972901i
\(176\) −0.865855 2.54712i −0.0652663 0.191996i
\(177\) −3.13686 −0.235781
\(178\) −17.1366 11.5057i −1.28444 0.862386i
\(179\) 2.69466 5.59551i 0.201408 0.418228i −0.775661 0.631149i \(-0.782584\pi\)
0.977069 + 0.212921i \(0.0682978\pi\)
\(180\) −1.97454 + 6.74062i −0.147173 + 0.502416i
\(181\) 6.49366 + 1.48214i 0.482670 + 0.110166i 0.456931 0.889502i \(-0.348949\pi\)
0.0257395 + 0.999669i \(0.491806\pi\)
\(182\) 0.346963 3.98416i 0.0257186 0.295325i
\(183\) −17.2868 + 3.94559i −1.27787 + 0.291667i
\(184\) −11.0736 + 14.5111i −0.816354 + 1.06978i
\(185\) 6.01010 1.37177i 0.441871 0.100854i
\(186\) 9.41586 + 29.7712i 0.690404 + 2.18293i
\(187\) 0.181926 0.797069i 0.0133037 0.0582875i
\(188\) −11.6764 + 20.9061i −0.851589 + 1.52473i
\(189\) 1.72368 + 3.12235i 0.125379 + 0.227117i
\(190\) 7.77845 2.46012i 0.564308 0.178476i
\(191\) 8.83454 7.04531i 0.639245 0.509781i −0.249386 0.968404i \(-0.580229\pi\)
0.888631 + 0.458623i \(0.151657\pi\)
\(192\) 18.6095 0.795513i 1.34302 0.0574112i
\(193\) 8.81519 + 11.0539i 0.634531 + 0.795677i 0.990307 0.138894i \(-0.0443549\pi\)
−0.355776 + 0.934571i \(0.615783\pi\)
\(194\) 7.40487 19.2696i 0.531639 1.38348i
\(195\) −3.60994 −0.258513
\(196\) −11.3737 8.16332i −0.812405 0.583094i
\(197\) 11.1258 0.792682 0.396341 0.918103i \(-0.370280\pi\)
0.396341 + 0.918103i \(0.370280\pi\)
\(198\) 0.826011 2.14952i 0.0587021 0.152760i
\(199\) −11.1219 13.9464i −0.788412 0.988637i −0.999937 0.0112645i \(-0.996414\pi\)
0.211525 0.977373i \(-0.432157\pi\)
\(200\) −7.94438 + 1.99270i −0.561753 + 0.140905i
\(201\) −17.6948 + 14.1112i −1.24810 + 0.995324i
\(202\) −12.8829 + 4.07453i −0.906437 + 0.286683i
\(203\) −7.88791 + 19.0169i −0.553623 + 1.33472i
\(204\) 4.94200 + 2.76019i 0.346009 + 0.193252i
\(205\) −0.0163949 + 0.0718309i −0.00114507 + 0.00501689i
\(206\) 4.00487 + 12.6626i 0.279032 + 0.882248i
\(207\) −15.2328 + 3.47678i −1.05875 + 0.241653i
\(208\) 1.37602 + 4.04788i 0.0954096 + 0.280670i
\(209\) −2.60760 + 0.595168i −0.180372 + 0.0411686i
\(210\) −6.45020 + 10.8671i −0.445106 + 0.749901i
\(211\) −16.8062 3.83592i −1.15699 0.264075i −0.399381 0.916785i \(-0.630775\pi\)
−0.757608 + 0.652710i \(0.773632\pi\)
\(212\) 26.2605 + 7.69250i 1.80358 + 0.528323i
\(213\) 3.40501 7.07057i 0.233307 0.484468i
\(214\) −1.90978 1.28224i −0.130550 0.0876522i
\(215\) 1.92140 0.131038
\(216\) −3.03105 2.31302i −0.206237 0.157381i
\(217\) 1.39458 + 25.0507i 0.0946700 + 1.70055i
\(218\) 1.58128 11.0231i 0.107098 0.746580i
\(219\) 1.72739 + 3.58695i 0.116726 + 0.242384i
\(220\) −1.92511 + 0.318263i −0.129791 + 0.0214573i
\(221\) −0.289116 + 1.26670i −0.0194481 + 0.0852076i
\(222\) 1.98701 13.8515i 0.133359 0.929649i
\(223\) 4.57700 2.20417i 0.306499 0.147602i −0.274312 0.961641i \(-0.588450\pi\)
0.580811 + 0.814039i \(0.302736\pi\)
\(224\) 14.6441 + 3.09044i 0.978449 + 0.206489i
\(225\) −6.31648 3.04185i −0.421098 0.202790i
\(226\) −8.55065 + 12.7354i −0.568781 + 0.847146i
\(227\) 5.50386 0.365304 0.182652 0.983178i \(-0.441532\pi\)
0.182652 + 0.983178i \(0.441532\pi\)
\(228\) 1.12078 18.4845i 0.0742254 1.22417i
\(229\) 3.37834 + 2.69414i 0.223247 + 0.178034i 0.728726 0.684805i \(-0.240113\pi\)
−0.505479 + 0.862839i \(0.668684\pi\)
\(230\) 9.07392 + 9.64077i 0.598317 + 0.635693i
\(231\) 2.39913 3.37778i 0.157851 0.222241i
\(232\) −0.470103 22.0044i −0.0308638 1.44466i
\(233\) −14.0199 6.75163i −0.918475 0.442314i −0.0859484 0.996300i \(-0.527392\pi\)
−0.832526 + 0.553985i \(0.813106\pi\)
\(234\) −1.31270 + 3.41602i −0.0858137 + 0.223312i
\(235\) 13.5787 + 10.8287i 0.885779 + 0.706386i
\(236\) 2.65845 0.439501i 0.173050 0.0286091i
\(237\) −20.0434 + 15.9841i −1.30196 + 1.03828i
\(238\) 3.29660 + 3.13366i 0.213687 + 0.203125i
\(239\) −4.05644 3.23490i −0.262389 0.209248i 0.483454 0.875370i \(-0.339382\pi\)
−0.745844 + 0.666121i \(0.767953\pi\)
\(240\) 1.63228 13.4108i 0.105363 0.865662i
\(241\) −8.86995 18.4186i −0.571363 1.18645i −0.963789 0.266665i \(-0.914078\pi\)
0.392426 0.919784i \(-0.371636\pi\)
\(242\) −14.8666 + 1.22061i −0.955662 + 0.0784635i
\(243\) −4.48921 19.6685i −0.287983 1.26174i
\(244\) 14.0975 5.76587i 0.902502 0.369122i
\(245\) −7.18707 + 7.17308i −0.459165 + 0.458271i
\(246\) 0.138850 + 0.0932252i 0.00885277 + 0.00594382i
\(247\) 4.14400 0.945841i 0.263676 0.0601824i
\(248\) −12.1510 23.9115i −0.771591 1.51838i
