Properties

Label 196.2.j.a.111.15
Level $196$
Weight $2$
Character 196.111
Analytic conductor $1.565$
Analytic rank $0$
Dimension $156$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,2,Mod(27,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 196.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.56506787962\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 111.15
Character \(\chi\) \(=\) 196.111
Dual form 196.2.j.a.83.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.145336 - 1.40673i) q^{2} +(-0.0665173 - 0.0834100i) q^{3} +(-1.95776 - 0.408895i) q^{4} +(1.11698 - 0.890758i) q^{5} +(-0.127002 + 0.0814491i) q^{6} +(-1.34404 - 2.27894i) q^{7} +(-0.859735 + 2.69460i) q^{8} +(0.665030 - 2.91369i) q^{9} +O(q^{10})\) \(q+(0.145336 - 1.40673i) q^{2} +(-0.0665173 - 0.0834100i) q^{3} +(-1.95776 - 0.408895i) q^{4} +(1.11698 - 0.890758i) q^{5} +(-0.127002 + 0.0814491i) q^{6} +(-1.34404 - 2.27894i) q^{7} +(-0.859735 + 2.69460i) q^{8} +(0.665030 - 2.91369i) q^{9} +(-1.09072 - 1.70074i) q^{10} +(-1.57408 + 0.359273i) q^{11} +(0.0961186 + 0.190495i) q^{12} +(0.776378 - 0.177203i) q^{13} +(-3.40118 + 1.55948i) q^{14} +(-0.148596 - 0.0339161i) q^{15} +(3.66561 + 1.60103i) q^{16} +(1.17894 - 2.44810i) q^{17} +(-4.00211 - 1.35898i) q^{18} -0.719271 q^{19} +(-2.55099 + 1.28716i) q^{20} +(-0.100684 + 0.263695i) q^{21} +(0.276629 + 2.26651i) q^{22} +(1.19976 + 2.49133i) q^{23} +(0.281944 - 0.107527i) q^{24} +(-0.658421 + 2.88473i) q^{25} +(-0.136441 - 1.11791i) q^{26} +(-0.575627 + 0.277208i) q^{27} +(1.69945 + 5.01117i) q^{28} +(3.80797 + 1.83382i) q^{29} +(-0.0693071 + 0.204105i) q^{30} +7.03624 q^{31} +(2.78496 - 4.92382i) q^{32} +(0.134671 + 0.107396i) q^{33} +(-3.27247 - 2.01425i) q^{34} +(-3.53124 - 1.34830i) q^{35} +(-2.49336 + 5.43236i) q^{36} +(4.28735 + 2.06468i) q^{37} +(-0.104536 + 1.01182i) q^{38} +(-0.0664231 - 0.0529707i) q^{39} +(1.43993 + 3.77561i) q^{40} +(-0.875154 + 0.697912i) q^{41} +(0.356314 + 0.179960i) q^{42} +(4.71379 + 3.75912i) q^{43} +(3.22857 - 0.0597362i) q^{44} +(-1.85257 - 3.84690i) q^{45} +(3.67898 - 1.32566i) q^{46} +(-2.47552 - 10.8460i) q^{47} +(-0.110284 - 0.412245i) q^{48} +(-3.38712 + 6.12596i) q^{49} +(3.96233 + 1.34547i) q^{50} +(-0.282617 + 0.0645054i) q^{51} +(-1.59242 + 0.0294635i) q^{52} +(2.38696 - 1.14950i) q^{53} +(0.306296 + 0.850038i) q^{54} +(-1.43818 + 1.80342i) q^{55} +(7.29634 - 1.66236i) q^{56} +(0.0478440 + 0.0599944i) q^{57} +(3.13312 - 5.09024i) q^{58} +(8.49023 - 10.6464i) q^{59} +(0.277047 + 0.127160i) q^{60} +(-4.31491 + 8.96000i) q^{61} +(1.02262 - 9.89806i) q^{62} +(-7.53394 + 2.40055i) q^{63} +(-6.52171 - 4.63328i) q^{64} +(0.709350 - 0.889497i) q^{65} +(0.170649 - 0.173836i) q^{66} +2.88009i q^{67} +(-3.30910 + 4.31072i) q^{68} +(0.127997 - 0.265788i) q^{69} +(-2.40991 + 4.77153i) q^{70} +(5.12694 + 10.6462i) q^{71} +(7.27947 + 4.29699i) q^{72} +(-12.1165 - 2.76552i) q^{73} +(3.52755 - 5.73106i) q^{74} +(0.284412 - 0.136965i) q^{75} +(1.40816 + 0.294106i) q^{76} +(2.93439 + 3.10435i) q^{77} +(-0.0841689 + 0.0857406i) q^{78} +9.74036i q^{79} +(5.52053 - 1.47686i) q^{80} +(-8.01654 - 3.86056i) q^{81} +(0.854580 + 1.33253i) q^{82} +(-1.87120 + 8.19825i) q^{83} +(0.304939 - 0.475081i) q^{84} +(-0.863816 - 3.78463i) q^{85} +(5.97314 - 6.08468i) q^{86} +(-0.100337 - 0.439603i) q^{87} +(0.385194 - 4.55039i) q^{88} +(-14.2898 - 3.26154i) q^{89} +(-5.68078 + 2.04696i) q^{90} +(-1.44732 - 1.53115i) q^{91} +(-1.33015 - 5.36799i) q^{92} +(-0.468032 - 0.586893i) q^{93} +(-15.6171 + 1.90607i) q^{94} +(-0.803408 + 0.640697i) q^{95} +(-0.595944 + 0.0952258i) q^{96} -1.72514i q^{97} +(8.12528 + 5.65507i) q^{98} +4.82530i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 156 q - 5 q^{2} - 5 q^{4} - 14 q^{5} - 7 q^{6} - 11 q^{8} - 32 q^{9} - 7 q^{10} - 42 q^{12} - 14 q^{13} + 21 q^{14} - 13 q^{16} - 14 q^{17} - 12 q^{18} - 7 q^{20} - 14 q^{21} + 3 q^{22} + 35 q^{24} - 7 q^{26} + 42 q^{28} - 30 q^{29} - 4 q^{30} - 5 q^{32} - 14 q^{33} + 77 q^{34} - 11 q^{36} + 10 q^{37} - 21 q^{38} - 63 q^{40} - 14 q^{41} - 7 q^{42} - 55 q^{44} - 14 q^{45} - 19 q^{46} - 132 q^{50} - 7 q^{52} - 2 q^{53} + 14 q^{54} - 70 q^{56} - 64 q^{57} - 3 q^{58} - 107 q^{60} + 14 q^{61} - 21 q^{62} - 11 q^{64} - 22 q^{65} + 161 q^{66} - 70 q^{69} - 77 q^{70} + 114 q^{72} - 14 q^{73} + 5 q^{74} + 70 q^{76} - 42 q^{77} + 61 q^{78} + 92 q^{81} - 42 q^{82} + 70 q^{84} - 6 q^{85} + 47 q^{86} + 65 q^{88} - 14 q^{89} + 112 q^{90} - 70 q^{92} - 48 q^{93} - 28 q^{94} + 238 q^{96} + 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.145336 1.40673i 0.102768 0.994705i
