Properties

Label 196.2.j.a.111.19
Level $196$
Weight $2$
Character 196.111
Analytic conductor $1.565$
Analytic rank $0$
Dimension $156$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(27,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 111.19
Character \(\chi\) \(=\) 196.111
Dual form 196.2.j.a.83.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.846372 - 1.13298i) q^{2} +(0.635719 + 0.797166i) q^{3} +(-0.567307 - 1.91785i) q^{4} +(-0.726306 + 0.579209i) q^{5} +(1.44123 - 0.0455600i) q^{6} +(2.60326 - 0.472259i) q^{7} +(-2.65305 - 0.980468i) q^{8} +(0.436227 - 1.91124i) q^{9} +O(q^{10})\) \(q+(0.846372 - 1.13298i) q^{2} +(0.635719 + 0.797166i) q^{3} +(-0.567307 - 1.91785i) q^{4} +(-0.726306 + 0.579209i) q^{5} +(1.44123 - 0.0455600i) q^{6} +(2.60326 - 0.472259i) q^{7} +(-2.65305 - 0.980468i) q^{8} +(0.436227 - 1.91124i) q^{9} +(0.0415101 + 1.31312i) q^{10} +(5.04868 - 1.15233i) q^{11} +(1.16820 - 1.67145i) q^{12} +(-2.71007 + 0.618555i) q^{13} +(1.66827 - 3.34916i) q^{14} +(-0.923453 - 0.210772i) q^{15} +(-3.35632 + 2.17602i) q^{16} +(-2.67586 + 5.55648i) q^{17} +(-1.79619 - 2.11186i) q^{18} -5.31475 q^{19} +(1.52288 + 1.06436i) q^{20} +(2.03141 + 1.77501i) q^{21} +(2.96750 - 6.69538i) q^{22} +(2.67158 + 5.54759i) q^{23} +(-0.904999 - 2.73823i) q^{24} +(-0.920568 + 4.03327i) q^{25} +(-1.59291 + 3.59399i) q^{26} +(4.55681 - 2.19445i) q^{27} +(-2.38257 - 4.72476i) q^{28} +(-6.99898 - 3.37053i) q^{29} +(-1.02039 + 0.867866i) q^{30} -2.80797 q^{31} +(-0.375299 + 5.64439i) q^{32} +(4.12814 + 3.29208i) q^{33} +(4.03063 + 7.73455i) q^{34} +(-1.61723 + 1.85084i) q^{35} +(-3.91295 + 0.247638i) q^{36} +(-5.03268 - 2.42361i) q^{37} +(-4.49826 + 6.02153i) q^{38} +(-2.21593 - 1.76715i) q^{39} +(2.49482 - 0.824553i) q^{40} +(8.64941 - 6.89767i) q^{41} +(3.73039 - 0.799240i) q^{42} +(-1.76174 - 1.40494i) q^{43} +(-5.07415 - 9.02891i) q^{44} +(0.790172 + 1.64081i) q^{45} +(8.54648 + 1.66847i) q^{46} +(1.31376 + 5.75595i) q^{47} +(-3.86833 - 1.29221i) q^{48} +(6.55394 - 2.45883i) q^{49} +(3.79049 + 4.45664i) q^{50} +(-6.13053 + 1.39925i) q^{51} +(2.72374 + 4.84660i) q^{52} +(3.53549 - 1.70260i) q^{53} +(1.37049 - 7.02012i) q^{54} +(-2.99945 + 3.76119i) q^{55} +(-7.36962 - 1.29949i) q^{56} +(-3.37869 - 4.23674i) q^{57} +(-9.74251 + 5.07701i) q^{58} +(3.63089 - 4.55299i) q^{59} +(0.119651 + 1.89062i) q^{60} +(-2.83755 + 5.89224i) q^{61} +(-2.37659 + 3.18138i) q^{62} +(0.233014 - 5.18146i) q^{63} +(6.07736 + 5.20247i) q^{64} +(1.61006 - 2.01896i) q^{65} +(7.22383 - 1.89079i) q^{66} +7.05842i q^{67} +(12.1745 + 1.97967i) q^{68} +(-2.72398 + 5.65640i) q^{69} +(0.728195 + 3.39879i) q^{70} +(0.607747 + 1.26200i) q^{71} +(-3.03124 + 4.64290i) q^{72} +(-4.23286 - 0.966123i) q^{73} +(-7.00543 + 3.65067i) q^{74} +(-3.80041 + 1.83018i) q^{75} +(3.01510 + 10.1929i) q^{76} +(12.5988 - 5.38410i) q^{77} +(-3.87766 + 1.01495i) q^{78} -1.47889i q^{79} +(1.17734 - 3.52447i) q^{80} +(-0.652553 - 0.314253i) q^{81} +(-0.494335 - 15.6376i) q^{82} +(2.36598 - 10.3660i) q^{83} +(2.25177 - 4.90293i) q^{84} +(-1.27487 - 5.58558i) q^{85} +(-3.08286 + 0.806921i) q^{86} +(-1.76251 - 7.72207i) q^{87} +(-14.5242 - 1.89289i) q^{88} +(8.05318 + 1.83809i) q^{89} +(2.52779 + 0.493483i) q^{90} +(-6.76290 + 2.89012i) q^{91} +(9.12386 - 8.27088i) q^{92} +(-1.78508 - 2.23842i) q^{93} +(7.63333 + 3.38321i) q^{94} +(3.86013 - 3.07835i) q^{95} +(-4.73810 + 3.28907i) q^{96} -11.4703i q^{97} +(2.76126 - 9.50660i) q^{98} -10.1519i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9} - 7 q^{10} - 42 q^{12} - 14 q^{13} + 21 q^{14} - 13 q^{16} - 14 q^{17} - 12 q^{18} - 7 q^{20} - 14 q^{21} + 3 q^{22} + 35 q^{24} - 7 q^{26} + 42 q^{28} - 30 q^{29} - 4 q^{30} - 5 q^{32} - 14 q^{33} + 77 q^{34} - 11 q^{36} + 10 q^{37} - 21 q^{38} - 63 q^{40} - 14 q^{41} - 7 q^{42} - 55 q^{44} - 14 q^{45} - 19 q^{46} - 132 q^{50} - 7 q^{52} - 2 q^{53} + 14 q^{54} - 70 q^{56} - 64 q^{57} - 3 q^{58} - 107 q^{60} + 14 q^{61} - 21 q^{62} - 11 q^{64} - 22 q^{65} + 161 q^{66} - 70 q^{69} - 77 q^{70} + 114 q^{72} - 14 q^{73} + 5 q^{74} + 70 q^{76} - 42 q^{77} + 61 q^{78} + 92 q^{81} - 42 q^{82} + 70 q^{84} - 6 q^{85} + 47 q^{86} + 65 q^{88} - 14 q^{89} + 112 q^{90} - 70 q^{92} - 48 q^{93} - 28 q^{94} + 238 q^{96} + 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.846372 1.13298i 0.598476 0.801141i
\(3\) 0.635719 + 0.797166i 0.367033 + 0.460244i 0.930714 0.365748i \(-0.119187\pi\)
−0.563681 + 0.825992i \(0.690615\pi\)
\(4\) −0.567307 1.91785i −0.283654 0.958927i
\(5\) −0.726306 + 0.579209i −0.324814 + 0.259030i −0.772297 0.635262i \(-0.780892\pi\)
0.447483 + 0.894293i \(0.352321\pi\)
\(6\) 1.44123 0.0455600i 0.588381 0.0185998i
\(7\) 2.60326 0.472259i 0.983940 0.178497i
\(8\) −2.65305 0.980468i −0.937995 0.346648i
\(9\) 0.436227 1.91124i 0.145409 0.637079i
\(10\) 0.0415101 + 1.31312i 0.0131267 + 0.415245i
\(11\) 5.04868 1.15233i 1.52224 0.347440i 0.622061 0.782969i \(-0.286296\pi\)
0.900175 + 0.435529i \(0.143439\pi\)
\(12\) 1.16820 1.67145i 0.337230 0.482507i
\(13\) −2.71007 + 0.618555i −0.751638 + 0.171556i −0.581142 0.813802i \(-0.697394\pi\)
−0.170495 + 0.985358i \(0.554537\pi\)
\(14\) 1.66827 3.34916i 0.445863 0.895101i
\(15\) −0.923453 0.210772i −0.238434 0.0544211i
\(16\) −3.35632 + 2.17602i −0.839081 + 0.544006i
\(17\) −2.67586 + 5.55648i −0.648991 + 1.34764i 0.273593 + 0.961846i \(0.411788\pi\)
−0.922583 + 0.385798i \(0.873926\pi\)
\(18\) −1.79619 2.11186i −0.423366 0.497769i
\(19\) −5.31475 −1.21929 −0.609644 0.792675i \(-0.708688\pi\)
−0.609644 + 0.792675i \(0.708688\pi\)
\(20\) 1.52288 + 1.06436i 0.340526 + 0.237998i
\(21\) 2.03141 + 1.77501i 0.443290 + 0.387339i
\(22\) 2.96750 6.69538i 0.632672 1.42746i
\(23\) 2.67158 + 5.54759i 0.557062 + 1.15675i 0.969347 + 0.245697i \(0.0790167\pi\)
−0.412284 + 0.911055i \(0.635269\pi\)
\(24\) −0.904999 2.73823i −0.184732 0.558938i
\(25\) −0.920568 + 4.03327i −0.184114 + 0.806655i
\(26\) −1.59291 + 3.59399i −0.312396 + 0.704840i
\(27\) 4.55681 2.19445i 0.876959 0.422321i
\(28\) −2.38257 4.72476i −0.450264 0.892895i
\(29\) −6.99898 3.37053i −1.29968 0.625892i −0.349307 0.937008i \(-0.613583\pi\)
−0.950372 + 0.311116i \(0.899297\pi\)
\(30\) −1.02039 + 0.867866i −0.186296 + 0.158450i