\(249\) −0.419501 + 0.202021i −0.0265848 + 0.0128026i
\(250\) 1.32544 + 16.1435i 0.0838283 + 1.02100i
\(251\) −11.9828 + 15.0259i −0.756345 + 0.948427i −0.999769 0.0214932i \(-0.993158\pi\)
0.243424 + 0.969920i \(0.421729\pi\)
\(252\) 7.93782 + 10.0553i 0.500036 + 0.633427i
\(253\) −2.70626 3.39354i −0.170141 0.213350i
\(254\) 18.7675 17.6640i 1.17758 1.10834i
\(255\) 2.55979 3.20988i 0.160301 0.201011i
\(256\) −15.6599 + 3.28154i −0.978742 + 0.205096i
\(257\) 7.94565 16.4993i 0.495636 1.02920i −0.491731 0.870747i \(-0.663635\pi\)
0.987367 0.158452i \(-0.0506502\pi\)
\(258\) 1.56445 4.07116i 0.0973986 0.253459i
\(259\) 4.30786 10.3858i 0.267678 0.645342i
\(260\) 3.05938 0.505784i 0.189735 0.0313674i
\(261\) 11.7461 14.7291i 0.727064 0.911709i
\(262\) −8.80641 + 5.16834i −0.544062 + 0.319301i
\(263\) 23.7258i 1.46300i −0.681844 0.731498i \(-0.738822\pi\)
0.681844 0.731498i \(-0.261178\pi\)
\(264\) −0.893123 + 4.33817i −0.0549679 + 0.266996i
\(265\) 8.61130 17.8815i 0.528988 1.09845i
\(266\) 4.55716 14.1648i 0.279417 0.868500i
\(267\) 14.7444 + 30.6170i 0.902341 + 1.87373i
\(268\) 13.0191 14.4382i 0.795266 0.881956i
\(269\) 16.2373 + 3.70605i 0.990003 + 0.225962i 0.686707 0.726934i \(-0.259056\pi\)
0.303296 + 0.952896i \(0.401913\pi\)
\(270\) −2.01374 + 1.89533i −0.122552 + 0.115346i
\(271\) 18.5855 8.95030i 1.12899 0.543692i 0.226330 0.974051i \(-0.427327\pi\)
0.902658 + 0.430359i \(0.141613\pi\)
\(272\) −4.57501 1.64681i −0.277401 0.0998525i
\(273\) −3.81270 + 5.36796i −0.230755 + 0.324884i
\(274\) −5.40363 + 3.17130i −0.326445 + 0.191585i
\(275\) 1.94760i 0.117445i
\(276\) 27.8156 11.3766i 1.67430 0.684788i
\(277\) −4.38586 2.11212i −0.263521 0.126905i 0.297459 0.954735i \(-0.403861\pi\)
−0.560979 + 0.827830i \(0.689575\pi\)
\(278\) −1.37408 4.34458i −0.0824118 0.260571i
\(279\) 5.10874 22.3828i 0.305852 1.34003i
\(280\) 3.94390 10.1135i 0.235693 0.604396i
\(281\) 5.03736 + 22.0701i 0.300504 + 1.31659i 0.869370 + 0.494162i \(0.164525\pi\)
−0.568866 + 0.822430i \(0.692618\pi\)
\(282\) 34.0006 19.9544i 2.02471 1.18827i
\(283\) −3.96856 17.3874i −0.235906 1.03357i −0.944643 0.328100i \(-0.893592\pi\)
0.708737 0.705473i \(-0.249265\pi\)
\(284\) −1.89506 + 6.46930i −0.112451 + 0.383882i
\(285\) −13.0946 2.98877i −0.775660 0.177039i
\(286\) −1.01322 + 0.0831893i −0.0599130 + 0.00491909i
\(287\) 0.0894963 + 0.100245i 0.00528280 + 0.00591725i
\(288\) −12.0968 6.42121i −0.712811 0.378373i
\(289\) 9.67801 + 12.1358i 0.569295 + 0.713873i
\(290\) −15.8016 2.26676i −0.927902 0.133109i
\(291\) −26.5718 + 21.1903i −1.55767 + 1.24220i
\(292\) −1.96650 2.79788i −0.115081 0.163734i
\(293\) 9.38809i 0.548458i 0.961664 + 0.274229i \(0.0884227\pi\)
−0.961664 + 0.274229i \(0.911577\pi\)
\(294\) 9.34682 + 21.0689i 0.545118 + 1.22876i
\(295\) 1.95434i 0.113786i
\(296\) 0.256740 + 12.0174i 0.0149227 + 0.698494i
\(297\) 0.708834 0.565276i 0.0411307 0.0328006i
\(298\) 0.242587 1.69107i 0.0140527 0.0979613i
\(299\) 4.30079 + 5.39302i 0.248721 + 0.311886i
\(300\) 12.9407 + 3.79074i 0.747134 + 0.218859i
\(301\) 2.02932 2.85710i 0.116968 0.164681i
\(302\) 1.82200 + 22.1914i 0.104844 + 1.27697i
\(303\) 21.6877 + 4.95008i 1.24593 + 0.284375i
\(304\) 1.63999 + 15.8224i 0.0940600 + 0.907480i
\(305\) −2.45820 10.7701i −0.140756 0.616693i
\(306\) −2.10662 3.58950i −0.120427 0.205198i
\(307\) 3.71593 + 16.2806i 0.212079 + 0.929180i 0.963151 + 0.268960i \(0.0866799\pi\)
−0.751072 + 0.660220i \(0.770463\pi\)
\(308\) −1.55998 + 3.19877i −0.0888883 + 0.182267i
\(309\) 4.86545 21.3169i 0.276786 1.21268i
\(310\) −18.5482 + 5.86631i −1.05347 + 0.333184i
\(311\) 14.6943 + 7.07640i 0.833237 + 0.401266i 0.801328 0.598225i \(-0.204127\pi\)
0.0319090 + 0.999491i \(0.489841\pi\)
\(312\) 1.41935 6.89422i 0.0803549 0.390308i
\(313\) 27.7256i 1.56714i 0.621303 + 0.783571i \(0.286604\pi\)
−0.621303 + 0.783571i \(0.713396\pi\)
\(314\) −14.8383 25.2833i −0.837376 1.42682i
\(315\) 8.13451 4.49061i 0.458328 0.253017i
\(316\) 14.7470 16.3546i 0.829586 0.920017i
\(317\) −4.49018 + 2.16235i −0.252193 + 0.121450i −0.555710 0.831376i \(-0.687554\pi\)
0.303517 + 0.952826i \(0.401839\pi\)
\(318\) −30.8769 32.8057i −1.73149 1.83965i
\(319\) 5.10235 + 1.16458i 0.285677 + 0.0652039i
\(320\) 0.495624 + 11.5942i 0.0277062 + 0.648134i
\(321\) 1.64318 + 3.41209i 0.0917132 + 0.190444i