\(3\) −0.0665173 0.0834100i −0.0384038 0.0481568i 0.762259 0.647272i \(-0.224090\pi\)
−0.800663 + 0.599116i \(0.795519\pi\)
\(4\) −1.95776 0.408895i −0.978878 0.204447i
\(5\) 1.11698 0.890758i 0.499527 0.398359i −0.341056 0.940043i \(-0.610784\pi\)
0.840582 + 0.541684i \(0.182213\pi\)
\(6\) −0.127002 + 0.0814491i −0.0518485 + 0.0332515i
\(7\) −1.34404 2.27894i −0.507999 0.861358i
\(8\) −0.859735 + 2.69460i −0.303962 + 0.952684i
\(9\) 0.665030 2.91369i 0.221677 0.971229i
\(10\) −1.09072 1.70074i −0.344915 0.537820i
\(11\) −1.57408 + 0.359273i −0.474603 + 0.108325i −0.453130 0.891444i \(-0.649693\pi\)
−0.0214728 + 0.999769i \(0.506836\pi\)
\(12\) 0.0961186 + 0.190495i 0.0277471 + 0.0549912i
\(13\) 0.776378 0.177203i 0.215329 0.0491474i −0.113496 0.993539i \(-0.536205\pi\)
0.328824 + 0.944391i \(0.393348\pi\)
\(14\) −3.40118 + 1.55948i −0.909003 + 0.416789i
\(15\) −0.148596 0.0339161i −0.0383674 0.00875711i
\(16\) 3.66561 + 1.60103i 0.916402 + 0.400258i
\(17\) 1.17894 2.44810i 0.285936 0.593753i −0.707684 0.706529i \(-0.750260\pi\)
0.993620 + 0.112776i \(0.0359743\pi\)
\(18\) −4.00211 1.35898i −0.943306 0.320314i
\(19\) −0.719271 −0.165012 −0.0825061 0.996591i \(-0.526292\pi\)
−0.0825061 + 0.996591i \(0.526292\pi\)
\(20\) −2.55099 + 1.28716i −0.570419 + 0.287818i
\(21\) −0.100684 + 0.263695i −0.0219712 + 0.0575430i
\(22\) 0.276629 + 2.26651i 0.0589776 + 0.483222i
\(23\) 1.19976 + 2.49133i 0.250167 + 0.519478i 0.987801 0.155724i \(-0.0497709\pi\)
−0.737633 + 0.675202i \(0.764057\pi\)
\(24\) 0.281944 0.107527i 0.0575515 0.0219488i
\(25\) −0.658421 + 2.88473i −0.131684 + 0.576946i
\(26\) −0.136441 1.11791i −0.0267583 0.219239i
\(27\) −0.575627 + 0.277208i −0.110780 + 0.0533486i
\(28\) 1.69945 + 5.01117i 0.321166 + 0.947023i
\(29\) 3.80797 + 1.83382i 0.707122 + 0.340532i 0.752641 0.658432i \(-0.228780\pi\)
−0.0455189 + 0.998963i \(0.514494\pi\)
\(30\) −0.0693071 + 0.204105i −0.0126537 + 0.0372643i
\(31\) 7.03624 1.26375 0.631873 0.775072i \(-0.282286\pi\)
0.631873 + 0.775072i \(0.282286\pi\)
\(32\) 2.78496 4.92382i 0.492316 0.870417i
\(33\) 0.134671 + 0.107396i 0.0234431 + 0.0186953i
\(34\) −3.27247 2.01425i −0.561224 0.345441i
\(35\) −3.53124 1.34830i −0.596889 0.227905i
\(36\) −2.49336 + 5.43236i −0.415560 + 0.905393i
\(37\) 4.28735 + 2.06468i 0.704837 + 0.339432i 0.751732 0.659468i \(-0.229219\pi\)
−0.0468956 + 0.998900i \(0.514933\pi\)
\(38\) −0.104536 + 1.01182i −0.0169579 + 0.164138i
\(39\) −0.0664231 0.0529707i −0.0106362 0.00848210i
\(40\) 1.43993 + 3.77561i 0.227673 + 0.596977i
\(41\) −0.875154 + 0.697912i −0.136676 + 0.108996i −0.689442 0.724341i \(-0.742144\pi\)
0.552765 + 0.833337i \(0.313573\pi\)
\(42\) 0.356314 + 0.179960i 0.0549804 + 0.0277684i
\(43\) 4.71379 + 3.75912i 0.718847 + 0.573261i 0.913122 0.407686i \(-0.133664\pi\)
−0.194276 + 0.980947i \(0.562236\pi\)
\(44\) 3.22857 0.0597362i 0.486725 0.00900557i
\(45\) −1.85257 3.84690i −0.276165 0.573462i
\(46\) 3.67898 1.32566i 0.542437 0.195457i
\(47\) −2.47552 10.8460i −0.361092 1.58205i −0.750430 0.660950i \(-0.770153\pi\)
0.389338 0.921095i \(-0.372704\pi\)
\(48\) −0.110284 0.412245i −0.0159182 0.0595024i
\(49\) −3.38712 + 6.12596i −0.483874 + 0.875138i
\(50\) 3.96233 + 1.34547i 0.560358 + 0.190278i
\(51\) −0.282617 + 0.0645054i −0.0395742 + 0.00903256i
\(52\) −1.59242 + 0.0294635i −0.220828 + 0.00408585i
\(53\) 2.38696 1.14950i 0.327874 0.157896i −0.262704 0.964876i \(-0.584614\pi\)