\(31\) −2.80797 −0.504326 −0.252163 0.967685i \(-0.581142\pi\)
−0.252163 + 0.967685i \(0.581142\pi\)
\(32\) −0.375299 + 5.64439i −0.0663442 + 0.997797i
\(33\) 4.12814 + 3.29208i 0.718617 + 0.573078i
\(34\) 4.03063 + 7.73455i 0.691247 + 1.32646i
\(35\) −1.61723 + 1.85084i −0.273361 + 0.312849i
\(36\) −3.91295 + 0.247638i −0.652158 + 0.0412730i
\(37\) −5.03268 2.42361i −0.827367 0.398439i −0.0282401 0.999601i \(-0.508990\pi\)
−0.799127 + 0.601162i \(0.794705\pi\)
\(38\) −4.49826 + 6.02153i −0.729714 + 0.976821i
\(39\) −2.21593 1.76715i −0.354833 0.282970i
\(40\) 2.49482 0.824553i 0.394466 0.130373i
\(41\) 8.64941 6.89767i 1.35081 1.07724i 0.361351 0.932430i \(-0.382316\pi\)
0.989460 0.144805i \(-0.0462556\pi\)
\(42\) 3.73039 0.799240i 0.575611 0.123325i
\(43\) −1.76174 1.40494i −0.268663 0.214252i 0.479886 0.877331i \(-0.340678\pi\)
−0.748549 + 0.663079i \(0.769249\pi\)
\(44\) −5.07415 9.02891i −0.764957 1.36116i
\(45\) 0.790172 + 1.64081i 0.117792 + 0.244597i
\(46\) 8.54648 + 1.66847i 1.26011 + 0.246002i
\(47\) 1.31376 + 5.75595i 0.191631 + 0.839592i 0.975734 + 0.218960i \(0.0702665\pi\)
−0.784102 + 0.620631i \(0.786876\pi\)
\(48\) −3.86833 1.29221i −0.558346 0.186514i
\(49\) 6.55394 2.45883i 0.936277 0.351261i
\(50\) 3.79049 + 4.45664i 0.536057 + 0.630264i
\(51\) −6.13053 + 1.39925i −0.858446 + 0.195935i
\(52\) 2.72374 + 4.84660i 0.377715 + 0.672103i
\(53\) 3.53549 1.70260i 0.485636 0.233870i −0.175011 0.984566i \(-0.555996\pi\)
0.660647 + 0.750696i \(0.270282\pi\)
\(54\) 1.37049 7.02012i 0.186500 0.955317i
\(55\) −2.99945 + 3.76119i −0.404445 + 0.507159i
\(56\) −7.36962 1.29949i −0.984807 0.173651i
\(57\) −3.37869 4.23674i −0.447518 0.561170i
\(58\) −9.74251 + 5.07701i −1.27925 + 0.666644i
\(59\) 3.63089 4.55299i 0.472701 0.592749i −0.487129 0.873330i \(-0.661956\pi\)
0.959830 + 0.280581i \(0.0905273\pi\)
\(60\) 0.119651 + 1.89062i 0.0154469 + 0.244078i
\(61\) −2.83755 + 5.89224i −0.363311 + 0.754424i −0.999859 0.0168139i \(-0.994648\pi\)
0.636547 + 0.771238i \(0.280362\pi\)
\(62\) −2.37659 + 3.18138i −0.301827 + 0.404036i
\(63\) 0.233014 5.18146i 0.0293570 0.652803i
\(64\) 6.07736 + 5.20247i 0.759670 + 0.650308i
\(65\) 1.61006 2.01896i 0.199704 0.250421i
\(66\) 7.22383 1.89079i 0.889191 0.232740i
\(67\) 7.05842i 0.862324i 0.902275 + 0.431162i \(0.141896\pi\)
−0.902275 + 0.431162i \(0.858104\pi\)
\(68\) 12.1745 + 1.97967i 1.47638 + 0.240071i
\(69\) −2.72398 + 5.65640i −0.327928 + 0.680950i
\(70\) 0.728195 + 3.39879i 0.0870359 + 0.406233i
\(71\) 0.607747 + 1.26200i 0.0721264 + 0.149772i 0.933914 0.357496i \(-0.116370\pi\)
−0.861788 + 0.507268i \(0.830655\pi\)
\(72\) −3.03124 + 4.64290i −0.357235 + 0.547171i
\(73\) −4.23286 0.966123i −0.495419 0.113076i −0.0324911 0.999472i \(-0.510344\pi\)
−0.462928 + 0.886396i \(0.653201\pi\)
\(74\) −7.00543 + 3.65067i −0.814365 + 0.424382i
\(75\) −3.80041 + 1.83018i −0.438834 + 0.211331i
\(76\) 3.01510 + 10.1929i 0.345855 + 1.16921i
\(77\) 12.5988 5.38410i 1.43577 0.613575i
\(78\) −3.87766 + 1.01495i −0.439058 + 0.114921i
\(79\) 1.47889i 0.166388i −0.996533 0.0831942i \(-0.973488\pi\)
0.996533 0.0831942i \(-0.0265122\pi\)
\(80\) 1.17734 3.52447i 0.131631 0.394048i
\(81\) −0.652553 0.314253i −0.0725058 0.0349170i
\(82\) −0.494335 15.6376i −0.0545901 1.72689i
\(83\) 2.36598 10.3660i 0.259700 1.13782i −0.661873 0.749616i \(-0.730238\pi\)
0.921573 0.388205i \(-0.126905\pi\)
\(84\) 2.25177 4.90293i 0.245688 0.534953i
\(85\) −1.27487 5.58558i −0.138279 0.605841i
\(86\) −3.08286 + 0.806921i −0.332434 + 0.0870125i
\(87\) −1.76251 7.72207i −0.188961 0.827892i
\(88\) −14.5242 1.89289i −1.54829 0.201782i
\(89\) 8.05318 + 1.83809i 0.853636 + 0.194837i 0.626881 0.779115i \(-0.284331\pi\)
0.226755 + 0.973952i \(0.427188\pi\)
\(90\) 2.52779 + 0.493483i 0.266452 + 0.0520177i
\(91\) −6.76290 + 2.89012i −0.708944 + 0.302967i
\(92\) 9.12386 8.27088i 0.951228 0.862299i
\(93\) −1.78508 2.23842i −0.185104 0.232113i
\(94\) 7.63333 + 3.38321i 0.787318 + 0.348952i
\(95\) 3.86013 3.07835i 0.396041 0.315833i
\(96\) −4.73810 + 3.28907i −0.483581 + 0.335689i
\(97\) 11.4703i 1.16463i −0.812963 0.582316i \(-0.802147\pi\)
0.812963 0.582316i \(-0.197853\pi\)
\(98\) 2.76126 9.50660i 0.278929 0.960312i
\(99\) 10.1519i 1.02030i
\(100\) 8.25747 0.522590i 0.825747 0.0522590i
\(101\) −11.8837 + 9.47693i −1.18247 + 0.942989i −0.999197 0.0400725i \(-0.987241\pi\)
−0.183274 + 0.983062i \(0.558670\pi\)
\(102\) −3.60338 + 8.13008i −0.356788 + 0.804998i
\(103\) −6.06708 7.60788i −0.597808 0.749627i 0.387227 0.921984i \(-0.373433\pi\)
−0.985034 + 0.172357i \(0.944862\pi\)
\(104\) 7.79642 + 1.01608i 0.764502 + 0.0996345i
\(105\) −2.50353 0.112586i −0.244319 0.0109872i
\(106\) 1.06332 5.44668i 0.103279 0.529029i
\(107\) 4.09741 + 0.935207i 0.396111 + 0.0904098i 0.415937 0.909394i \(-0.363454\pi\)
−0.0198252 + 0.999803i \(0.506311\pi\)
\(108\) −6.79374 7.49438i −0.653728 0.721147i
\(109\) −1.62349 7.11295i −0.155502 0.681297i −0.991229 0.132153i \(-0.957811\pi\)
0.835728 0.549144i \(-0.185046\pi\)
\(110\) 1.72272 + 6.58169i 0.164255 + 0.627540i
\(111\) −1.26735 5.55262i −0.120291 0.527031i
\(112\) −7.70974 + 7.24982i −0.728502 + 0.685043i
\(113\) −1.59142 + 6.97247i −0.149708 + 0.655915i 0.843257 + 0.537510i \(0.180635\pi\)
−0.992965 + 0.118404i \(0.962222\pi\)
\(114\) −7.65979 + 0.242140i −0.717405 + 0.0226785i
\(115\) −5.15360 2.48184i −0.480575 0.231433i
\(116\) −2.49361 + 15.3352i −0.231526 + 1.42383i
\(117\) 5.44941i 0.503798i
\(118\) −2.08538 7.96726i −0.191975 0.733446i
\(119\) −4.34186 + 15.7287i −0.398018 + 1.44184i
\(120\) 2.24331 + 1.46461i 0.204785 + 0.133700i
\(121\) 14.2507 6.86277i 1.29552 0.623888i
\(122\) 4.27419 + 8.20193i 0.386967 + 0.742568i
\(123\) 10.9972 + 2.51004i 0.991583 + 0.226322i
\(124\) 1.59298 + 5.38527i 0.143054 + 0.483611i
\(125\) −3.68284 7.64750i −0.329403 0.684013i
\(126\) −5.67330 4.64945i −0.505417 0.414206i
\(127\) 2.83208 5.88087i 0.251306 0.521843i −0.736707 0.676212i \(-0.763620\pi\)
0.988013 + 0.154369i \(0.0493346\pi\)
\(128\) 11.0380 2.48233i 0.975633 0.219409i
\(129\) 2.29755i 0.202288i
\(130\) −0.924732 3.53297i −0.0811044 0.309862i
\(131\) 9.72960 12.2005i 0.850080 1.06597i −0.146965 0.989142i \(-0.546951\pi\)