\(322\) 23.9193 3.31060i 1.33297 0.184492i
\(323\) −2.09747 + 4.35544i −0.116706 + 0.242343i
\(324\) 7.87533 + 19.2552i 0.437518 + 1.06973i
\(325\) 3.09512i 0.171687i
\(326\) −11.1362 18.9751i −0.616776 1.05093i
\(327\) −11.4310 + 14.3340i −0.632134 + 0.792671i
\(328\) −0.130736 0.0595532i −0.00721867 0.00328827i
\(329\) 30.4436 8.75460i 1.67841 0.482656i
\(330\) 2.99867 + 1.15232i 0.165071 + 0.0634331i
\(331\) −0.0629372 + 0.130690i −0.00345934 + 0.00718340i −0.902691 0.430289i \(-0.858412\pi\)
0.899232 + 0.437472i \(0.144126\pi\)
\(332\) 0.327218 0.229986i 0.0179584 0.0126221i
\(333\) −6.41494 + 8.04408i −0.351536 + 0.440813i
\(334\) −3.13963 3.33576i −0.171793 0.182525i
\(335\) −8.79160 11.0243i −0.480336 0.602322i
\(336\) −18.2178 16.5912i −0.993861 0.905125i
\(337\) 2.94573 3.69383i 0.160464 0.201216i −0.695099 0.718914i \(-0.744640\pi\)
0.855563 + 0.517698i \(0.173211\pi\)
\(338\) −16.7129 + 1.37219i −0.909063 + 0.0746375i
\(339\) 22.7536 10.9576i 1.23581 0.595133i
\(340\) −1.71966 + 3.07899i −0.0932619 + 0.166981i
\(341\) 6.21798 1.41921i 0.336723 0.0768548i
\(342\) −7.58987 + 11.3044i −0.410413 + 0.611271i
\(343\) 3.07558 + 18.2631i 0.166065 + 0.986115i
\(344\) −0.755451 + 3.66946i −0.0407312 + 0.197844i
\(345\) −4.85024 21.2503i −0.261128 1.14408i
\(346\) 2.15468 + 26.2433i 0.115836 + 1.41085i
\(347\) −7.81835 16.2350i −0.419711 0.871539i −0.998430 0.0560119i \(-0.982162\pi\)
0.578719 0.815527i \(-0.303553\pi\)
\(348\) −17.6690 + 31.6357i −0.947160 + 1.69585i
\(349\) 10.7938 + 8.60775i 0.577778 + 0.460762i 0.868254 0.496120i \(-0.165242\pi\)
−0.290476 + 0.956882i \(0.593814\pi\)
\(350\) 9.31733 + 5.53033i 0.498032 + 0.295608i
\(351\) −1.12648 + 0.898337i −0.0601270 + 0.0479497i
\(352\) 0.149096 3.80168i 0.00794686 0.202630i
\(353\) −7.29578 5.81819i −0.388315 0.309671i 0.409801 0.912175i \(-0.365598\pi\)
−0.798116 + 0.602504i \(0.794170\pi\)
\(354\) −4.14096 1.59128i −0.220090 0.0845754i
\(355\) 4.40514 + 2.12140i 0.233801 + 0.112592i
\(356\) −16.7854 23.8818i −0.889624 1.26573i
\(357\) −2.06950 7.19657i −0.109530 0.380883i
\(358\) 6.39573 6.01968i 0.338025 0.318150i
\(359\) 8.70135 + 6.93910i 0.459240 + 0.366231i 0.825613 0.564236i \(-0.190829\pi\)
−0.366374 + 0.930468i \(0.619401\pi\)
\(360\) −6.02599 + 7.89664i −0.317598 + 0.416190i
\(361\) −3.18504 −0.167634
\(362\) 7.82042 + 5.25070i 0.411032 + 0.275970i
\(363\) 22.1262 + 10.6554i 1.16132 + 0.559264i
\(364\) 2.47912 5.08348i 0.129941 0.266447i
\(365\) −2.23476 + 1.07620i −0.116973 + 0.0563311i
\(366\) −24.8218 3.56072i −1.29746 0.186122i
\(367\) −2.82592 + 12.3812i −0.147512 + 0.646291i 0.846060 + 0.533088i \(0.178968\pi\)
−0.993572 + 0.113204i \(0.963889\pi\)
\(368\) −21.9795 + 13.5387i −1.14576 + 0.705754i
\(369\) −0.0533539 0.110791i −0.00277749 0.00576753i
\(370\) 8.62980 + 1.23796i 0.448642 + 0.0643583i
\(371\) −17.4948 31.6908i −0.908283 1.64531i
\(372\) −2.67257 + 44.0775i −0.138566 + 2.28531i
\(373\) 8.79325 0.455297 0.227649 0.973743i \(-0.426896\pi\)
0.227649 + 0.973743i \(0.426896\pi\)
\(374\) 0.644500 0.959922i 0.0333263 0.0496364i
\(375\) 11.5706 24.0266i 0.597502 1.24073i
\(376\) −26.0193 + 21.6749i −1.34185 + 1.11780i
\(377\) −8.10865 1.85075i −0.417617 0.0953183i
\(378\) 0.691508 + 4.99620i 0.0355673 + 0.256977i
\(379\) 30.2229 6.89818i 1.55245 0.354336i 0.641586 0.767051i \(-0.278277\pi\)
0.910860 + 0.412715i \(0.135420\pi\)
\(380\) 11.5163 + 0.698273i 0.590774 + 0.0358207i
\(381\) −41.3676 + 9.44188i −2.11933 + 0.483722i
\(382\) 15.2364 4.81889i 0.779564 0.246556i
\(383\) −3.83674 + 16.8099i −0.196048 + 0.858944i 0.777212 + 0.629239i \(0.216633\pi\)
−0.973260 + 0.229705i \(0.926224\pi\)
\(384\) 24.9699 + 8.39013i 1.27424 + 0.428157i
\(385\) 2.10444 + 1.49472i 0.107252 + 0.0761780i
\(386\) 6.02947 + 19.0640i 0.306892 + 0.970334i
\(387\) −2.50717 + 1.99940i −0.127447 + 0.101635i
\(388\) 19.5503 21.6815i 0.992518 1.10071i
\(389\) −23.3361 29.2626i −1.18319 1.48367i −0.838456 0.544969i \(-0.816541\pi\)
−0.344732 0.938701i \(-0.612030\pi\)
\(390\) −4.76548 1.83127i −0.241310 0.0927297i
\(391\) −7.84502 −0.396740
\(392\) −10.8733 16.5461i −0.549182 0.835703i
\(393\) 16.8110 0.848004
\(394\) 14.6872 + 5.64395i 0.739930 + 0.284338i
\(395\) −9.95848 12.4875i −0.501065 0.628316i
\(396\) 2.18083 2.41856i 0.109591 0.121537i