0.590578 + 0.806981i \(0.298900\pi\)
\(54\) 0.306296 + 0.850038i 0.0416816 + 0.115676i
\(55\) −1.43818 + 1.80342i −0.193924 + 0.243174i
\(56\) 7.29634 1.66236i 0.975014 0.222142i
\(57\) 0.0478440 + 0.0599944i 0.00633709 + 0.00794646i
\(58\) 3.13312 5.09024i 0.411398 0.668382i
\(59\) 8.49023 10.6464i 1.10533 1.38604i 0.190754 0.981638i \(-0.438907\pi\)
0.914579 0.404407i \(-0.132522\pi\)
\(60\) 0.277047 + 0.127160i 0.0357666 + 0.0164163i
\(61\) −4.31491 + 8.96000i −0.552467 + 1.14721i 0.418548 + 0.908195i \(0.362539\pi\)
−0.971016 + 0.239016i \(0.923175\pi\)
\(62\) 1.02262 9.89806i 0.129872 1.25706i
\(63\) −7.53394 + 2.40055i −0.949187 + 0.302441i
\(64\) −6.52171 4.63328i −0.815214 0.579160i
\(65\) 0.709350 0.889497i 0.0879841 0.110329i
\(66\) 0.170649 0.173836i 0.0210055 0.0213977i
\(67\) 2.88009i 0.351859i 0.984403 + 0.175929i \(0.0562930\pi\)
−0.984403 + 0.175929i \(0.943707\pi\)
\(68\) −3.30910 + 4.31072i −0.401288 + 0.522752i
\(69\) 0.127997 0.265788i 0.0154090 0.0319972i
\(70\) −2.40991 + 4.77153i −0.288039 + 0.570307i
\(71\) 5.12694 + 10.6462i 0.608456 + 1.26347i 0.946610 + 0.322381i \(0.104483\pi\)
−0.338154 + 0.941091i \(0.609803\pi\)
\(72\) 7.27947 + 4.29699i 0.857893 + 0.506405i
\(73\) −12.1165 2.76552i −1.41813 0.323679i −0.556345 0.830951i \(-0.687797\pi\)
−0.861786 + 0.507272i \(0.830654\pi\)
\(74\) 3.52755 5.73106i 0.410069 0.666222i
\(75\) 0.284412 0.136965i 0.0328410 0.0158154i
\(76\) 1.40816 + 0.294106i 0.161527 + 0.0337363i
\(77\) 2.93439 + 3.10435i 0.334404 + 0.353774i
\(78\) −0.0841689 + 0.0857406i −0.00953025 + 0.00970821i
\(79\) 9.74036i 1.09588i 0.836519 + 0.547938i \(0.184587\pi\)
−0.836519 + 0.547938i \(0.815413\pi\)
\(80\) 5.52053 1.47686i 0.617214 0.165118i
\(81\) −8.01654 3.86056i −0.890727 0.428952i
\(82\) 0.854580 + 1.33253i 0.0943726 + 0.147154i
\(83\) −1.87120 + 8.19825i −0.205391 + 0.899875i 0.762198 + 0.647344i \(0.224120\pi\)
−0.967589 + 0.252531i \(0.918737\pi\)
\(84\) 0.304939 0.475081i 0.0332716 0.0518356i
\(85\) −0.863816 3.78463i −0.0936940 0.410500i
\(86\) 5.97314 6.08468i 0.644100 0.656128i
\(87\) −0.100337 0.439603i −0.0107572 0.0471304i
\(88\) 0.385194 4.55039i 0.0410618 0.485073i
\(89\) −14.2898 3.26154i −1.51471 0.345723i −0.617233 0.786781i \(-0.711746\pi\)
−0.897479 + 0.441058i \(0.854603\pi\)
\(90\) −5.68078 + 2.04696i −0.598806 + 0.215769i
\(91\) −1.44732 1.53115i −0.151720 0.160508i
\(92\) −1.33015 5.36799i −0.138677 0.559651i
\(93\) −0.468032 0.586893i −0.0485326 0.0608580i
\(94\) −15.6171 + 1.90607i −1.61078 + 0.196596i
\(95\) −0.803408 + 0.640697i −0.0824280 + 0.0657341i
\(96\) −0.595944 + 0.0952258i −0.0608233 + 0.00971894i
\(97\) 1.72514i 0.175161i −0.996157 0.0875807i \(-0.972086\pi\)
0.996157 0.0875807i \(-0.0279136\pi\)
\(98\) 8.12528 + 5.65507i 0.820777 + 0.571248i
\(99\) 4.82530i 0.484961i
\(100\) 2.46858 5.37837i 0.246858 0.537837i
\(101\) 2.59652 2.07065i 0.258363 0.206038i −0.485738 0.874104i \(-0.661449\pi\)
0.744102 + 0.668066i \(0.232878\pi\)
\(102\) 0.0496671 + 0.406939i 0.00491778 + 0.0402930i
\(103\) −4.75512 5.96273i −0.468536 0.587526i 0.490276 0.871567i \(-0.336896\pi\)
−0.958812 + 0.284042i \(0.908325\pi\)
\(104\) −0.189988 + 2.24438i −0.0186298 + 0.220079i
\(105\) 0.122426 + 0.384226i 0.0119476 + 0.0374967i
\(106\) −1.27012 3.52485i −0.123365 0.342364i
\(107\) −15.5330 3.54532i −1.50164 0.342739i −0.608874 0.793267i \(-0.708379\pi\)
−0.892762 + 0.450528i \(0.851236\pi\)
\(108\) 1.24029 0.307333i 0.119347 0.0295732i
\(109\) 1.20347 + 5.27275i 0.115272 + 0.505038i 0.999293 + 0.0375916i \(0.0119686\pi\)
−0.884022 + 0.467446i \(0.845174\pi\)
\(110\) 2.32790 + 2.28523i 0.221957 + 0.217888i
\(111\) −0.112968 0.494945i −0.0107225 0.0469781i
\(112\) −1.27807 10.5055i −0.120766 0.992681i
\(113\) 2.44897 10.7296i 0.230379 1.00936i −0.718947 0.695065i \(-0.755375\pi\)
0.949326 0.314293i \(-0.101767\pi\)
\(114\) 0.0913492 0.0585840i 0.00855563 0.00548690i
\(115\) 3.55927 + 1.71406i 0.331904 + 0.159837i
\(116\) −6.70523 5.14723i −0.622565 0.477908i
\(117\) 2.37997i 0.220028i