0.997045 0.0768243i \(-0.0244781\pi\)
\(132\) 3.97181 9.78480i 0.345702 0.851657i
\(133\) −13.8357 + 2.50994i −1.19971 + 0.217640i
\(134\) 7.99709 + 5.97406i 0.690843 + 0.516080i
\(135\) −2.03860 + 4.23319i −0.175454 + 0.364335i
\(136\) 12.5471 12.1180i 1.07591 1.03911i
\(137\) 1.56347 1.96053i 0.133576 0.167500i −0.710545 0.703652i \(-0.751551\pi\)
0.844121 + 0.536153i \(0.180123\pi\)
\(138\) 4.10311 + 7.87364i 0.349280 + 0.670249i
\(139\) 2.50048 + 3.13550i 0.212088 + 0.265950i 0.876484 0.481431i \(-0.159883\pi\)
−0.664396 + 0.747380i \(0.731311\pi\)
\(140\) 4.46710 + 2.05161i 0.377539 + 0.173393i
\(141\) −3.75327 + 4.70645i −0.316082 + 0.396355i
\(142\) 1.94421 + 0.379554i 0.163154 + 0.0318515i
\(143\) −12.9695 + 6.24578i −1.08456 + 0.522298i
\(144\) 2.69478 + 7.36397i 0.224565 + 0.613664i
\(145\) 7.03565 1.60584i 0.584279 0.133358i
\(146\) −4.67718 + 3.97807i −0.387086 + 0.329227i
\(147\) 6.12656 + 3.66146i 0.505310 + 0.301992i
\(148\) −1.79305 + 11.0269i −0.147388 + 0.906403i
\(149\) 0.452330 + 1.98179i 0.0370563 + 0.162354i 0.990071 0.140571i \(-0.0448938\pi\)
−0.953014 + 0.302925i \(0.902037\pi\)
\(150\) −1.14300 + 5.85482i −0.0933253 + 0.478044i
\(151\) −1.45269 3.01654i −0.118218 0.245483i 0.833460 0.552580i \(-0.186357\pi\)
−0.951678 + 0.307097i \(0.900642\pi\)
\(152\) 14.1003 + 5.21095i 1.14369 + 0.422664i
\(153\) 9.45246 + 7.53808i 0.764186 + 0.609418i
\(154\) 4.56321 18.8313i 0.367714 1.51747i
\(155\) 2.03944 1.62640i 0.163812 0.130636i
\(156\) −2.13202 + 5.25235i −0.170698 + 0.420525i
\(157\) −0.749519 0.597722i −0.0598181 0.0477034i 0.593124 0.805111i \(-0.297894\pi\)
−0.652942 + 0.757407i \(0.726466\pi\)
\(158\) −1.67556 1.25169i −0.133301 0.0995794i
\(159\) 3.60483 + 1.73600i 0.285882 + 0.137673i
\(160\) −2.99670 4.31693i −0.236910 0.341283i
\(161\) 9.57472 + 13.1801i 0.754593 + 1.03874i
\(162\) −0.908346 + 0.473357i −0.0713664 + 0.0371904i
\(163\) 8.79053 + 7.01022i 0.688528 + 0.549082i 0.904055 0.427415i \(-0.140576\pi\)
−0.215528 + 0.976498i \(0.569147\pi\)
\(164\) −18.1356 12.6752i −1.41615 0.989767i
\(165\) −4.90510 −0.381861
\(166\) −9.74207 11.4542i −0.756131 0.889015i
\(167\) −2.46446 1.18682i −0.190706 0.0918390i 0.336094 0.941828i \(-0.390894\pi\)
−0.526800 + 0.849989i \(0.676608\pi\)
\(168\) −3.64910 6.70092i −0.281534 0.516988i
\(169\) −4.75074 + 2.28784i −0.365441 + 0.175987i
\(170\) −7.40739 3.28307i −0.568121 0.251800i
\(171\) −2.31844 + 10.1577i −0.177295 + 0.776782i
\(172\) −1.69502 + 4.17579i −0.129244 + 0.318401i
\(173\) 5.47431 + 11.3675i 0.416204 + 0.864257i 0.998678 + 0.0514072i \(0.0163706\pi\)
−0.582474 + 0.812850i \(0.697915\pi\)
\(174\) −10.2407 4.53885i −0.776347 0.344089i
\(175\) −0.491729 + 10.9344i −0.0371712 + 0.826564i
\(176\) −14.4375 + 14.8537i −1.08827 + 1.11964i
\(177\) 5.93771 0.446306
\(178\) 8.89852 7.56842i 0.666972 0.567277i
\(179\) −4.51082 + 9.36681i −0.337154 + 0.700108i −0.998762 0.0497418i \(-0.984160\pi\)
0.661608 + 0.749850i \(0.269874\pi\)
\(180\) 2.69856 2.44628i 0.201139 0.182335i
\(181\) −8.90161 2.03174i −0.661652 0.151018i −0.121508 0.992590i \(-0.538773\pi\)
−0.540144 + 0.841573i \(0.681630\pi\)
\(182\) −2.44947 + 10.1084i −0.181567 + 0.749282i
\(183\) −6.50098 + 1.48381i −0.480566 + 0.109686i
\(184\) −1.64860 17.3374i −0.121536 1.27813i
\(185\) 5.05904 1.15469i 0.371948 0.0848947i
\(186\) −4.04693 + 0.127931i −0.296735 + 0.00938035i
\(187\) −7.10667 + 31.1364i −0.519691 + 2.27692i
\(188\) 10.2938 5.78499i 0.750750 0.421914i
\(189\) 10.8262 7.86471i 0.787492 0.572074i
\(190\) −0.220616 6.97891i −0.0160052 0.506303i
\(191\) 13.2051 10.5307i 0.955486 0.761975i −0.0158035 0.999875i \(-0.505031\pi\)
0.971290 + 0.237900i \(0.0764592\pi\)
\(192\) −0.283735 + 8.15198i −0.0204768 + 0.588318i
\(193\) −6.54666 8.20926i −0.471239 0.590915i 0.488235 0.872712i \(-0.337641\pi\)
−0.959474 + 0.281797i \(0.909070\pi\)
\(194\) −12.9957 9.70813i −0.933034 0.697003i
\(195\) 2.63299 0.188553
\(196\) −8.43377 11.1746i −0.602412 0.798185i
\(197\) −11.8054 −0.841099 −0.420550 0.907269i \(-0.638163\pi\)
−0.420550 + 0.907269i \(0.638163\pi\)
\(198\) −11.5019 8.59229i −0.817408 0.610628i
\(199\) 0.317945 + 0.398690i 0.0225385 + 0.0282624i 0.792973 0.609257i \(-0.208532\pi\)
−0.770435 + 0.637519i \(0.779961\pi\)
\(200\) 6.39681 9.79789i 0.452323 0.692816i
\(201\) −5.62674 + 4.48717i −0.396880 + 0.316501i
\(202\) 0.679181 + 21.4850i 0.0477870 + 1.51168i
\(203\) −19.8120 5.46904i −1.39053 0.383852i
\(204\) 6.16146 + 10.9637i 0.431388 + 0.767609i
\(205\) −2.28692 + 10.0196i −0.159725 + 0.699802i
\(206\) −13.7546 + 0.434809i −0.958330 + 0.0302946i
\(207\) 11.7682 2.68601i 0.817944 0.186690i
\(208\) 7.74988 7.97325i 0.537357 0.552845i
\(209\) −26.8325 + 6.12434i −1.85604 + 0.423630i
\(210\) −2.24647 + 2.74117i −0.155021 + 0.189159i
\(211\) −0.438590 0.100105i −0.0301938 0.00689154i 0.207397 0.978257i \(-0.433501\pi\)
−0.237591 + 0.971365i \(0.576358\pi\)
\(212\) −5.27104 5.81465i −0.362017 0.399352i
\(213\) −0.619668 + 1.28675i −0.0424589 + 0.0881669i
\(214\) 4.52751 3.85077i 0.309494 0.263233i
\(215\) 2.09332 0.142763
\(216\) −14.2410 + 1.35417i −0.968980 + 0.0921393i
\(217\) −7.30987 + 1.32609i −0.496226 + 0.0900208i
\(218\) −9.43294 4.18082i −0.638879 0.283161i
\(219\) −1.92075 3.98848i −0.129792 0.269516i
\(220\) 8.91502 + 3.61875i 0.601050 + 0.243976i
\(221\) 3.81477 16.7136i 0.256609 1.12428i
\(222\) −7.36368 3.26370i −0.494218 0.219045i
\(223\) 19.5719 9.42534i 1.31063 0.631167i 0.357555 0.933892i \(-0.383611\pi\)
0.953078 + 0.302725i \(0.0978963\pi\)
\(224\) 1.68861 + 14.8711i 0.112825 + 0.993615i
\(225\) 7.30696 + 3.51885i 0.487131 + 0.234590i
\(226\) 6.55276 + 7.70436i 0.435883 + 0.512486i
\(227\) −1.22521 −0.0813200 −0.0406600 0.999173i \(-0.512946\pi\)
−0.0406600 + 0.999173i \(0.512946\pi\)
\(228\) −6.20870 + 8.88337i −0.411181 + 0.588315i
\(229\) −15.2692 12.1768i −1.00902 0.804667i −0.0282040 0.999602i \(-0.508979\pi\)
−0.980816 + 0.194936i \(0.937550\pi\)
\(230\) −7.17375 + 3.73838i −0.473023 + 0.246502i
\(231\) 12.3014 + 6.62060i 0.809370 + 0.435604i
\(232\) 15.2640 + 15.8045i 1.00213 + 1.03761i
\(233\) 20.5149 + 9.87944i 1.34397 + 0.647224i 0.961003 0.276537i \(-0.0891868\pi\)
0.382970 + 0.923761i \(0.374901\pi\)