\(397\) 13.7729 10.9835i 0.691241 0.551247i −0.213639 0.976913i \(-0.568532\pi\)
0.904880 + 0.425666i \(0.139960\pi\)
\(398\) −7.60724 24.0527i −0.381316 1.20565i
\(399\) −18.2744 + 16.3150i −0.914865 + 0.816772i
\(400\) −11.4982 1.39950i −0.574912 0.0699750i
\(401\) 5.92553 25.9614i 0.295907 1.29645i −0.580255 0.814435i \(-0.697047\pi\)
0.876162 0.482017i \(-0.160096\pi\)
\(402\) −30.5173 + 9.65183i −1.52206 + 0.481390i
\(403\) −9.88162 + 2.25542i −0.492239 + 0.112350i
\(404\) −19.0736 1.15650i −0.948949 0.0575380i
\(405\) 14.7104 3.35754i 0.730963 0.166838i
\(406\) −20.0598 + 21.1028i −0.995551 + 1.04731i
\(407\) −2.78657 0.636017i −0.138125 0.0315262i
\(408\) 5.12373 + 6.15072i 0.253663 + 0.304506i
\(409\) 4.17880 8.67737i 0.206628 0.429068i −0.771740 0.635938i \(-0.780613\pi\)
0.978368 + 0.206870i \(0.0663276\pi\)
\(410\) −0.0580816 + 0.0865071i −0.00286845 + 0.00427228i
\(411\) 10.3153 0.508815
\(412\) −1.13673 + 18.7475i −0.0560026 + 0.923625i
\(413\) −2.90609 2.06411i −0.142999 0.101568i
\(414\) −21.8725 3.13764i −1.07497 0.154206i
\(415\) −0.125864 0.261360i −0.00617843 0.0128296i
\(416\) −0.236944 + 6.04163i −0.0116171 + 0.296216i
\(417\) −1.66935 + 7.31390i −0.0817484 + 0.358163i
\(418\) −3.74421 0.537113i −0.183135 0.0262710i
\(419\) 19.1868 9.23986i 0.937335 0.451397i 0.0981065 0.995176i \(-0.468721\pi\)
0.839228 + 0.543779i \(0.183007\pi\)
\(420\) −14.0276 + 11.0736i −0.684477 + 0.540335i
\(421\) 8.17196 + 3.93541i 0.398277 + 0.191800i 0.622291 0.782786i \(-0.286202\pi\)
−0.224014 + 0.974586i \(0.571916\pi\)
\(422\) −20.2400 13.5893i −0.985269 0.661518i
\(423\) −28.9868 −1.40939
\(424\) 30.7642 + 23.4764i 1.49404 + 1.14011i
\(425\) −2.75211 2.19474i −0.133497 0.106460i
\(426\) 8.08174 7.60656i 0.391562 0.368539i
\(427\) −18.6113 7.71968i −0.900665 0.373582i
\(428\) −1.87064 2.66148i −0.0904206 0.128648i
\(429\) 1.50799 + 0.726210i 0.0728065 + 0.0350618i
\(430\) 2.53643 + 0.974693i 0.122318 + 0.0470039i
\(431\) 18.7802 + 14.9767i 0.904610 + 0.721402i 0.960866 0.277014i \(-0.0893449\pi\)
−0.0562561 + 0.998416i \(0.517916\pi\)
\(432\) −2.82793 4.59101i −0.136059 0.220885i
\(433\) −1.17210 + 0.934722i −0.0563278 + 0.0449199i −0.651249 0.758864i \(-0.725755\pi\)
0.594921 + 0.803784i \(0.297183\pi\)
\(434\) −10.8668 + 33.7768i −0.521624 + 1.62134i
\(435\) 20.5477 + 16.3862i 0.985187 + 0.785660i
\(436\) 7.67930 13.7495i 0.367772 0.658480i
\(437\) 11.1356 + 23.1233i 0.532687 + 1.10614i
\(438\) 0.460719 + 5.61141i 0.0220140 + 0.268124i
\(439\) 4.63096 + 20.2896i 0.221024 + 0.968368i 0.956709 + 0.291045i \(0.0940029\pi\)
−0.735686 + 0.677323i \(0.763140\pi\)
\(440\) −2.70279 0.556438i −0.128850 0.0265271i
\(441\) 1.91389 16.8388i 0.0911376 0.801848i
\(442\) −1.02424 + 1.52551i −0.0487181 + 0.0725610i
\(443\) −23.9884 + 5.47520i −1.13972 + 0.260134i −0.750411 0.660972i \(-0.770144\pi\)
−0.389312 + 0.921106i \(0.627287\pi\)
\(444\) 9.64967 17.2773i 0.457953 0.819946i
\(445\) −19.0752 + 9.18611i −0.904249 + 0.435463i
\(446\) 7.16024 0.587883i 0.339047 0.0278371i
\(447\) −1.75364 + 2.19900i −0.0829444 + 0.104009i
\(448\) 17.7639 + 11.5084i 0.839266 + 0.543721i
\(449\) −11.5227 14.4490i −0.543791 0.681892i 0.431679 0.902027i \(-0.357921\pi\)
−0.975469 + 0.220136i \(0.929350\pi\)
\(450\) −6.79529 7.21980i −0.320333 0.340344i
\(451\) 0.0212989 0.0267080i 0.00100293 0.00125763i
\(452\) −17.7482 + 12.4744i −0.834804 + 0.586745i
\(453\) 15.9053 33.0278i 0.747298 1.55178i
\(454\) 7.26564 + 2.79202i 0.340994 + 0.131036i
\(455\) −3.34437 2.37541i −0.156787 0.111361i
\(456\) 10.8564 23.8329i 0.508399 1.11608i
\(457\) 4.98346 6.24907i 0.233117 0.292319i −0.651490 0.758657i \(-0.725856\pi\)
0.884606 + 0.466338i \(0.154427\pi\)
\(458\) 3.09306 + 5.27031i 0.144529 + 0.246265i
\(459\) 1.63865i 0.0764854i
\(460\) 7.08788 + 17.3298i 0.330474 + 0.808007i
\(461\) −14.7228 + 30.5722i −0.685708 + 1.42389i 0.209306 + 0.977850i \(0.432880\pi\)
−0.895014 + 0.446038i \(0.852835\pi\)
\(462\) 4.88059 3.24196i 0.227065 0.150830i
\(463\) 10.2534 + 21.2913i 0.476514 + 0.989491i 0.991232 + 0.132132i \(0.0421822\pi\)
−0.514718 + 0.857359i \(0.672103\pi\)
\(464\) 10.5419 29.2864i 0.489394 1.35959i
\(465\) 31.2250 + 7.12690i 1.44802 + 0.330502i
\(466\) −15.0827 16.0249i −0.698692 0.742339i
\(467\) 12.4325 5.98717i 0.575307 0.277053i −0.123522 0.992342i \(-0.539419\pi\)