\(118\) −13.7426 13.4907i −1.26511 1.24192i
\(119\) −7.16363 + 0.603605i −0.656689 + 0.0553324i
\(120\) 0.219144 0.371248i 0.0200050 0.0338902i
\(121\) −7.56201 + 3.64167i −0.687455 + 0.331061i
\(122\) 11.9772 + 7.37210i 1.08436 + 0.667439i
\(123\) 0.116426 + 0.0265734i 0.0104978 + 0.00239604i
\(124\) −13.7752 2.87708i −1.23705 0.258370i
\(125\) 4.93353 + 10.2446i 0.441268 + 0.916303i
\(126\) 2.28196 + 10.9471i 0.203293 + 0.975243i
\(127\) 4.43886 9.21738i 0.393885 0.817910i −0.605866 0.795567i \(-0.707173\pi\)
0.999750 0.0223432i \(-0.00711265\pi\)
\(128\) −7.46559 + 8.50088i −0.659871 + 0.751379i
\(129\) 0.643224i 0.0566327i
\(130\) −1.14818 1.12714i −0.100702 0.0988565i
\(131\) 13.0500 16.3641i 1.14018 1.42974i 0.253513 0.967332i \(-0.418414\pi\)
0.886667 0.462409i \(-0.153015\pi\)
\(132\) −0.219738 0.265321i −0.0191257 0.0230933i
\(133\) 0.966729 + 1.63918i 0.0838260 + 0.142135i
\(134\) 4.05149 + 0.418580i 0.349996 + 0.0361598i
\(135\) −0.396037 + 0.822379i −0.0340854 + 0.0707791i
\(136\) 5.58308 + 5.28150i 0.478745 + 0.452885i
\(137\) 7.61889 9.55379i 0.650926 0.816236i −0.341396 0.939920i \(-0.610900\pi\)
0.992322 + 0.123684i \(0.0394710\pi\)
\(138\) −0.355289 0.218685i −0.0302442 0.0186157i
\(139\) 11.6067 + 14.5543i 0.984464 + 1.23448i 0.972103 + 0.234555i \(0.0753633\pi\)
0.0123610 + 0.999924i \(0.496065\pi\)
\(140\) 6.36199 + 4.08356i 0.537686 + 0.345123i
\(141\) −0.739997 + 0.927927i −0.0623190 + 0.0781455i
\(142\) 15.7214 5.66493i 1.31931 0.475390i
\(143\) −1.15842 + 0.557864i −0.0968717 + 0.0466510i
\(144\) 7.10265 9.61571i 0.591887 0.801309i
\(145\) 5.88689 1.34365i 0.488880 0.111584i
\(146\) −5.65128 + 16.6427i −0.467704 + 1.37736i
\(147\) 0.736269 0.124963i 0.0607264 0.0103068i
\(148\) −7.54935 5.79522i −0.620553 0.476364i
\(149\) 2.55312 + 11.1860i 0.209160 + 0.916389i 0.965128 + 0.261780i \(0.0843095\pi\)
−0.755968 + 0.654609i \(0.772833\pi\)
\(150\) −0.151338 0.419995i −0.0123567 0.0342925i
\(151\) 1.30111 + 2.70179i 0.105883 + 0.219869i 0.947178 0.320707i \(-0.103921\pi\)
−0.841295 + 0.540576i \(0.818206\pi\)
\(152\) 0.618383 1.93815i 0.0501575 0.157204i
\(153\) −6.34898 5.06314i −0.513284 0.409331i
\(154\) 4.79344 3.67670i 0.386267 0.296277i
\(155\) 7.85931 6.26759i 0.631275 0.503425i
\(156\) 0.108381 + 0.130864i 0.00867741 + 0.0104775i
\(157\) 16.4784 + 13.1411i 1.31512 + 1.04877i 0.994841 + 0.101451i \(0.0323485\pi\)
0.320280 + 0.947323i \(0.396223\pi\)
\(158\) 13.7020 + 1.41562i 1.09007 + 0.112621i
\(159\) −0.254653 0.122635i −0.0201953 0.00972556i
\(160\) −1.27520 7.98051i −0.100814 0.630915i
\(161\) 4.06506 6.08262i 0.320372 0.479378i
\(162\) −6.59585 + 10.7160i −0.518219 + 0.841929i
\(163\) −13.4985 10.7647i −1.05729 0.843158i −0.0692845 0.997597i \(-0.522072\pi\)
−0.988002 + 0.154439i \(0.950643\pi\)
\(164\) 1.99871 1.00849i 0.156073 0.0787502i
\(165\) 0.246088 0.0191579
\(166\) 11.2607 + 3.82376i 0.874003 + 0.296781i
\(167\) −3.36001 1.61810i −0.260005 0.125212i 0.299341 0.954146i \(-0.403233\pi\)
−0.559346 + 0.828934i \(0.688948\pi\)
\(168\) −0.623990 0.498012i −0.0481419 0.0384225i
\(169\) −11.1412 + 5.36533i −0.857018 + 0.412718i
\(170\) −5.44948 + 0.665112i −0.417956 + 0.0510117i
\(171\) −0.478337 + 2.09573i −0.0365794 + 0.160265i
\(172\) −7.69137 9.28689i −0.586461 0.708119i
\(173\) −6.60475 13.7149i −0.502150 1.04272i −0.985872 0.167503i \(-0.946430\pi\)
0.483722 0.875222i \(-0.339285\pi\)
\(174\) −0.632984 + 0.0772560i −0.0479864 + 0.00585676i
\(175\) 7.45906 2.37669i 0.563852 0.179661i
\(176\) −6.34517 1.20320i −0.478285 0.0906943i
\(177\) −1.45276 −0.109196
\(178\) −6.66491 + 19.6278i −0.499556 + 1.47116i
\(179\) −8.81787 + 18.3105i −0.659079 + 1.36859i 0.256536 + 0.966535i \(0.417419\pi\)
−0.915615 + 0.402056i \(0.868296\pi\)
\(180\) 2.05390 + 8.28879i 0.153089 + 0.617810i
\(181\) 13.5674 + 3.09667i 1.00846 + 0.230174i 0.694677 0.719322i \(-0.255547\pi\)
0.313780 + 0.949496i \(0.398404\pi\)
\(182\) −2.36426 + 1.81345i −0.175250 + 0.134422i
\(183\) 1.03437 0.236088i 0.0764628 0.0174521i