\(234\) 6.17410 + 4.61223i 0.403613 + 0.301511i
\(235\) −4.28809 3.41964i −0.279724 0.223073i
\(236\) −10.7918 4.38057i −0.702486 0.285151i
\(237\) 1.17892 0.940160i 0.0765793 0.0610700i
\(238\) 14.1455 + 18.2316i 0.916916 + 1.18178i
\(239\) 3.76316 + 3.00102i 0.243419 + 0.194120i 0.737598 0.675240i \(-0.235960\pi\)
−0.494179 + 0.869360i \(0.664531\pi\)
\(240\) 3.55805 1.30204i 0.229671 0.0840461i
\(241\) 3.87499 + 8.04649i 0.249610 + 0.518320i 0.987696 0.156386i \(-0.0499845\pi\)
−0.738086 + 0.674707i \(0.764270\pi\)
\(242\) 4.28598 21.9543i 0.275513 1.41127i
\(243\) −3.54065 15.5126i −0.227133 0.995133i
\(244\) 12.9102 + 2.09930i 0.826492 + 0.134394i
\(245\) −3.33599 + 5.58197i −0.213128 + 0.356619i
\(246\) 12.1515 10.3352i 0.774754 0.658949i
\(247\) 14.4033 3.28747i 0.916463 0.209177i
\(248\) 7.44968 + 2.75312i 0.473055 + 0.174823i
\(249\) 9.76756 4.70381i 0.618994 0.298092i
\(250\) −11.7816 2.30003i −0.745131 0.145467i
\(251\) −3.20226 + 4.01551i −0.202125 + 0.253457i −0.872555 0.488516i \(-0.837538\pi\)
0.670430 + 0.741973i \(0.266110\pi\)
\(252\) −10.0695 + 2.49259i −0.634317 + 0.157019i
\(253\) 19.8806 + 24.9295i 1.24988 + 1.56730i
\(254\) −4.26594 8.18611i −0.267669 0.513642i
\(255\) 3.64218 4.56715i 0.228082 0.286006i
\(256\) 6.52984 14.6069i 0.408115 0.912931i
\(257\) −4.89436 + 10.1632i −0.305302 + 0.633966i −0.996017 0.0891610i \(-0.971581\pi\)
0.690715 + 0.723127i \(0.257296\pi\)
\(258\) −2.60309 1.94458i −0.162061 0.121064i
\(259\) −14.2459 3.93256i −0.885200 0.244357i
\(260\) −4.78547 1.94250i −0.296782 0.120469i
\(261\) −9.49503 + 11.9064i −0.587728 + 0.736987i
\(262\) −5.58815 21.3497i −0.345237 1.31899i
\(263\) 8.81724i 0.543695i 0.962340 + 0.271847i \(0.0876346\pi\)
−0.962340 + 0.271847i \(0.912365\pi\)
\(264\) −7.72439 12.7816i −0.475403 0.786652i
\(265\) −1.58168 + 3.28439i −0.0971619 + 0.201759i
\(266\) −8.86642 + 17.8000i −0.543635 + 1.09139i
\(267\) 3.65430 + 7.58823i 0.223640 + 0.464392i
\(268\) 13.5370 4.00430i 0.826905 0.244601i
\(269\) −7.18151 1.63913i −0.437865 0.0999397i −0.00209460 0.999998i \(-0.500667\pi\)
−0.435770 + 0.900058i \(0.643524\pi\)
\(270\) 3.07072 + 5.89255i 0.186878 + 0.358609i
\(271\) −3.66069 + 1.76290i −0.222371 + 0.107088i −0.541753 0.840538i \(-0.682239\pi\)
0.319382 + 0.947626i \(0.396525\pi\)
\(272\) −3.10998 24.4721i −0.188570 1.48384i
\(273\) −6.60321 3.55385i −0.399644 0.215089i
\(274\) −0.897972 3.43073i −0.0542485 0.207258i
\(275\) 21.4235i 1.29189i
\(276\) 12.3935 + 2.01528i 0.746000 + 0.121305i
\(277\) 7.24493 + 3.48897i 0.435305 + 0.209632i 0.638686 0.769468i \(-0.279478\pi\)
−0.203380 + 0.979100i \(0.565193\pi\)
\(278\) 5.66881 0.179201i 0.339992 0.0107478i
\(279\) −1.22491 + 5.36669i −0.0733335 + 0.321295i
\(280\) 6.10527 3.32473i 0.364860 0.198691i
\(281\) −4.29563 18.8204i −0.256256 1.12273i −0.925219 0.379434i \(-0.876119\pi\)
0.668963 0.743295i \(-0.266738\pi\)
\(282\) 2.15567 + 8.23581i 0.128368 + 0.490435i
\(283\) −6.17237 27.0429i −0.366909 1.60753i −0.735218 0.677831i \(-0.762920\pi\)
0.368309 0.929704i \(-0.379937\pi\)
\(284\) 2.07555 1.88151i 0.123161 0.111647i
\(285\) 4.90792 + 1.12020i 0.290720 + 0.0663550i
\(286\) −3.90065 + 19.9805i −0.230650 + 1.18147i
\(287\) 19.2592 22.0412i 1.13683 1.30105i
\(288\) 10.6240 + 3.17952i 0.626028 + 0.187355i
\(289\) −13.1149 16.4455i −0.771464 0.967385i
\(290\) 4.13539 9.33042i 0.242838 0.547901i
\(291\) 9.14373 7.29188i 0.536015 0.427458i
\(292\) 0.548451 + 8.66610i 0.0320957 + 0.507145i
\(293\) 0.497423i 0.0290598i −0.999894 0.0145299i \(-0.995375\pi\)
0.999894 0.0145299i \(-0.00462517\pi\)
\(294\) 9.33373 3.84234i 0.544354 0.224090i
\(295\) 5.40990i 0.314977i
\(296\) 10.9757 + 11.3643i 0.637948 + 0.660539i
\(297\) 20.4772 16.3300i 1.18821 0.947563i
\(298\) 2.62817 + 1.16485i 0.152246 + 0.0674778i
\(299\) −10.6716 13.3818i −0.617157 0.773891i
\(300\) 5.66602 + 6.25036i 0.327128 + 0.360865i
\(301\) −5.24977 2.82543i −0.302592 0.162855i
\(302\) −4.64721 0.907243i −0.267417 0.0522060i
\(303\) −15.1094 3.44862i −0.868011 0.198118i
\(304\) 17.8380 11.5650i 1.02308 0.663300i
\(305\) −1.35191 5.92310i −0.0774101 0.339156i
\(306\) 16.5408 4.32946i 0.945576 0.247499i
\(307\) 5.29958 + 23.2190i 0.302463 + 1.32518i 0.866397 + 0.499357i \(0.166430\pi\)
−0.563934 + 0.825820i \(0.690713\pi\)
\(308\) −17.4733 21.1083i −0.995636 1.20276i
\(309\) 2.20779 9.67295i 0.125597 0.550275i
\(310\) −0.116559 3.68720i −0.00662011 0.209419i
\(311\) 21.9549 + 10.5729i 1.24495 + 0.599534i 0.936152 0.351595i \(-0.114361\pi\)
0.308793 + 0.951129i \(0.400075\pi\)
\(312\) 4.14635 + 6.86099i 0.234741 + 0.388427i
\(313\) 23.6603i 1.33736i −0.743550 0.668680i \(-0.766859\pi\)
0.743550 0.668680i \(-0.233141\pi\)
\(314\) −1.31158 + 0.343298i −0.0740168 + 0.0193734i
\(315\) 2.83191 + 3.89829i 0.159560 + 0.219644i
\(316\) −2.83630 + 0.838987i −0.159554 + 0.0471967i
\(317\) 13.4108 6.45831i 0.753227 0.362735i −0.0175451 0.999846i \(-0.505585\pi\)
0.770772 + 0.637111i \(0.219871\pi\)
\(318\) 5.01789 2.61492i 0.281389 0.146637i
\(319\) −39.2196 8.95162i −2.19588 0.501195i
\(320\) −7.42734 0.258514i −0.415201 0.0144514i
\(321\) 1.85928 + 3.86084i 0.103775 + 0.215491i
\(322\) 23.0367 + 0.307308i 1.28378 + 0.0171256i
\(323\) 14.2215 29.5313i 0.791307 1.64317i
\(324\) −0.232493 + 1.42978i −0.0129163 + 0.0794321i
\(325\) 11.4999i 0.637898i
\(326\) 15.3825 4.02628i 0.851960 0.222995i
\(327\) 4.63813 5.81603i 0.256489 0.321627i
\(328\) −29.7103 + 9.81941i −1.64048 + 0.542186i
\(329\) 6.13836 + 14.3638i 0.338419 + 0.791903i
\(330\) −4.15154 + 5.55740i −0.228535 + 0.305925i
\(331\) −0.975324 + 2.02528i −0.0536087 + 0.111320i −0.926052 0.377395i \(-0.876820\pi\)
0.872444 + 0.488715i \(0.162534\pi\)
\(332\) −21.2228 + 1.34313i −1.16475 + 0.0737136i
\(333\) −6.82748 + 8.56139i −0.374144 + 0.469161i
\(334\) −3.43050 + 1.78770i −0.187709 + 0.0978187i
\(335\) −4.08831 5.12657i −0.223368 0.280095i
\(336\) −10.6805 1.53710i −0.582671 0.0838558i
\(337\) −8.07365 + 10.1240i −0.439800 + 0.551491i −0.951490 0.307678i \(-0.900448\pi\)
0.511691 + 0.859170i \(0.329019\pi\)
\(338\) −1.42881 + 7.31887i −0.0777172 + 0.398094i
\(339\) −6.56991 + 3.16390i −0.356829 + 0.171840i
\(340\) −9.98908 + 5.61376i −0.541734 + 0.304449i