0.698829 + 0.715289i \(0.253705\pi\)
\(468\) −3.46578 + 3.84358i −0.160206 + 0.177669i
\(469\) −25.6785 + 1.42953i −1.18572 + 0.0660094i
\(470\) 12.4321 + 21.1832i 0.573449 + 0.977109i
\(471\) 48.2646i 2.22392i
\(472\) 3.73237 + 0.768404i 0.171796 + 0.0353686i
\(473\) −0.802630 0.386526i −0.0369049 0.0177725i
\(474\) −34.5678 + 10.9329i −1.58775 + 0.502164i
\(475\) −2.56253 + 11.2272i −0.117577 + 0.515139i
\(476\) 2.76218 + 5.80905i 0.126604 + 0.266258i
\(477\) 7.37089 + 32.2940i 0.337490 + 1.47864i
\(478\) −3.71389 6.32816i −0.169869 0.289443i
\(479\) −0.771082 3.37833i −0.0352316 0.154360i 0.954252 0.299003i \(-0.0966539\pi\)
−0.989484 + 0.144643i \(0.953797\pi\)
\(480\) 8.95784 16.8755i 0.408868 0.770259i
\(481\) 4.42842 + 1.01076i 0.201918 + 0.0460866i
\(482\) −2.36574 28.8140i −0.107757 1.31244i
\(483\) −36.7217 15.2316i −1.67090 0.693062i
\(484\) −20.2446 5.93027i −0.920209 0.269558i
\(485\) −13.2021 16.5549i −0.599475 0.751718i
\(486\) 4.05131 28.2417i 0.183771 1.28107i
\(487\) −2.18816 + 1.74500i −0.0991551 + 0.0790736i −0.671813 0.740721i \(-0.734484\pi\)
0.572657 + 0.819795i \(0.305913\pi\)
\(488\) 21.5351 0.460077i 0.974847 0.0208267i
\(489\) 36.2226i 1.63804i
\(490\) −13.1264 + 5.82330i −0.592992 + 0.263070i
\(491\) 41.1929i 1.85901i −0.368808 0.929506i \(-0.620234\pi\)
0.368808 0.929506i \(-0.379766\pi\)
\(492\) 0.136004 + 0.193503i 0.00613156 + 0.00872379i
\(493\) 7.39545 5.89768i 0.333074 0.265618i
\(494\) 5.95030 + 0.853579i 0.267717 + 0.0384044i
\(495\) −1.47269 1.84669i −0.0661924 0.0830026i
\(496\) −3.91066 37.7296i −0.175594 1.69411i
\(497\) 7.80708 4.30986i 0.350196 0.193324i
\(498\) −0.656266 + 0.0538819i −0.0294080 + 0.00241451i
\(499\) −18.8862 4.31066i −0.845463 0.192971i −0.222217 0.974997i \(-0.571329\pi\)
−0.623246 + 0.782026i \(0.714187\pi\)
\(500\) −6.43961 + 21.9834i −0.287988 + 0.983126i
\(501\) 1.67821 + 7.35272i 0.0749769 + 0.328495i
\(502\) −23.4408 + 13.7570i −1.04622 + 0.614007i
\(503\) 3.94933 + 17.3031i 0.176092 + 0.771508i 0.983411 + 0.181393i \(0.0580606\pi\)
−0.807319 + 0.590115i \(0.799082\pi\)
\(504\) 5.37780 + 17.3008i 0.239546 + 0.770638i
\(505\) −3.08402 + 13.5120i −0.137237 + 0.601275i
\(506\) −1.85104 5.85266i −0.0822890 0.260182i
\(507\) 24.8741 + 11.9787i 1.10470 + 0.531994i
\(508\) 33.7357 13.7978i 1.49678 0.612180i
\(509\) 9.09369i 0.403071i −0.979481 0.201535i \(-0.935407\pi\)
0.979481 0.201535i \(-0.0645931\pi\)
\(510\) 5.00750 2.93882i 0.221736 0.130133i
\(511\) −0.759973 + 4.45973i −0.0336192 + 0.197287i
\(512\) −22.3373 3.61204i −0.987177 0.159631i
\(513\) −4.82992 + 2.32597i −0.213246 + 0.102694i
\(514\) 18.8589 17.7500i 0.831830 0.782921i
\(515\) 13.2810 + 3.03130i 0.585230 + 0.133575i
\(516\) 4.13047 4.58072i 0.181834 0.201655i
\(517\) −3.49388 7.25512i −0.153661 0.319080i
\(518\) 10.9554 11.5250i 0.481350 0.506378i
\(519\) 18.8095 39.0583i 0.825646 1.71447i
\(520\) 4.29527 + 0.884291i 0.188360 + 0.0387787i
\(521\) 17.6440i 0.772996i 0.922290 + 0.386498i \(0.126315\pi\)
−0.922290 + 0.386498i \(0.873685\pi\)
\(522\) 22.9778 13.4853i 1.00571 0.590236i
\(523\) 0.600243 0.752681i 0.0262468 0.0329125i −0.768535 0.639808i \(-0.779014\pi\)
0.794782 + 0.606895i \(0.207585\pi\)
\(524\) −14.2472 + 2.35537i −0.622390 + 0.102895i
\(525\) −8.62114 15.6167i −0.376257 0.681571i
\(526\) 12.0357 31.3204i 0.524782 1.36564i
\(527\) 5.00155 10.3858i 0.217871 0.452414i
\(528\) −3.37969 + 5.27375i −0.147082 + 0.229511i
\(529\) −11.6279 + 14.5809i −0.505559 + 0.633951i
\(530\) 20.4388 19.2370i 0.887804 0.835604i
\(531\) 2.03368 + 2.55016i 0.0882544 + 0.110667i
\(532\) 13.2015 16.3872i 0.572357 0.710475i
\(533\) −0.0338482 + 0.0424443i −0.00146613 + 0.00183847i
\(534\) 3.93254 + 47.8971i 0.170177 + 2.07271i
\(535\) −2.12582 + 1.02374i −0.0919071 + 0.0442601i
\(536\) 24.5107 12.4556i 1.05870 0.537998i
\(537\) −14.0975 + 3.21767i −0.608354 + 0.138853i
\(538\) 19.5548 + 13.1293i 0.843067 + 0.566042i
\(539\) 4.44528 1.55061i 0.191472 0.0667895i
\(540\) −3.61980 + 1.48050i −0.155772 + 0.0637104i
\(541\) 2.44608 + 10.7170i 0.105165 + 0.460759i 0.999900 + 0.0141603i \(0.00450752\pi\)
−0.894735 + 0.446598i \(0.852635\pi\)
\(542\) 29.0750 2.38717i 1.24888 0.102538i
\(543\) −6.72870 13.9723i −0.288756 0.599609i
\(544\) −5.20407 4.49478i −0.223123 0.192712i
\(545\) −8.93043 7.12178i −0.382538 0.305064i