\(184\) −7.74460 + 1.09099i −0.570940 + 0.0804289i
\(185\) 6.62800 1.51280i 0.487300 0.111223i
\(186\) −0.893619 + 0.573096i −0.0655233 + 0.0420214i
\(187\) −0.976214 + 4.27707i −0.0713879 + 0.312771i
\(188\) 0.411603 + 22.2460i 0.0300192 + 1.62245i
\(189\) 1.40540 + 0.939242i 0.102228 + 0.0683198i
\(190\) 0.784521 + 1.22329i 0.0569151 + 0.0887469i
\(191\) −0.141184 + 0.112590i −0.0102157 + 0.00814674i −0.628584 0.777741i \(-0.716365\pi\)
0.618369 + 0.785888i \(0.287794\pi\)
\(192\) 0.0473447 + 0.852169i 0.00341681 + 0.0615000i
\(193\) 6.69713 + 8.39794i 0.482070 + 0.604497i 0.962080 0.272766i \(-0.0879385\pi\)
−0.480010 + 0.877263i \(0.659367\pi\)
\(194\) −2.42680 0.250724i −0.174234 0.0180010i
\(195\) −0.121377 −0.00869199
\(196\) 9.13602 10.6082i 0.652573 0.757726i
\(197\) 7.38319 0.526031 0.263015 0.964792i \(-0.415283\pi\)
0.263015 + 0.964792i \(0.415283\pi\)
\(198\) 6.78788 + 0.701289i 0.482394 + 0.0498384i
\(199\) −4.31796 5.41455i −0.306092 0.383827i 0.604865 0.796328i \(-0.293227\pi\)
−0.910957 + 0.412501i \(0.864655\pi\)
\(200\) −7.20712 4.25428i −0.509620 0.300823i
\(201\) 0.240228 0.191576i 0.0169444 0.0135127i
\(202\) −2.53548 3.95353i −0.178395 0.278169i
\(203\) −0.938893 11.1428i −0.0658974 0.782074i
\(204\) 0.579670 0.0107253i 0.0405850 0.000750919i
\(205\) −0.355855 + 1.55910i −0.0248540 + 0.108892i
\(206\) −9.07902 + 5.82256i −0.632565 + 0.405677i
\(207\) 8.05683 1.83892i 0.559988 0.127814i
\(208\) 3.12961 + 0.593449i 0.216999 + 0.0411483i
\(209\) 1.13219 0.258415i 0.0783153 0.0178749i
\(210\) 0.558294 0.116379i 0.0385260 0.00803089i
\(211\) 0.796064 + 0.181696i 0.0548033 + 0.0125085i 0.249835 0.968289i \(-0.419624\pi\)
−0.195031 + 0.980797i \(0.562481\pi\)
\(212\) −5.14310 + 1.27442i −0.353229 + 0.0875275i
\(213\) 0.546970 1.13579i 0.0374778 0.0778234i
\(214\) −7.24480 + 21.3355i −0.495244 + 1.45846i
\(215\) 8.61366 0.587447
\(216\) −0.252076 1.78941i −0.0171516 0.121754i
\(217\) −9.45698 16.0352i −0.641982 1.08854i
\(218\) 7.59222 0.926634i 0.514210 0.0627596i
\(219\) 0.575286 + 1.19459i 0.0388742 + 0.0807231i
\(220\) 3.55302 2.94260i 0.239545 0.198390i
\(221\) 0.481495 2.10957i 0.0323889 0.141905i
\(222\) −0.712671 + 0.0869818i −0.0478313 + 0.00583784i
\(223\) 12.2555 5.90195i 0.820690 0.395223i 0.0240748 0.999710i \(-0.492336\pi\)
0.796615 + 0.604487i \(0.206622\pi\)
\(224\) −14.9642 + 0.271062i −0.999836 + 0.0181111i
\(225\) 7.96733 + 3.83686i 0.531155 + 0.255791i
\(226\) −14.7377 5.00442i −0.980338 0.332889i
\(227\) 4.66017 0.309306 0.154653 0.987969i \(-0.450574\pi\)
0.154653 + 0.987969i \(0.450574\pi\)
\(228\) −0.0691354 0.137018i −0.00457860 0.00907421i
\(229\) 20.8816 + 16.6525i 1.37990 + 1.10043i 0.983210 + 0.182477i \(0.0584114\pi\)
0.396686 + 0.917954i \(0.370160\pi\)
\(230\) 2.92850 4.75781i 0.193099 0.313721i
\(231\) 0.0637467 0.451250i 0.00419423 0.0296901i
\(232\) −8.21525 + 8.68434i −0.539357 + 0.570155i
\(233\) −3.40397 1.63927i −0.223001 0.107392i 0.319048 0.947739i \(-0.396637\pi\)
−0.542049 + 0.840347i \(0.682351\pi\)
\(234\) −3.34796 0.345895i −0.218863 0.0226118i
\(235\) −12.4262 9.90958i −0.810597 0.646430i
\(236\) −20.9750 + 17.3715i −1.36536 + 1.13079i
\(237\) 0.812444 0.647903i 0.0527739 0.0420858i
\(238\) −0.192023 + 10.1650i −0.0124470 + 0.658898i
\(239\) 2.80475 + 2.23671i 0.181424 + 0.144681i 0.709991 0.704211i \(-0.248699\pi\)
−0.528567 + 0.848892i \(0.677270\pi\)
\(240\) −0.490395 0.362231i −0.0316549 0.0233819i
\(241\) −0.548789 1.13957i −0.0353506 0.0734063i 0.882546 0.470227i \(-0.155828\pi\)
−0.917896 + 0.396820i \(0.870114\pi\)
\(242\) 4.02380 + 11.1669i 0.258660 + 0.717838i
\(243\) 0.637734 + 2.79409i 0.0409106 + 0.179241i
\(244\) 12.1112 15.7771i 0.775342 1.01003i
\(245\) 1.67342 + 9.85965i 0.106911 + 0.629910i
\(246\) 0.0543023 0.159917i 0.00346219 0.0101959i
\(247\) −0.558427 + 0.127457i −0.0355318 + 0.00810991i
\(248\) −6.04930 + 18.9598i −0.384131 + 1.20395i
\(249\) 0.808283 0.389249i 0.0512229 0.0246676i
\(250\) 15.1283 5.45122i 0.956800 0.344765i