\(341\) −14.1765 + 3.23570i −0.767702 + 0.175223i
\(342\) 9.54630 + 11.2240i 0.516205 + 0.606924i
\(343\) 15.9004 9.49614i 0.858542 0.512743i
\(344\) 3.29649 + 5.45471i 0.177735 + 0.294098i
\(345\) −1.29780 5.68603i −0.0698711 0.306125i
\(346\) 17.5125 + 3.41885i 0.941479 + 0.183799i
\(347\) −0.157351 0.326743i −0.00844706 0.0175405i 0.896703 0.442633i \(-0.145956\pi\)
−0.905150 + 0.425093i \(0.860241\pi\)
\(348\) −13.8099 + 7.76102i −0.740289 + 0.416034i
\(349\) −19.8892 15.8611i −1.06464 0.849026i −0.0756735 0.997133i \(-0.524111\pi\)
−0.988971 + 0.148107i \(0.952682\pi\)
\(350\) 11.9723 + 9.81171i 0.639948 + 0.524458i
\(351\) −10.9919 + 8.76574i −0.586703 + 0.467880i
\(352\) 4.60943 + 28.9292i 0.245683 + 1.54193i
\(353\) 16.5145 + 13.1699i 0.878981 + 0.700964i 0.955147 0.296131i \(-0.0956966\pi\)
−0.0761665 + 0.997095i \(0.524268\pi\)
\(354\) 5.02552 6.72734i 0.267103 0.357554i
\(355\) −1.17237 0.564585i −0.0622231 0.0299651i
\(356\) −1.04345 16.4876i −0.0553026 0.873840i
\(357\) −15.2986 + 6.53782i −0.809686 + 0.346018i
\(358\) 6.79462 + 13.0385i 0.359107 + 0.689106i
\(359\) −29.2037 23.2892i −1.54131 1.22916i −0.875695 0.482864i \(-0.839596\pi\)
−0.665618 0.746292i \(-0.731832\pi\)
\(360\) −0.487606 5.12789i −0.0256991 0.270263i
\(361\) 9.24659 0.486663
\(362\) −9.83601 + 8.36579i −0.516969 + 0.439696i
\(363\) 14.5302 + 6.99738i 0.762638 + 0.367267i
\(364\) 9.37946 + 11.3307i 0.491617 + 0.593888i
\(365\) 3.63394 1.75001i 0.190209 0.0915999i
\(366\) −3.82112 + 8.62136i −0.199733 + 0.450646i
\(367\) −7.26281 + 31.8205i −0.379116 + 1.66102i 0.321071 + 0.947055i \(0.395957\pi\)
−0.700187 + 0.713960i \(0.746900\pi\)
\(368\) −21.0384 12.8061i −1.09670 0.667564i
\(369\) −9.40997 19.5400i −0.489864 1.01721i
\(370\) 2.97358 6.70911i 0.154589 0.348790i
\(371\) 8.39973 6.10198i 0.436092 0.316799i
\(372\) −3.28027 + 4.69339i −0.170074 + 0.243341i
\(373\) 17.4750 0.904820 0.452410 0.891810i \(-0.350564\pi\)
0.452410 + 0.891810i \(0.350564\pi\)
\(374\) 29.2621 + 34.4047i 1.51311 + 1.77903i
\(375\) 3.75508 7.79750i 0.193911 0.402661i
\(376\) 2.15806 16.5589i 0.111293 0.853962i
\(377\) 21.0526 + 4.80511i 1.08426 + 0.247476i
\(378\) 0.252425 18.9224i 0.0129833 0.973264i
\(379\) −1.61455 + 0.368510i −0.0829337 + 0.0189291i −0.263786 0.964581i \(-0.584971\pi\)
0.180853 + 0.983510i \(0.442114\pi\)
\(380\) −8.09372 5.65680i −0.415199 0.290188i
\(381\) 6.48844 1.48094i 0.332413 0.0758710i
\(382\) −0.754702 23.8740i −0.0386139 1.22150i
\(383\) −0.707587 + 3.10014i −0.0361560 + 0.158410i −0.989783 0.142580i \(-0.954460\pi\)
0.953627 + 0.300990i \(0.0973172\pi\)
\(384\) 8.99592 + 7.22108i 0.459071 + 0.368499i
\(385\) −6.03209 + 11.2079i −0.307424 + 0.571206i
\(386\) −14.8419 + 0.469179i −0.755432 + 0.0238806i
\(387\) −3.45369 + 2.75423i −0.175561 + 0.140005i
\(388\) −21.9983 + 6.50718i −1.11680 + 0.330352i
\(389\) 9.34855 + 11.7227i 0.473990 + 0.594365i 0.960143 0.279509i \(-0.0901717\pi\)
−0.486153 + 0.873874i \(0.661600\pi\)
\(390\) 2.22849 2.98314i 0.112844 0.151057i
\(391\) −37.9738 −1.92042
\(392\) −19.7987 + 0.0974691i −0.999988 + 0.00492293i
\(393\) 15.9112 0.802612
\(394\) −9.99176 + 13.3753i −0.503378 + 0.673839i
\(395\) 0.856589 + 1.07413i 0.0430997 + 0.0540453i
\(396\) −19.4699 + 5.75925i −0.978398 + 0.289413i
\(397\) 21.8016 17.3862i 1.09419 0.872587i 0.101688 0.994816i \(-0.467576\pi\)
0.992502 + 0.122229i \(0.0390043\pi\)
\(398\) 0.720810 0.0227861i 0.0361309 0.00114216i
\(399\) −10.7965 9.43373i −0.540499 0.472277i
\(400\) −5.68678 15.5402i −0.284339 0.777008i
\(401\) −0.731013 + 3.20278i −0.0365051 + 0.159939i −0.989895 0.141802i \(-0.954711\pi\)
0.953390 + 0.301741i \(0.0975677\pi\)
\(402\) 0.321582 + 10.1728i 0.0160390 + 0.507375i
\(403\) 7.60978 1.73688i 0.379070 0.0865203i
\(404\) 24.9171 + 17.4148i 1.23967 + 0.866421i
\(405\) 0.655971 0.149721i 0.0325955 0.00743970i
\(406\) −22.9646 + 17.8178i −1.13972 + 0.884282i
\(407\) −28.2012 6.43674i −1.39788 0.319057i
\(408\) 17.6365 + 2.29850i 0.873139 + 0.113793i
\(409\) −12.4942 + 25.9445i −0.617800 + 1.28288i 0.323795 + 0.946127i \(0.395041\pi\)
−0.941595 + 0.336748i \(0.890673\pi\)
\(410\) 9.41651 + 11.0714i 0.465048 + 0.546777i
\(411\) 2.55680 0.126118
\(412\) −11.1489 + 15.9518i −0.549267 + 0.785888i
\(413\) 7.30196 13.5673i 0.359306 0.667605i
\(414\) 6.91705 15.6065i 0.339954 0.767018i
\(415\) 4.28569 + 8.89932i 0.210376 + 0.436850i
\(416\) −2.47428 15.5288i −0.121312 0.761363i
\(417\) −0.909914 + 3.98659i −0.0445587 + 0.195224i
\(418\) −15.7715 + 35.5843i −0.771410 + 1.74048i
\(419\) −17.7821 + 8.56341i −0.868713 + 0.418350i −0.814489 0.580179i \(-0.802983\pi\)
−0.0542237 + 0.998529i \(0.517268\pi\)
\(420\) 1.20435 + 4.86527i 0.0587661 + 0.237401i
\(421\) 32.0152 + 15.4177i 1.56032 + 0.751412i 0.997187 0.0749514i \(-0.0238802\pi\)
0.563137 + 0.826364i \(0.309594\pi\)
\(422\) −0.484629 + 0.412190i −0.0235913 + 0.0200651i
\(423\) 11.5741 0.562751
\(424\) −11.0492 + 1.05065i −0.536595 + 0.0510243i
\(425\) −19.9475 15.9076i −0.967595 0.771631i
\(426\) 0.933402 + 1.79115i 0.0452235 + 0.0867814i
\(427\) −4.60423 + 16.6791i −0.222814 + 0.807158i
\(428\) −0.530900 8.38878i −0.0256620 0.405487i
\(429\) −13.2239 6.36829i −0.638455 0.307464i
\(430\) 1.77173 2.37170i 0.0854402 0.114373i
\(431\) −18.4581 14.7199i −0.889097 0.709031i 0.0683439 0.997662i \(-0.478228\pi\)
−0.957440 + 0.288631i \(0.906800\pi\)
\(432\) −10.5190 + 17.2810i −0.506095 + 0.831433i
\(433\) −4.61587 + 3.68104i −0.221825 + 0.176899i −0.728096 0.685475i \(-0.759595\pi\)
0.506272 + 0.862374i \(0.331023\pi\)
\(434\) −4.68444 + 9.40433i −0.224860 + 0.451422i
\(435\) 5.75282 + 4.58772i 0.275826 + 0.219964i
\(436\) −12.7206 + 7.14884i −0.609206 + 0.342367i
\(437\) −14.1988 29.4841i −0.679219 1.41041i
\(438\) −6.14456 1.19956i −0.293598 0.0573171i
\(439\) 4.87444 + 21.3563i 0.232644 + 1.01928i 0.947436 + 0.319944i \(0.103664\pi\)
−0.714792 + 0.699337i \(0.753479\pi\)
\(440\) 11.6454 7.03776i 0.555173 0.335512i
\(441\) −1.84040 13.5987i −0.0876379 0.647559i
\(442\) −15.7075 18.4680i −0.747131 0.878433i
\(443\) −20.9084 + 4.77220i −0.993387 + 0.226734i −0.688170 0.725549i \(-0.741586\pi\)
−0.305216 + 0.952283i \(0.598729\pi\)
\(444\) −9.93013 + 5.58063i −0.471263 + 0.264845i