\(546\) −7.75623 + 5.15212i −0.331936 + 0.220490i
\(547\) 8.84560 7.05413i 0.378211 0.301613i −0.415872 0.909423i \(-0.636523\pi\)
0.794082 + 0.607811i \(0.207952\pi\)
\(548\) −8.74208 + 1.44526i −0.373443 + 0.0617384i
\(549\) 14.4150 + 11.4956i 0.615216 + 0.490618i
\(550\) 0.987985 2.57102i 0.0421278 0.109629i
\(551\) −27.8809 13.4267i −1.18777 0.571998i
\(552\) 42.4906 0.907772i 1.80852 0.0386373i
\(553\) −29.0867 + 1.61926i −1.23689 + 0.0688580i
\(554\) −4.71833 5.01308i −0.200463 0.212985i
\(555\) −11.2218 8.94910i −0.476340 0.379868i
\(556\) 0.390014 6.43233i 0.0165403 0.272792i
\(557\) 0.364405 0.0154403 0.00772016 0.999970i \(-0.497543\pi\)
0.00772016 + 0.999970i \(0.497543\pi\)
\(558\) 18.0985 26.9560i 0.766170 1.14114i
\(559\) 1.27554 + 0.614267i 0.0539495 + 0.0259807i
\(560\) 10.3367 11.3501i 0.436807 0.479630i
\(561\) −1.71504 + 0.825919i −0.0724090 + 0.0348703i
\(562\) −4.54599 + 31.6901i −0.191761 + 1.33677i
\(563\) 0.154902 0.678672i 0.00652836 0.0286026i −0.971559 0.236798i \(-0.923902\pi\)
0.978087 + 0.208196i \(0.0667591\pi\)
\(564\) 55.0067 9.09383i 2.31620 0.382919i
\(565\) 6.82683 + 14.1761i 0.287207 + 0.596391i
\(566\) 3.58145 24.9663i 0.150539 1.04941i
\(567\) 10.5440 25.4203i 0.442804 1.06755i
\(568\) −5.78344 + 7.57879i −0.242668 + 0.317999i
\(569\) −13.7463 −0.576276 −0.288138 0.957589i \(-0.593036\pi\)
−0.288138 + 0.957589i \(0.593036\pi\)
\(570\) −15.7701 10.5882i −0.660536 0.443490i
\(571\) −13.4199 + 27.8667i −0.561605 + 1.16618i 0.406037 + 0.913857i \(0.366910\pi\)
−0.967642 + 0.252328i \(0.918804\pi\)
\(572\) −1.37975 0.404172i −0.0576904 0.0168993i
\(573\) −25.6498 5.85440i −1.07154 0.244571i
\(574\) 0.0672916 + 0.177733i 0.00280870 + 0.00741843i
\(575\) −18.2198 + 4.15854i −0.759817 + 0.173423i
\(576\) −12.7116 14.6131i −0.529650 0.608881i
\(577\) 25.5066 5.82170i 1.06185 0.242361i 0.344296 0.938861i \(-0.388118\pi\)
0.717556 + 0.696501i \(0.245261\pi\)
\(578\) 6.61963 + 20.9300i 0.275340 + 0.870574i
\(579\) 7.32511 32.0934i 0.304421 1.33376i
\(580\) −19.7098 11.0082i −0.818405 0.457092i
\(581\) −0.521574 0.0888804i −0.0216385 0.00368738i
\(582\) −45.8269 + 14.4939i −1.89959 + 0.600790i
\(583\) −7.19444 + 5.73737i −0.297963 + 0.237618i
\(584\) −1.17666 4.69106i −0.0486906 0.194117i
\(585\) 2.34039 + 2.93476i 0.0967634 + 0.121337i
\(586\) −4.76243 + 12.3932i −0.196734 + 0.511959i
\(587\) −31.3599 −1.29436 −0.647180 0.762337i \(-0.724052\pi\)
−0.647180 + 0.762337i \(0.724052\pi\)
\(588\) 1.65083 + 32.5545i 0.0680791 + 1.34253i
\(589\) −37.7117 −1.55389
\(590\) 0.991404 2.57992i 0.0408155 0.106214i
\(591\) −16.1511 20.2529i −0.664368 0.833091i
\(592\) −5.75728 + 15.9943i −0.236623 + 0.657363i
\(593\) 34.8534 27.7947i 1.43126 1.14139i 0.464539 0.885553i \(-0.346220\pi\)
0.966720 0.255838i \(-0.0823514\pi\)
\(594\) 1.22249 0.386641i 0.0501592 0.0158641i
\(595\) 4.48364 1.28935i 0.183811 0.0528582i
\(596\) 1.17809 2.10933i 0.0482566 0.0864014i
\(597\) −9.24192 + 40.4915i −0.378247 + 1.65721i
\(598\) 2.94168 + 9.30104i 0.120294 + 0.380348i
\(599\) 9.17324 2.09373i 0.374809 0.0855476i −0.0309669 0.999520i \(-0.509859\pi\)
0.405775 + 0.913973i \(0.367002\pi\)
\(600\) 15.1601 + 11.5688i 0.618908 + 0.472293i
\(601\) 38.1074 8.69777i 1.55443 0.354790i 0.642879 0.765967i \(-0.277740\pi\)
0.911555 + 0.411178i \(0.134883\pi\)
\(602\) 4.12826 2.74222i 0.168255 0.111765i
\(603\) 22.9438 + 5.23677i 0.934343 + 0.213258i
\(604\) −8.85212 + 30.2191i −0.360188 + 1.22960i
\(605\) −6.63858 + 13.7852i −0.269897 + 0.560447i
\(606\) 26.1189 + 17.5364i 1.06101 + 0.712368i
\(607\) −6.89261 −0.279762 −0.139881 0.990168i \(-0.544672\pi\)
−0.139881 + 0.990168i \(0.544672\pi\)
\(608\) −5.86152 + 21.7191i −0.237716 + 0.880828i
\(609\) 46.0681 13.2477i 1.86677 0.536823i
\(610\) 2.21842 15.4646i 0.0898211 0.626143i
\(611\) 5.55248 + 11.5298i 0.224629 + 0.466447i
\(612\) −0.960052 5.80716i −0.0388078 0.234740i
\(613\) 4.61876 20.2361i 0.186550 0.817329i −0.791868 0.610693i \(-0.790891\pi\)
0.978418 0.206636i \(-0.0662517\pi\)
\(614\) −3.35346 + 23.3770i −0.135335 + 0.943418i
\(615\) 0.154557 0.0744309i 0.00623235 0.00300134i
\(616\) −3.68202 + 3.43134i −0.148353 + 0.138252i
\(617\) 13.1767 + 6.34558i 0.530475 + 0.255463i 0.679894 0.733311i \(-0.262026\pi\)
−0.149419 + 0.988774i \(0.547740\pi\)
\(618\) 17.2366 25.6723i 0.693358 1.03269i