\(251\) −11.3854 + 14.2769i −0.718641 + 0.901147i −0.998260 0.0589636i \(-0.981220\pi\)
0.279619 + 0.960111i \(0.409792\pi\)
\(252\) 15.7312 1.61909i 0.990971 0.101993i
\(253\) −2.78359 3.49051i −0.175003 0.219446i
\(254\) −12.3212 7.58387i −0.773101 0.475854i
\(255\) −0.258217 + 0.323794i −0.0161702 + 0.0202768i
\(256\) 10.8734 + 11.7375i 0.679587 + 0.733595i
\(257\) 1.42795 2.96517i 0.0890731 0.184962i −0.851673 0.524073i \(-0.824412\pi\)
0.940746 + 0.339111i \(0.110126\pi\)
\(258\) −0.904840 0.0934835i −0.0563329 0.00582003i
\(259\) −1.05709 12.5456i −0.0656845 0.779547i
\(260\) −1.75245 + 1.45137i −0.108682 + 0.0900100i
\(261\) 7.87559 9.87568i 0.487487 0.611289i
\(262\) −21.1232 20.7360i −1.30500 1.28107i
\(263\) 21.7764i 1.34279i 0.741101 + 0.671394i \(0.234304\pi\)
−0.741101 + 0.671394i \(0.765696\pi\)
\(264\) −0.405170 + 0.270551i −0.0249365 + 0.0166512i
\(265\) 1.64225 3.41016i 0.100882 0.209484i
\(266\) 2.44637 1.12169i 0.149997 0.0687753i
\(267\) 0.678470 + 1.40886i 0.0415217 + 0.0862207i
\(268\) 1.17765 5.63851i 0.0719366 0.344427i
\(269\) −26.7443 6.10420i −1.63063 0.372180i −0.693305 0.720644i \(-0.743846\pi\)
−0.937322 + 0.348464i \(0.886703\pi\)
\(270\) 1.09930 + 0.676636i 0.0669015 + 0.0411788i
\(271\) −26.7675 + 12.8906i −1.62601 + 0.783046i −0.626018 + 0.779809i \(0.715316\pi\)
−0.999995 + 0.00323725i \(0.998970\pi\)
\(272\) 8.24105 7.08627i 0.499687 0.429668i
\(273\) −0.0314416 + 0.222569i −0.00190293 + 0.0134705i
\(274\) −12.3323 12.1062i −0.745020 0.731362i
\(275\) 4.77735i 0.288085i
\(276\) −0.359266 + 0.468011i −0.0216253 + 0.0281710i
\(277\) 3.39397 + 1.63445i 0.203924 + 0.0982045i 0.533058 0.846079i \(-0.321043\pi\)
−0.329134 + 0.944283i \(0.606757\pi\)
\(278\) 22.1608 14.2121i 1.32911 0.852387i
\(279\) 4.67931 20.5014i 0.280143 1.22739i
\(280\) 6.66907 8.35609i 0.398553 0.499372i
\(281\) −5.02418 22.0124i −0.299718 1.31315i −0.870549 0.492081i \(-0.836236\pi\)
0.570832 0.821067i \(-0.306621\pi\)
\(282\) 1.19779 + 1.17583i 0.0713274 + 0.0700199i
\(283\) −0.731260 3.20386i −0.0434689 0.190450i 0.948532 0.316682i \(-0.102569\pi\)
−0.992001 + 0.126232i \(0.959712\pi\)
\(284\) −5.68412 22.9390i −0.337290 1.36118i
\(285\) 0.106881 + 0.0243949i 0.00633109 + 0.00144503i
\(286\) 0.616403 + 1.71065i 0.0364487 + 0.101153i
\(287\) 2.76674 + 1.05640i 0.163315 + 0.0623574i
\(288\) −12.4944 11.3890i −0.736239 0.671102i
\(289\) 5.99602 + 7.51877i 0.352707 + 0.442281i
\(290\) −1.03456 8.47653i −0.0607517 0.497759i
\(291\) −0.143894 + 0.114752i −0.00843521 + 0.00672686i
\(292\) 22.5904 + 10.3686i 1.32200 + 0.606775i
\(293\) 17.5913i 1.02770i −0.857881 0.513848i \(-0.828219\pi\)
0.857881 0.513848i \(-0.171781\pi\)
\(294\) −0.0687823 1.05389i −0.00401147 0.0614641i
\(295\) 19.4545i 1.13269i
\(296\) −9.24947 + 9.77762i −0.537615 + 0.568313i
\(297\) 0.806490 0.643154i 0.0467973 0.0373196i
\(298\) 16.1066 1.96582i 0.933032 0.113877i
\(299\) 1.37294 + 1.72161i 0.0793992 + 0.0995634i
\(300\) −0.612813 + 0.151850i −0.0353808 + 0.00876708i
\(301\) 2.23129 15.7949i 0.128609 0.910400i
\(302\) 3.98978 1.43764i 0.229586 0.0827271i
\(303\) −0.345427 0.0788414i −0.0198442 0.00452932i
\(304\) −2.63657 1.15158i −0.151218 0.0660475i
\(305\) 3.16155 + 13.8516i 0.181030 + 0.793142i
\(306\) −8.04518 + 8.19541i −0.459912 + 0.468501i
\(307\) 1.48484 + 6.50552i 0.0847444 + 0.371289i 0.999462 0.0328047i \(-0.0104439\pi\)
−0.914717 + 0.404094i \(0.867587\pi\)
\(308\) −4.47546 7.27742i −0.255013 0.414669i
\(309\) −0.181054 + 0.793250i −0.0102998 + 0.0451264i
\(310\) −7.67454 11.9668i −0.435885 0.679668i
\(311\) −7.11558 3.42668i −0.403487 0.194309i 0.221123 0.975246i \(-0.429028\pi\)
−0.624610 + 0.780937i \(0.714742\pi\)
\(312\) 0.199841 0.133443i 0.0113138 0.00755471i
\(313\) 1.08255i 0.0611892i −0.999532 0.0305946i \(-0.990260\pi\)
0.999532 0.0305946i \(-0.00974008\pi\)
\(314\) 20.8808 21.2707i 1.17837 1.20038i
\(315\) −6.27692 + 9.39227i −0.353664 + 0.529194i
\(316\) 3.98279 19.0692i 0.224049 1.07273i