\(445\) −6.91371 + 3.32947i −0.327741 + 0.157832i
\(446\) 5.88637 30.1520i 0.278728 1.42774i
\(447\) −1.29226 + 1.62044i −0.0611218 + 0.0766443i
\(448\) 18.2779 + 10.6733i 0.863549 + 0.504265i
\(449\) −11.6549 14.6148i −0.550029 0.689714i 0.426651 0.904416i \(-0.359693\pi\)
−0.976680 + 0.214702i \(0.931122\pi\)
\(450\) 10.1712 5.30042i 0.479475 0.249864i
\(451\) 35.7197 44.7911i 1.68198 2.10913i
\(452\) 14.2750 0.903420i 0.671439 0.0424933i
\(453\) 1.48118 3.07571i 0.0695921 0.144509i
\(454\) −1.03698 + 1.38814i −0.0486680 + 0.0651488i
\(455\) 3.23795 6.01624i 0.151797 0.282046i
\(456\) 4.80984 + 14.5530i 0.225242 + 0.681506i
\(457\) −13.2680 + 16.6376i −0.620652 + 0.778273i −0.988436 0.151638i \(-0.951545\pi\)
0.367784 + 0.929911i \(0.380117\pi\)
\(458\) −26.7196 + 6.99369i −1.24853 + 0.326794i
\(459\) 31.1918i 1.45591i
\(460\) −1.83614 + 11.2918i −0.0856103 + 0.526483i
\(461\) −1.12831 + 2.34296i −0.0525506 + 0.109122i −0.925591 0.378526i \(-0.876431\pi\)
0.873040 + 0.487649i \(0.162145\pi\)
\(462\) 17.9126 8.33375i 0.833368 0.387721i
\(463\) 16.5778 + 34.4242i 0.770436 + 1.59983i 0.799806 + 0.600258i \(0.204936\pi\)
−0.0293703 + 0.999569i \(0.509350\pi\)
\(464\) 30.8252 3.91736i 1.43103 0.181859i
\(465\) 2.59302 + 0.591841i 0.120249 + 0.0274460i
\(466\) 28.5565 14.8813i 1.32285 0.689365i
\(467\) −19.5231 + 9.40182i −0.903421 + 0.435064i −0.827123 0.562021i \(-0.810024\pi\)
−0.0762975 + 0.997085i \(0.524310\pi\)
\(468\) 10.4512 3.09149i 0.483106 0.142904i
\(469\) 3.33341 + 18.3749i 0.153922 + 0.848475i
\(470\) −7.50372 + 1.96405i −0.346121 + 0.0905950i
\(471\) 0.977474i 0.0450396i
\(472\) −14.0970 + 8.51934i −0.648867 + 0.392134i
\(473\) −10.5134 5.06300i −0.483408 0.232797i
\(474\) −0.0673783 2.13143i −0.00309479 0.0978997i
\(475\) 4.89259 21.4358i 0.224488 0.983544i
\(476\) 32.6284 0.595931i 1.49552 0.0273144i
\(477\) −1.71180 7.49987i −0.0783778 0.343395i
\(478\) 6.58515 1.72362i 0.301198 0.0788367i
\(479\) 3.29653 + 14.4430i 0.150622 + 0.659919i 0.992705 + 0.120571i \(0.0384724\pi\)
−0.842082 + 0.539349i \(0.818670\pi\)
\(480\) 1.53625 5.13323i 0.0701199 0.234299i
\(481\) 15.1380 + 3.45516i 0.690235 + 0.157542i
\(482\) 12.3962 + 2.42003i 0.564633 + 0.110229i
\(483\) −4.41994 + 16.0115i −0.201114 + 0.728549i
\(484\) −21.2463 23.4374i −0.965741 1.06534i
\(485\) 6.64370 + 8.33093i 0.301675 + 0.378288i
\(486\) −20.5722 9.11793i −0.933175 0.413598i
\(487\) 15.1969 12.1192i 0.688639 0.549172i −0.215450 0.976515i \(-0.569122\pi\)
0.904089 + 0.427343i \(0.140550\pi\)
\(488\) 13.3053 12.8503i 0.602304 0.581705i
\(489\) 11.4640i 0.518422i
\(490\) 3.50079 + 8.50405i 0.158150 + 0.384174i
\(491\) 10.0146i 0.451952i −0.974133 0.225976i \(-0.927443\pi\)
0.974133 0.225976i \(-0.0725571\pi\)
\(492\) −1.42490 22.5150i −0.0642395 1.01505i
\(493\) 37.4566 29.8706i 1.68696 1.34530i
\(494\) 8.46594 19.1012i 0.380901 0.859403i
\(495\) 5.88008 + 7.37339i 0.264290 + 0.331409i
\(496\) 9.42445 6.11020i 0.423170 0.274356i
\(497\) 2.17812 + 2.99830i 0.0977019 + 0.134492i
\(498\) 2.93765 15.0477i 0.131639 0.674302i
\(499\) 12.4803 + 2.84855i 0.558696 + 0.127519i 0.492539 0.870291i \(-0.336069\pi\)
0.0661570 + 0.997809i \(0.478926\pi\)
\(500\) −12.5775 + 11.4016i −0.562482 + 0.509897i
\(501\) −0.620610 2.71907i −0.0277268 0.121479i
\(502\) 1.83920 + 7.02672i 0.0820876 + 0.313618i
\(503\) −2.26568 9.92658i −0.101022 0.442605i −0.999989 0.00458995i \(-0.998539\pi\)
0.898968 0.438015i \(-0.144318\pi\)
\(504\) −5.69846 + 13.5182i −0.253829 + 0.602149i
\(505\) 3.14207 13.7663i 0.139820 0.612592i
\(506\) 45.0711 1.42478i 2.00365 0.0633392i
\(507\) −4.84392 2.33271i −0.215126 0.103599i
\(508\) −12.8853 2.09525i −0.571693 0.0929617i
\(509\) 9.97627i 0.442190i 0.975252 + 0.221095i \(0.0709631\pi\)
−0.975252 + 0.221095i \(0.929037\pi\)
\(510\) −2.09187 7.99204i −0.0926294 0.353893i
\(511\) −11.4755 0.516063i −0.507647 0.0228293i
\(512\) −11.0227 19.7611i −0.487139 0.873324i
\(513\) −24.2183 + 11.6629i −1.06927 + 0.514931i
\(514\) 7.37234 + 14.1471i 0.325180 + 0.624003i
\(515\) 8.81312 + 2.01154i 0.388352 + 0.0886389i
\(516\) −4.40636 + 1.30342i −0.193979 + 0.0573797i
\(517\) 13.2655 + 27.5461i 0.583416 + 1.21148i
\(518\) −16.5129 + 12.8120i −0.725536 + 0.562928i
\(519\) −5.58168 + 11.5905i −0.245009 + 0.508766i
\(520\) −6.25111 + 3.77778i −0.274129 + 0.165667i
\(521\) 16.0983i 0.705280i −0.935759 0.352640i \(-0.885284\pi\)
0.935759 0.352640i \(-0.114716\pi\)
\(522\) 5.45342 + 20.8350i 0.238690 + 0.911922i
\(523\) 18.6524 23.3893i 0.815612 1.02274i −0.183598 0.983001i \(-0.558774\pi\)
0.999210 0.0397435i \(-0.0126541\pi\)
\(524\) −28.9185 11.7385i −1.26331 0.512799i
\(525\) −9.02915 + 6.55922i −0.394064 + 0.286268i
\(526\) 9.98980 + 7.46267i 0.435576 + 0.325388i
\(527\) 7.51372 15.6024i 0.327303 0.679651i
\(528\) −21.0190 2.06636i −0.914736 0.0899270i
\(529\) −9.29814 + 11.6595i −0.404267 + 0.506935i
\(530\) 2.38248 + 4.57184i 0.103488 + 0.198588i
\(531\) −7.11794 8.92562i −0.308892 0.387339i
\(532\) 12.6628 + 25.1109i 0.549002 + 1.08870i
\(533\) −19.1739 + 24.0433i −0.830513 + 1.04143i
\(534\) 11.6902 + 2.28221i 0.505887 + 0.0987607i
\(535\) −3.51765 + 1.69401i −0.152081 + 0.0732385i
\(536\) 6.92056 18.7264i 0.298923 0.808856i
\(537\) −10.3345 + 2.35879i −0.445967 + 0.101789i
\(538\) −7.93535 + 6.74922i −0.342117 + 0.290980i
\(539\) 30.2554 19.9662i 1.30319 0.860003i
\(540\) 9.27514 + 1.50821i 0.399139 + 0.0649030i
\(541\) −2.64693 11.5970i −0.113801 0.498593i −0.999416 0.0341733i \(-0.989120\pi\)
0.885615 0.464419i \(-0.153737\pi\)
\(542\) −1.10098 + 5.63958i −0.0472910 + 0.242241i
\(543\) −4.03929 8.38768i −0.173343 0.359950i
\(544\) −30.3587 17.1889i −1.30162 0.736969i
\(545\) 5.29904 + 4.22584i 0.226986 + 0.181015i
\(546\) −9.61523 + 4.47345i −0.411494 + 0.191446i
\(547\) 0.697519 0.556253i 0.0298237 0.0237836i −0.608465 0.793581i \(-0.708214\pi\)
0.638288 + 0.769797i \(0.279643\pi\)
\(548\) −4.64698 1.88629i −0.198509 0.0805782i
\(549\) 10.0236 + 7.99359i 0.427799 + 0.341158i
\(550\) 24.2725 + 18.1323i 1.03498 + 0.773163i
\(551\) 37.1979 + 17.9135i 1.58468 + 0.763143i
\(552\) 12.7728 12.3359i 0.543645 0.525053i
\(553\) −0.698421 3.84994i −0.0296999 0.163716i