\(619\) −30.9095 −1.24236 −0.621179 0.783669i \(-0.713346\pi\)
−0.621179 + 0.783669i \(0.713346\pi\)
\(620\) −27.4613 1.66507i −1.10287 0.0668710i
\(621\) −6.80167 5.42415i −0.272941 0.217664i
\(622\) 15.8082 + 16.7957i 0.633851 + 0.673448i
\(623\) −6.48687 + 38.0667i −0.259891 + 1.52511i
\(624\) 5.37101 8.38104i 0.215012 0.335510i
\(625\) 1.92413 + 0.926611i 0.0769651 + 0.0370644i
\(626\) −14.0647 + 36.6005i −0.562140 + 1.46285i
\(627\) 4.86881 + 3.88275i 0.194442 + 0.155062i
\(628\) −6.76229 40.9037i −0.269845 1.63224i
\(629\) −4.03891 + 3.22093i −0.161042 + 0.128427i
\(630\) 13.0164 1.80155i 0.518585 0.0717756i
\(631\) −11.8306 9.43462i −0.470970 0.375586i 0.359051 0.933318i \(-0.383100\pi\)
−0.830021 + 0.557732i \(0.811672\pi\)
\(632\) 27.7640 14.1087i 1.10439 0.561216i
\(633\) 17.4146 + 36.1617i 0.692167 + 1.43730i
\(634\) −7.02441 + 0.576731i −0.278975 + 0.0229049i
\(635\) −5.88253 25.7730i −0.233441 1.02277i
\(636\) −24.1187 58.9702i −0.956370 2.33832i
\(637\) −7.06443 + 2.46423i −0.279903 + 0.0976364i
\(638\) 6.14484 + 4.12570i 0.243277 + 0.163338i
\(639\) −7.95567 + 1.81583i −0.314721 + 0.0718331i
\(640\) −5.22726 + 15.5569i −0.206626 + 0.614940i
\(641\) −30.7552 + 14.8109i −1.21476 + 0.584996i −0.927847 0.372962i \(-0.878342\pi\)
−0.286910 + 0.957958i \(0.592628\pi\)
\(642\) 0.438259 + 5.33786i 0.0172967 + 0.210668i
\(643\) −8.05520 + 10.1009i −0.317666 + 0.398340i −0.914870 0.403749i \(-0.867707\pi\)
0.597204 + 0.802089i \(0.296278\pi\)
\(644\) 33.2553 + 7.76357i 1.31044 + 0.305928i
\(645\) −2.78925 3.49761i −0.109827 0.137718i
\(646\) −4.97832 + 4.68561i −0.195869 + 0.184353i
\(647\) 7.56190 9.48232i 0.297289 0.372788i −0.610643 0.791906i \(-0.709089\pi\)
0.907932 + 0.419118i \(0.137660\pi\)
\(648\) 0.628398 + 29.4137i 0.0246858 + 1.15548i
\(649\) −0.393153 + 0.816391i −0.0154326 + 0.0320462i
\(650\) −1.57011 + 4.08587i −0.0615846 + 0.160261i
\(651\) 43.5764 38.9041i 1.70790 1.52477i
\(652\) −5.07510 30.6983i −0.198756 1.20224i
\(653\) −1.66896 + 2.09281i −0.0653115 + 0.0818981i −0.813414 0.581685i \(-0.802394\pi\)
0.748103 + 0.663583i \(0.230965\pi\)
\(654\) −22.3614 + 13.1235i −0.874401 + 0.513171i
\(655\) 10.4737i 0.409241i
\(656\) −0.142374 0.144936i −0.00555876 0.00565881i
\(657\) 1.79618 3.72980i 0.0700755 0.145513i
\(658\) 44.6297 + 3.88661i 1.73985 + 0.151516i
\(659\) −5.98152 12.4208i −0.233007 0.483844i 0.751378 0.659872i \(-0.229389\pi\)
−0.984385 + 0.176028i \(0.943675\pi\)
\(660\) 3.37399 + 3.04235i 0.131332 + 0.118423i
\(661\) 5.19826 + 1.18647i 0.202189 + 0.0461482i 0.322416 0.946598i \(-0.395505\pi\)
−0.120227 + 0.992746i \(0.538362\pi\)
\(662\) −0.149381 + 0.140597i −0.00580584 + 0.00546447i
\(663\) 2.72554 1.31255i 0.105851 0.0509753i
\(664\) 0.548628 0.137613i 0.0212909 0.00534041i
\(665\) −10.1647 11.3854i −0.394168 0.441507i
\(666\) −12.5490 + 7.36479i −0.486263 + 0.285380i
\(667\) 50.2191i 1.94449i
\(668\) −2.45244 5.99622i −0.0948879 0.232001i
\(669\) −10.6567 5.13199i −0.412011 0.198414i
\(670\) −6.01333 19.0130i −0.232315 0.734537i
\(671\) −1.13974 + 4.99353i −0.0439992 + 0.192773i
\(672\) −15.6328 31.1436i −0.603049 1.20139i
\(673\) 4.47406 + 19.6021i 0.172462 + 0.755606i 0.984980 + 0.172670i \(0.0552393\pi\)
−0.812518 + 0.582937i \(0.801904\pi\)
\(674\) 5.76248 3.38190i 0.221963 0.130266i
\(675\) −0.868625 3.80569i −0.0334334 0.146481i
\(676\) −22.7588 6.66675i −0.875339 0.256414i
\(677\) 35.8373 + 8.17963i 1.37734 + 0.314369i 0.846177 0.532902i \(-0.178899\pi\)
0.531162 + 0.847270i \(0.321756\pi\)
\(678\) 35.5956 2.92254i 1.36704 0.112239i
\(679\) −38.5606 + 2.14668i −1.47982 + 0.0823818i
\(680\) −3.83205 + 3.19221i −0.146952 + 0.122416i
\(681\) −7.98983 10.0189i −0.306171 0.383926i
\(682\) 8.92830 + 1.28078i 0.341882 + 0.0490435i
\(683\) −7.87807 + 6.28255i −0.301446 + 0.240395i −0.762517 0.646968i \(-0.776037\pi\)
0.461071 + 0.887363i \(0.347465\pi\)
\(684\) −15.7539 + 11.0727i −0.602366 + 0.423376i
\(685\) 6.42667i 0.245551i
\(686\) −5.20451 + 25.6693i −0.198709 + 0.980059i
\(687\) 10.0608i 0.383843i
\(688\) −2.85873 + 4.46082i −0.108988 + 0.170067i
\(689\) 11.4334 9.11783i 0.435578 0.347362i
\(690\) 4.37713 30.5130i 0.166634 1.16161i
\(691\) −4.28751 5.37636i −0.163104 0.204526i 0.693562 0.720397i \(-0.256040\pi\)
−0.856667 + 0.515870i \(0.827469\pi\)