\(317\) −8.75645 + 4.21689i −0.491811 + 0.236844i −0.663316 0.748339i \(-0.730851\pi\)
0.171505 + 0.985183i \(0.445137\pi\)
\(318\) −0.209523 + 0.340404i −0.0117495 + 0.0190889i
\(319\) −6.65289 1.51848i −0.372490 0.0850184i
\(320\) −11.4117 + 0.634011i −0.637935 + 0.0354423i
\(321\) 0.737501 + 1.53144i 0.0411633 + 0.0854765i
\(322\) −7.96579 6.60245i −0.443916 0.367940i
\(323\) −0.847981 + 1.76085i −0.0471829 + 0.0979764i
\(324\) 14.1159 + 10.8360i 0.784215 + 0.601998i
\(325\) 2.35632i 0.130705i
\(326\) −17.1048 + 17.4242i −0.947349 + 0.965039i
\(327\) 0.359748 0.451110i 0.0198941 0.0249465i
\(328\) −1.12819 2.95821i −0.0622940 0.163340i
\(329\) −21.3901 + 20.2189i −1.17927 + 1.11471i
\(330\) 0.0357653 0.346178i 0.00196882 0.0190565i
\(331\) 0.845301 1.75529i 0.0464620 0.0964792i −0.876446 0.481501i \(-0.840092\pi\)
0.922907 + 0.385022i \(0.125806\pi\)
\(332\) 7.01557 15.2850i 0.385029 0.838876i
\(333\) 8.86706 11.1189i 0.485912 0.609314i
\(334\) −2.76455 + 4.49144i −0.151269 + 0.245761i
\(335\) 2.56546 + 3.21699i 0.140166 + 0.175763i
\(336\) −0.791254 + 0.805404i −0.0431665 + 0.0439384i
\(337\) −16.5694 + 20.7774i −0.902594 + 1.13182i 0.0881546 + 0.996107i \(0.471903\pi\)
−0.990749 + 0.135710i \(0.956668\pi\)
\(338\) 5.92834 + 16.4524i 0.322459 + 0.894894i
\(339\) −1.05786 + 0.509437i −0.0574549 + 0.0276688i
\(340\) 0.143626 + 7.76258i 0.00778922 + 0.420985i
\(341\) −11.0756 + 2.52793i −0.599778 + 0.136895i
\(342\) 2.87860 + 0.977474i 0.155657 + 0.0528557i
\(343\) 18.5131 0.514502i 0.999614 0.0277805i
\(344\) −14.1819 + 9.46993i −0.764639 + 0.510584i
\(345\) −0.0937838 0.410894i −0.00504915 0.0221218i
\(346\) −20.2530 + 7.29781i −1.08881 + 0.392333i
\(347\) −1.10899 2.30283i −0.0595335 0.123623i 0.869079 0.494673i \(-0.164712\pi\)
−0.928613 + 0.371050i \(0.878998\pi\)
\(348\) 0.0166829 + 0.901663i 0.000894297 + 0.0483342i
\(349\) −20.2733 16.1674i −1.08520 0.865421i −0.0937127 0.995599i \(-0.529874\pi\)
−0.991491 + 0.130179i \(0.958445\pi\)
\(350\) −2.25928 10.8383i −0.120764 0.579330i
\(351\) −0.397783 + 0.317221i −0.0212321 + 0.0169320i
\(352\) −2.61475 + 8.75105i −0.139366 + 0.466432i
\(353\) 8.69840 + 6.93674i 0.462969 + 0.369205i 0.827019 0.562174i \(-0.190035\pi\)
−0.364050 + 0.931379i \(0.618606\pi\)
\(354\) −0.211138 + 2.04364i −0.0112219 + 0.108618i
\(355\) 15.2099 + 7.32468i 0.807255 + 0.388754i
\(356\) 26.6422 + 12.2283i 1.41203 + 0.648099i
\(357\) 0.526852 + 0.557368i 0.0278839 + 0.0294990i
\(358\) 24.4763 + 15.0655i 1.29361 + 0.796236i
\(359\) 9.62380 + 7.67472i 0.507925 + 0.405056i 0.843642 0.536906i \(-0.180407\pi\)
−0.335717 + 0.941963i \(0.608979\pi\)
\(360\) 11.9586 1.68461i 0.630271 0.0887870i
\(361\) −18.4826 −0.972771
\(362\) 6.32800 18.6356i 0.332592 0.979463i
\(363\) 0.806756 + 0.388513i 0.0423437 + 0.0203917i
\(364\) 2.20742 + 3.58942i 0.115700 + 0.188137i
\(365\) −15.9973 + 7.70387i −0.837334 + 0.403239i
\(366\) −0.181780 1.48939i −0.00950182 0.0778515i
\(367\) −3.97644 + 17.4219i −0.207568 + 0.909416i 0.758611 + 0.651544i \(0.225878\pi\)
−0.966179 + 0.257872i \(0.916979\pi\)
\(368\) 0.409157 + 11.0531i 0.0213288 + 0.576182i
\(369\) 1.45149 + 3.01406i 0.0755617 + 0.156906i
\(370\) −1.16481 9.54364i −0.0605554 0.496150i
\(371\) −5.82779 3.89475i −0.302564 0.202206i
\(372\) 0.676314 + 1.34037i 0.0350652 + 0.0694949i
\(373\) −8.15242 −0.422117 −0.211058 0.977473i \(-0.567691\pi\)
−0.211058 + 0.977473i \(0.567691\pi\)
\(374\) 5.87479 + 1.99488i 0.303778 + 0.103153i
\(375\) 0.526336 1.09295i 0.0271799 0.0564396i
\(376\) 31.3538 + 2.65412i 1.61695 + 0.136876i
\(377\) 3.28138 + 0.748954i 0.169000 + 0.0385731i
\(378\) 1.52551 1.84051i 0.0784638 0.0946658i
\(379\) −15.7562 + 3.59625i −0.809341 + 0.184727i −0.607117 0.794613i \(-0.707674\pi\)
−0.202224 + 0.979339i \(0.564817\pi\)
\(380\) 1.83485 0.925818i 0.0941261 0.0474935i
\(381\) −1.06408 + 0.242870i −0.0545146 + 0.0124426i
\(382\) 0.137864 + 0.214970i 0.00705376 + 0.0109988i
\(383\) −4.15856 + 18.2198i −0.212492 + 0.930990i 0.750375 + 0.661013i \(0.229873\pi\)