\(554\) 10.0849 5.25542i 0.428464 0.223281i
\(555\) 4.13661 + 3.29884i 0.175589 + 0.140028i
\(556\) 4.59489 6.57434i 0.194867 0.278814i
\(557\) 5.08127 0.215300 0.107650 0.994189i \(-0.465667\pi\)
0.107650 + 0.994189i \(0.465667\pi\)
\(558\) 5.04364 + 5.93002i 0.213514 + 0.251038i
\(559\) 5.64347 + 2.71775i 0.238693 + 0.114949i
\(560\) 1.40047 9.73114i 0.0591806 0.411216i
\(561\) −29.3387 + 14.1288i −1.23868 + 0.596517i
\(562\) −24.9589 11.0622i −1.05283 0.466629i
\(563\) −2.45358 + 10.7498i −0.103406 + 0.453052i 0.896543 + 0.442957i \(0.146071\pi\)
−0.999949 + 0.0100951i \(0.996787\pi\)
\(564\) 11.1555 + 4.52822i 0.469733 + 0.190672i
\(565\) −2.88266 5.98591i −0.121275 0.251829i
\(566\) −35.8633 15.8952i −1.50745 0.668124i
\(567\) −1.84717 0.509908i −0.0775740 0.0214141i
\(568\) −0.375034 3.94403i −0.0157361 0.165488i
\(569\) −29.8693 −1.25219 −0.626093 0.779748i \(-0.715347\pi\)
−0.626093 + 0.779748i \(0.715347\pi\)
\(570\) 5.42310 4.61249i 0.227149 0.193196i
\(571\) −12.1074 + 25.1413i −0.506680 + 1.05213i 0.478097 + 0.878307i \(0.341327\pi\)
−0.984777 + 0.173825i \(0.944387\pi\)
\(572\) 19.3362 + 21.3303i 0.808486 + 0.891865i
\(573\) 16.7894 + 3.83208i 0.701389 + 0.160087i
\(574\) −8.67191 40.4754i −0.361958 1.68941i
\(575\) −24.8343 + 5.66827i −1.03566 + 0.236383i
\(576\) 12.5943 9.34582i 0.524760 0.389409i
\(577\) −21.1227 + 4.82112i −0.879349 + 0.200706i −0.638282 0.769803i \(-0.720355\pi\)
−0.241067 + 0.970508i \(0.577497\pi\)
\(578\) −29.7326 + 0.939903i −1.23671 + 0.0390948i
\(579\) 2.38231 10.4376i 0.0990052 0.433770i
\(580\) −7.07114 12.5823i −0.293613 0.522453i
\(581\) 1.26381 28.1029i 0.0524316 1.16590i
\(582\) −0.522586 16.5313i −0.0216619 0.685246i
\(583\) 15.8876 12.6699i 0.657997 0.524735i
\(584\) 10.2828 + 6.71336i 0.425503 + 0.277801i
\(585\) −3.15635 3.95794i −0.130499 0.163641i
\(586\) −0.563573 0.421005i −0.0232810 0.0173916i
\(587\) 22.0575 0.910410 0.455205 0.890387i \(-0.349566\pi\)
0.455205 + 0.890387i \(0.349566\pi\)
\(588\) 3.54650 13.8270i 0.146255 0.570217i
\(589\) 14.9236 0.614918
\(590\) 6.12934 + 4.57879i 0.252341 + 0.188506i
\(591\) −7.50491 9.41086i −0.308711 0.387111i
\(592\) 22.1651 2.81681i 0.910982 0.115770i
\(593\) −29.3534 + 23.4085i −1.20540 + 0.961274i −0.999849 0.0173730i \(-0.994470\pi\)
−0.205550 + 0.978647i \(0.565898\pi\)
\(594\) −1.17032 37.0216i −0.0480188 1.51901i
\(595\) −5.95667 13.9387i −0.244200 0.571429i
\(596\) 3.54417 1.99179i 0.145175 0.0815867i
\(597\) −0.115699 + 0.506910i −0.00473524 + 0.0207465i
\(598\) −24.1936 + 0.764803i −0.989349 + 0.0312751i
\(599\) 18.4439 4.20970i 0.753597 0.172004i 0.171569 0.985172i \(-0.445116\pi\)
0.582028 + 0.813168i \(0.302259\pi\)
\(600\) 11.8771 1.12938i 0.484882 0.0461069i
\(601\) 38.9502 8.89012i 1.58881 0.362636i 0.665411 0.746477i \(-0.268256\pi\)
0.923399 + 0.383842i \(0.125399\pi\)
\(602\) −7.64443 + 3.55654i −0.311564 + 0.144954i
\(603\) 13.4903 + 3.07908i 0.549368 + 0.125390i
\(604\) −4.96117 + 4.49735i −0.201867 + 0.182995i
\(605\) −6.37538 + 13.2386i −0.259196 + 0.538226i
\(606\) −16.6954 + 14.1999i −0.678204 + 0.576830i
\(607\) 19.3766 0.786472 0.393236 0.919438i \(-0.371356\pi\)
0.393236 + 0.919438i \(0.371356\pi\)
\(608\) 1.99462 29.9985i 0.0808927 1.21660i
\(609\) −8.23510 19.2702i −0.333703 0.780868i
\(610\) −7.85500 3.48146i −0.318040 0.140960i
\(611\) −7.12075 14.7864i −0.288075 0.598193i
\(612\) 9.09449 22.4048i 0.367623 0.905662i
\(613\) −10.5186 + 46.0851i −0.424843 + 1.86136i 0.0779593 + 0.996957i \(0.475160\pi\)
−0.502802 + 0.864402i \(0.667698\pi\)
\(614\) 30.7921 + 13.6476i 1.24267 + 0.550771i
\(615\) −9.44116 + 4.54662i −0.380704 + 0.183337i
\(616\) −38.7043 + 1.93153i −1.55944 + 0.0778236i
\(617\) 23.7284 + 11.4270i 0.955268 + 0.460033i 0.845530 0.533928i \(-0.179285\pi\)
0.109738 + 0.993961i \(0.464999\pi\)
\(618\) −9.09069 10.6883i −0.365681 0.429947i
\(619\) −12.4492 −0.500376 −0.250188 0.968197i \(-0.580492\pi\)
−0.250188 + 0.968197i \(0.580492\pi\)
\(620\) −4.27619 2.98868i −0.171736 0.120028i
\(621\) 24.3478 + 19.4167i 0.977042 + 0.779165i
\(622\) 30.5609 15.9259i 1.22538 0.638570i
\(623\) 21.8326 + 0.981828i 0.874704 + 0.0393361i
\(624\) 11.2827 + 1.10920i 0.451671 + 0.0444034i
\(625\) −11.5322 5.55359i −0.461286 0.222144i
\(626\) −26.8068 20.0255i −1.07141 0.800378i
\(627\) −21.9401 17.4966i −0.876201 0.698747i
\(628\) −0.721135 + 1.77656i −0.0287764 + 0.0708925i
\(629\) 26.9335 21.4787i 1.07391 0.856413i
\(630\) 6.81355 + 0.0908925i 0.271458 + 0.00362125i
\(631\) 31.6136 + 25.2110i 1.25852 + 1.00363i 0.999285 + 0.0378184i \(0.0120408\pi\)
0.259232 + 0.965815i \(0.416531\pi\)
\(632\) −1.45001 + 3.92358i −0.0576782 + 0.156072i
\(633\) −0.199020 0.413268i −0.00791032 0.0164259i
\(634\) 4.03338 20.6604i 0.160186 0.820529i
\(635\) 1.34930 + 5.91168i 0.0535454 + 0.234598i
\(636\) 1.28434 7.89838i 0.0509273 0.313191i
\(637\) −16.2407 + 10.7176i −0.643480 + 0.424646i
\(638\) −43.3365 + 36.8588i −1.71571 + 1.45925i
\(639\) 2.67710 0.611030i 0.105904 0.0241720i
\(640\) −6.57919 + 8.19626i −0.260065 + 0.323986i
\(641\) −41.3677 + 19.9216i −1.63393 + 0.786857i −0.634017 + 0.773319i \(0.718595\pi\)
−0.999908 + 0.0135385i \(0.995690\pi\)
\(642\) 5.94792 + 1.16117i 0.234746 + 0.0458278i
\(643\) −8.61176 + 10.7988i −0.339614 + 0.425863i −0.922084 0.386989i \(-0.873515\pi\)
0.582470 + 0.812852i \(0.302086\pi\)
\(644\) 19.8458 25.8401i 0.782033 1.01824i
\(645\) 1.33076 + 1.66872i 0.0523987 + 0.0657059i
\(646\) −21.4218 41.1072i −0.842829 1.61734i
\(647\) −10.1662 + 12.7480i −0.399673 + 0.501174i −0.940422 0.340010i \(-0.889570\pi\)
0.540749 + 0.841184i \(0.318141\pi\)
\(648\) 1.42314 + 1.47354i 0.0559062 + 0.0578860i
\(649\) 13.0847 27.1706i 0.513618 1.06654i
\(650\) −13.0292 9.73317i −0.511046 0.381766i
\(651\) −5.70414 4.98416i −0.223563 0.195345i
\(652\) 8.45763 20.8359i 0.331227 0.815997i
\(653\) 7.90068 9.90714i 0.309177 0.387696i −0.602830 0.797870i \(-0.705960\pi\)
0.912008 + 0.410173i \(0.134532\pi\)
\(654\) −2.66388 10.1775i −0.104166 0.397970i
\(655\) 14.4968i 0.566437i
\(656\) −14.0207 + 41.9722i −0.547417 + 1.63874i
\(657\) −3.69298 + 7.66855i −0.144077 + 0.299179i
\(658\) 21.4693 + 5.20247i 0.836961 + 0.202813i