\(692\) −10.4684 + 35.7369i −0.397950 + 1.35851i
\(693\) −4.30142 + 0.239461i −0.163398 + 0.00909637i
\(694\) −2.08527 25.3979i −0.0791556 0.964091i
\(695\) −4.55674 1.04005i −0.172847 0.0394512i
\(696\) −39.3731 + 32.7990i −1.49243 + 1.24324i
\(697\) −0.0137389 0.0601941i −0.000520398 0.00228001i
\(698\) 9.88229 + 16.8386i 0.374050 + 0.637350i
\(699\) 8.06208 + 35.3223i 0.304936 + 1.33601i
\(700\) 9.49436 + 12.0271i 0.358853 + 0.454582i
\(701\) −7.50652 + 32.8882i −0.283517 + 1.24217i 0.609732 + 0.792608i \(0.291277\pi\)
−0.893249 + 0.449562i \(0.851580\pi\)
\(702\) −1.94278 + 0.614450i −0.0733253 + 0.0231909i
\(703\) 15.2267 + 7.33281i 0.574287 + 0.276562i
\(704\) 2.12535 4.94297i 0.0801023 0.186295i
\(705\) 40.4378i 1.52297i
\(706\) −6.67968 11.3816i −0.251393 0.428353i
\(707\) 16.8350 + 18.8568i 0.633145 + 0.709184i
\(708\) −4.65926 4.20129i −0.175106 0.157894i
\(709\) −6.52530 + 3.14242i −0.245063 + 0.118016i −0.552384 0.833590i \(-0.686282\pi\)
0.307321 + 0.951606i \(0.400567\pi\)
\(710\) 4.73907 + 5.03512i 0.177854 + 0.188965i
\(711\) 25.9890 + 5.93183i 0.974665 + 0.222461i
\(712\) −10.0436 40.0413i −0.376399 1.50061i
\(713\) −26.5535 55.1389i −0.994436 2.06497i
\(714\) 0.918756 10.5500i 0.0343836 0.394824i
\(715\) −0.452447 + 0.939515i −0.0169205 + 0.0351359i
\(716\) 11.4967 4.70213i 0.429651 0.175727i
\(717\) 12.0802i 0.451142i
\(718\) 7.96656 + 13.5744i 0.297309 + 0.506590i
\(719\) −1.61864 + 2.02972i −0.0603652 + 0.0756956i −0.811097 0.584911i \(-0.801129\pi\)
0.750732 + 0.660607i \(0.229701\pi\)
\(720\) −11.9607 + 7.36747i −0.445751 + 0.274569i
\(721\) 18.5345 16.5472i 0.690259 0.616249i
\(722\) −4.20457 1.61572i −0.156478 0.0601308i
\(723\) −20.6520 + 42.8843i −0.768056 + 1.59488i
\(724\) 7.66014 + 10.8986i 0.284687 + 0.405044i
\(725\) 14.0494 17.6174i 0.521781 0.654292i
\(726\) 23.8035 + 25.2905i 0.883429 + 0.938617i
\(727\) −7.04878 8.83890i −0.261425 0.327816i 0.633745 0.773542i \(-0.281517\pi\)
−0.895169 + 0.445726i \(0.852946\pi\)
\(728\) 5.85146 5.45308i 0.216869 0.202105i
\(729\) −9.83057 + 12.3271i −0.364095 + 0.456561i
\(730\) −3.49605 + 0.287039i −0.129395 + 0.0106238i
\(731\) −1.45067 + 0.698607i −0.0536550 + 0.0258389i
\(732\) −30.9609 17.2922i −1.14435 0.639138i
\(733\) 30.7234 7.01242i 1.13480 0.259010i 0.386445 0.922313i \(-0.373703\pi\)
0.748351 + 0.663303i \(0.230846\pi\)
\(734\) −10.0113 + 14.9108i −0.369522 + 0.550368i
\(735\) 23.4908 + 2.66995i 0.866471 + 0.0984828i
\(736\) −35.8831 + 6.72262i −1.32267 + 0.247799i
\(737\) 1.45478 + 6.37381i 0.0535876 + 0.234782i
\(738\) −0.0142303 0.173320i −0.000523823 0.00638000i
\(739\) 12.5159 + 25.9895i 0.460405 + 0.956040i 0.993905 + 0.110240i \(0.0351621\pi\)
−0.533500 + 0.845800i \(0.679124\pi\)
\(740\) 10.7642 + 6.01199i 0.395700 + 0.221005i
\(741\) −7.73751 6.17046i −0.284245 0.226678i
\(742\) −7.01859 50.7099i −0.257660 1.86162i
\(743\) −18.6036 + 14.8359i −0.682500 + 0.544275i −0.902214 0.431289i \(-0.858059\pi\)
0.219714 + 0.975564i \(0.429488\pi\)
\(744\) −25.8878 + 56.8309i −0.949094 + 2.08352i
\(745\) −1.37003 1.09256i −0.0501940 0.0400284i
\(746\) 11.6080 + 4.46067i 0.424998 + 0.163317i
\(747\) 0.436207 + 0.210066i 0.0159600 + 0.00768592i
\(748\) 1.33776 0.940249i 0.0489133 0.0343789i
\(749\) −0.722925 + 4.24232i −0.0264151 + 0.155011i
\(750\) 27.4626 25.8479i 1.00279 0.943831i
\(751\) 18.7888 + 14.9835i 0.685611 + 0.546757i 0.903166 0.429291i \(-0.141237\pi\)
−0.217555 + 0.976048i \(0.569808\pi\)
\(752\) −45.3434 + 15.4138i −1.65351 + 0.562085i
\(753\) 44.7475 1.63069
\(754\) −9.76538 6.55656i −0.355634 0.238776i
\(755\) 20.5771 + 9.90942i 0.748878 + 0.360641i
\(756\) −1.62163 + 6.94628i −0.0589782 + 0.252634i
\(757\) 26.1432 12.5899i 0.950191 0.457588i 0.106438 0.994319i \(-0.466055\pi\)
0.843753 + 0.536731i \(0.180341\pi\)
\(758\) 43.3966 + 6.22530i 1.57623 + 0.226113i
\(759\) −2.24881 + 9.85267i −0.0816265 + 0.357629i
\(760\) 14.8485 + 6.76383i 0.538610 + 0.245350i
\(761\) 0.615243 + 1.27756i 0.0223025 + 0.0463117i 0.911823 0.410585i \(-0.134675\pi\)
−0.889520 + 0.456896i \(0.848961\pi\)
\(762\) −59.3991 8.52088i −2.15180 0.308679i
\(763\) −20.0221 + 5.75770i −0.724848 + 0.208443i
\(764\) 22.5582 + 1.36778i 0.816126 + 0.0494845i
\(765\) −4.26909 −0.154349
\(766\) −13.5923 + 20.2444i −0.491108 + 0.731459i
\(767\) 0.624799 1.29741i 0.0225602 0.0468467i
\(768\)