\(659\) 20.1815 + 41.9073i 0.786159 + 1.63248i 0.774525 + 0.632543i \(0.217989\pi\)
0.0116331 + 0.999932i \(0.496297\pi\)
\(660\) 2.78270 + 9.40726i 0.108316 + 0.366177i
\(661\) −15.1941 3.46795i −0.590981 0.134887i −0.0834363 0.996513i \(-0.526590\pi\)
−0.507544 + 0.861626i \(0.669447\pi\)
\(662\) 1.46912 + 2.81917i 0.0570992 + 0.109570i
\(663\) 15.7486 7.58414i 0.611626 0.294544i
\(664\) −16.4407 + 25.1819i −0.638021 + 0.977247i
\(665\) 8.59516 9.83675i 0.333306 0.381453i
\(666\) 3.92133 + 14.9816i 0.151948 + 0.580523i
\(667\) 47.8321i 1.85207i
\(668\) −0.878043 + 5.39976i −0.0339725 + 0.208923i
\(669\) 19.9558 + 9.61021i 0.771536 + 0.371552i
\(670\) −9.26856 + 0.292996i −0.358076 + 0.0113194i
\(671\) −7.53611 + 33.0178i −0.290928 + 1.27464i
\(672\) −10.7812 + 10.7999i −0.415895 + 0.416616i
\(673\) −6.37705 27.9397i −0.245817 1.07700i −0.935623 0.353001i \(-0.885161\pi\)
0.689805 0.723995i \(-0.257696\pi\)
\(674\) 4.63706 + 17.7160i 0.178613 + 0.682396i
\(675\) 4.65594 + 20.3990i 0.179207 + 0.785158i
\(676\) 7.08286 + 7.81332i 0.272418 + 0.300512i
\(677\) 0.0287922 + 0.00657164i 0.00110658 + 0.000252569i 0.223074 0.974801i \(-0.428391\pi\)
−0.221968 + 0.975054i \(0.571248\pi\)
\(678\) −1.97594 + 10.1215i −0.0758856 + 0.388712i
\(679\) −5.41695 29.8602i −0.207883 1.14593i
\(680\) −2.09418 + 16.0688i −0.0803083 + 0.616211i
\(681\) −0.778889 0.976695i −0.0298471 0.0374270i
\(682\) −8.33263 + 18.8004i −0.319073 + 0.719905i
\(683\) −9.04267 + 7.21129i −0.346008 + 0.275932i −0.781038 0.624484i \(-0.785309\pi\)
0.435030 + 0.900416i \(0.356738\pi\)
\(684\) 20.7963 1.31614i 0.795168 0.0503237i
\(685\) 2.32952i 0.0890065i
\(686\) 2.69870 26.0522i 0.103037 0.994678i
\(687\) 19.9132i 0.759734i
\(688\) 8.97016 + 0.881849i 0.341984 + 0.0336202i
\(689\) −8.52825 + 6.80105i −0.324901 + 0.259100i
\(690\) −7.54060 3.34211i −0.287066 0.127232i
\(691\) −15.6042 19.5671i −0.593613 0.744368i 0.390754 0.920495i \(-0.372214\pi\)
−0.984367 + 0.176128i \(0.943643\pi\)
\(692\) 18.6956 16.9478i 0.710701 0.644259i
\(693\) −4.79433 26.4281i −0.182122 1.00392i
\(694\) −0.503373 0.0982700i −0.0191078 0.00373028i
\(695\) −3.63222 0.829031i −0.137778 0.0314469i
\(696\) −2.89521 + 22.2151i −0.109743 + 0.842062i
\(697\) 15.1822 + 66.5174i 0.575066 + 2.51953i
\(698\) −34.8041 + 9.10975i −1.31735 + 0.344809i
\(699\) 5.16613 + 22.6343i 0.195401 + 0.856108i
\(700\) 21.2496 5.26011i 0.803158 0.198813i
\(701\) 9.79183 42.9008i 0.369832 1.62034i −0.357402 0.933951i \(-0.616337\pi\)
0.727234 0.686390i \(-0.240806\pi\)
\(702\) 0.628213 + 19.8727i 0.0237104 + 0.750047i
\(703\) 26.7474 + 12.8809i 1.00880 + 0.485812i
\(704\) 36.6776 + 19.2625i 1.38234 + 0.725982i
\(705\) 5.59225i 0.210616i
\(706\) 28.8988 7.56407i 1.08762 0.284678i
\(707\) −26.4608 + 30.2831i −0.995160 + 1.13891i
\(708\) −3.36851 11.3877i −0.126596 0.427975i
\(709\) −28.0827 + 13.5239i −1.05467 + 0.507900i −0.879135 0.476573i \(-0.841879\pi\)
−0.175531 + 0.984474i \(0.556164\pi\)
\(710\) −1.63193 + 0.850431i −0.0612453 + 0.0319161i
\(711\) −2.82651 0.645133i −0.106003 0.0241944i
\(712\) −19.5633 12.7724i −0.733167 0.478667i
\(713\) −7.50170 15.5774i −0.280941 0.583380i
\(714\) −5.54103 + 22.8665i −0.207368 + 0.855756i
\(715\) 5.80220 12.0484i 0.216990 0.450585i
\(716\) 20.5232 + 3.33723i 0.766988 + 0.124718i
\(717\) 4.90767i 0.183280i
\(718\) −51.1035 + 13.3760i −1.90717 + 0.499189i
\(719\) 11.6224 14.5740i 0.433441 0.543518i −0.516360 0.856371i \(-0.672713\pi\)
0.949801 + 0.312854i \(0.101285\pi\)
\(720\) −6.22251 3.78765i −0.231899 0.141158i
\(721\) −19.3871 16.9401i −0.722013 0.630881i
\(722\) 7.82606 10.4762i 0.291256 0.389885i
\(723\) −3.95099 + 8.20432i −0.146939 + 0.305122i
\(724\) 1.15338 + 18.2246i 0.0428650 + 0.677312i
\(725\) 20.0373 25.1260i 0.744167 0.933157i
\(726\) 20.2259 10.5401i 0.750653 0.391180i
\(727\) −18.2390 22.8710i −0.676447 0.848237i 0.318575 0.947898i \(-0.396796\pi\)
−0.995022 + 0.0996604i \(0.968224\pi\)
\(728\) 20.7760 1.03682i 0.770009 0.0384271i
\(729\) 8.76052 10.9853i 0.324464 0.406865i
\(730\) 1.09293 5.59836i 0.0404511 0.207205i
\(731\) 12.5207 6.02965i 0.463094 0.223014i
\(732\) 6.53378 + 11.6262i 0.241495 + 0.429715i
\(733\) 27.4010 6.25409i 1.01208 0.231000i 0.315841 0.948812i \(-0.397713\pi\)
0.696237 + 0.717812i \(0.254856\pi\)
\(734\) 29.9050 + 35.1606i 1.10382 + 1.29780i
\(735\) −6.57051 + 0.889225i −0.242357 + 0.0327996i
\(736\) −32.3154 + 12.9974i −1.19116 + 0.479091i
\(737\) 8.13363 + 35.6358i 0.299606 + 1.31266i
\(738\) −30.1029 5.87678i −1.10810 0.216327i
\(739\) 10.2252 + 21.2329i 0.376142 + 0.781066i 1.00000 0.000471178i \(-0.000149981\pi\)
−0.623858 + 0.781538i \(0.714436\pi\)
\(740\) −5.08456 9.04743i −0.186912 0.332590i
\(741\) 11.7771 + 9.39195i 0.432644 + 0.345022i
\(742\) 0.195848 14.6813i 0.00718981 0.538968i
\(743\) 2.49935 1.99316i 0.0916922 0.0731221i −0.576571 0.817047i \(-0.695610\pi\)
0.668263 + 0.743925i \(0.267038\pi\)
\(744\) 2.54121 + 7.68885i 0.0931651 + 0.281887i
\(745\) −1.47640 1.17739i −0.0540911 0.0431362i
\(746\) 14.7903 19.7989i 0.541513 0.724888i
\(747\) −18.7799 9.04390i −0.687119 0.330899i
\(748\) 63.7466 4.03433i 2.33081 0.147510i
\(749\) 11.1083 + 0.499548i 0.405888 + 0.0182531i
\(750\) −5.65625 10.8540i −0.206537 0.396333i
\(751\) 2.87328 + 2.29137i 0.104848 + 0.0836132i 0.674510 0.738265i \(-0.264355\pi\)
−0.569663 + 0.821879i \(0.692926\pi\)
\(752\) −16.9345 16.4601i −0.617537 0.600237i
\(753\) −5.23676 −0.190838
\(754\) 23.2624 19.7853i 0.847168 0.720539i
\(755\) 2.80231 + 1.34952i 0.101986 + 0.0491141i
\(756\) −21.2252 16.3014i −0.771952 0.592877i
\(757\) 17.6860 8.51712i 0.642808 0.309560i −0.0839331 0.996471i \(-0.526748\pi\)
0.726741 + 0.686911i \(0.241034\pi\)
\(758\) −0.948992 + 2.14115i −0.0344689 + 0.0777701i
\(759\) −7.23447 + 31.6963i −0.262595 + 1.15050i
\(760\) −13.2594 + 4.38229i −0.480968 + 0.158963i
\(761\) 7.92651 + 16.4596i 0.287336 + 0.596659i 0.993812 0.111078i \(-0.0354304\pi\)
−0.706476 + 0.707737i \(0.749716\pi\)
\(762\) 3.81375 8.60473i 0.138158 0.311716i
\(763\) −7.58552 17.7502i −0.274614 0.642599i
\(764\) −27.6877 19.3513i −1.00170 0.700104i
\(765\) −11.2315 −0.406076
\(766\) 2.91353 + 3.42556i 0.105270 + 0.123771i
\(767\) −7.02367 + 14.5848i −0.253610 + 0.526627i