−0.962867 + 0.269977i \(0.912984\pi\)
\(384\) 1.20565 + 0.0572496i 0.0615255 + 0.00292151i
\(385\) 6.04287 + 0.853657i 0.307973 + 0.0435064i
\(386\) 12.7869 8.20051i 0.650837 0.417395i
\(387\) 14.0877 11.2346i 0.716119 0.571086i
\(388\) −0.705401 + 3.37740i −0.0358113 + 0.171462i
\(389\) 14.1537 + 17.7482i 0.717622 + 0.899870i 0.998201 0.0599614i \(-0.0190978\pi\)
−0.280579 + 0.959831i \(0.590526\pi\)
\(390\) −0.0176404 + 0.170744i −0.000893257 + 0.00864597i
\(391\) 7.51348 0.379973
\(392\) −13.5950 14.3936i −0.686650 0.726988i
\(393\) −2.23298 −0.112639
\(394\) 1.07304 10.3861i 0.0540591 0.523246i
\(395\) 8.67631 + 10.8797i 0.436552 + 0.547420i
\(396\) 1.97304 9.44676i 0.0991491 0.474718i
\(397\) 19.0704 15.2081i 0.957114 0.763273i −0.0144875 0.999895i \(-0.504612\pi\)
0.971602 + 0.236622i \(0.0760402\pi\)
\(398\) −8.24434 + 5.28726i −0.413251 + 0.265026i
\(399\) 0.0724195 0.189668i 0.00362551 0.00949529i
\(400\) −7.03206 + 9.52014i −0.351603 + 0.476007i
\(401\) 2.23779 9.80439i 0.111750 0.489608i −0.887818 0.460195i \(-0.847779\pi\)
0.999567 0.0294122i \(-0.00936354\pi\)
\(402\) −0.234581 0.365778i −0.0116998 0.0182434i
\(403\) 5.46279 1.24685i 0.272121 0.0621098i
\(404\) −5.93003 + 2.99213i −0.295030 + 0.148864i
\(405\) −12.3931 + 2.82865i −0.615819 + 0.140557i
\(406\) −15.8114 0.298688i −0.784706 0.0148236i
\(407\) −7.49042 1.70964i −0.371287 0.0847437i
\(408\) 0.0691592 0.816996i 0.00342389 0.0404473i
\(409\) −13.8806 + 28.8234i −0.686353 + 1.42523i 0.208119 + 0.978104i \(0.433266\pi\)
−0.894472 + 0.447124i \(0.852448\pi\)
\(410\) 2.14151 + 0.727183i 0.105762 + 0.0359130i
\(411\) −1.30367 −0.0643053
\(412\) 6.87123 + 13.6179i 0.338521 + 0.670907i
\(413\) −35.6737 5.03951i −1.75539 0.247978i
\(414\) −1.41591 11.6010i −0.0695882 0.570159i
\(415\) 5.21258 + 10.8240i 0.255875 + 0.531331i
\(416\) 1.28966 4.31625i 0.0632310 0.211622i
\(417\) 0.441930 1.93622i 0.0216414 0.0948173i
\(418\) −0.198972 1.63024i −0.00973201 0.0797376i
\(419\) 15.1021 7.27277i 0.737784 0.355298i −0.0269563 0.999637i \(-0.508582\pi\)
0.764740 + 0.644339i \(0.222867\pi\)
\(420\) −0.0825728 0.802281i −0.00402914 0.0391473i
\(421\) 17.0724 + 8.22164i 0.832058 + 0.400698i 0.800887 0.598816i \(-0.204362\pi\)
0.0311714 + 0.999514i \(0.490076\pi\)
\(422\) 0.371294 1.09344i 0.0180743 0.0532277i
\(423\) −33.2480 −1.61657
\(424\) 1.04528 + 7.42015i 0.0507635 + 0.360354i
\(425\) 6.28588 + 5.01282i 0.304910 + 0.243157i
\(426\) −1.51826 0.934508i −0.0735598 0.0452771i
\(427\) 26.2187 2.20918i 1.26881 0.106910i
\(428\) 28.9602 + 13.2922i 1.39985 + 0.642505i
\(429\) 0.123586 + 0.0595160i 0.00596680 + 0.00287346i
\(430\) 1.25187 12.1171i 0.0603707 0.584337i
\(431\) −8.96088 7.14607i −0.431631 0.344214i 0.383450 0.923562i \(-0.374736\pi\)
−0.815080 + 0.579348i \(0.803307\pi\)
\(432\) −2.55384 + 0.0945367i −0.122872 + 0.00454840i
\(433\) 12.6715 10.1052i 0.608951 0.485623i −0.269791 0.962919i \(-0.586955\pi\)
0.878742 + 0.477296i \(0.158383\pi\)
\(434\) −23.9315 + 10.9729i −1.14875 + 0.526716i
\(435\) −0.503654 0.401650i −0.0241483 0.0192577i
\(436\) −0.200100 10.8148i −0.00958306 0.517937i
\(437\) −0.862954 1.79194i −0.0412807 0.0857202i
\(438\) 1.76407 0.635652i 0.0842908 0.0303726i
\(439\) 6.54949 + 28.6952i 0.312590 + 1.36955i 0.850247 + 0.526383i \(0.176452\pi\)
−0.537657 + 0.843164i \(0.680691\pi\)
\(440\) −3.62305 5.42579i −0.172722 0.258664i
\(441\) 15.5966 + 13.9430i 0.742696 + 0.663950i
\(442\) −2.89761 0.983927i −0.137825 0.0468007i
\(443\) −8.10200 + 1.84923i −0.384938 + 0.0878595i −0.410610 0.911811i \(-0.634684\pi\)
0.0256727 + 0.999670i \(0.491827\pi\)
\(444\) 0.0187831 + 1.01517i 0.000891408 + 0.0481780i
\(445\) −18.8666 + 9.08566i −0.894361 + 0.430701i
\(446\) −6.52125 18.0979i −0.308790 0.856961i
\(447\) 0.763194 0.957015i 0.0360978 0.0452653i
\(448\) −1.79352 + 21.0899i −0.0847358 + 0.996403i
\(449\) 11.6408 + 14.5971i 0.549362 + 0.688878i 0.976551 0.215284i \(-0.0690678\pi\)
−0.427190 + 0.904162i \(0.640496\pi\)
\(450\) 6.55535 10.6502i 0.309022 0.502056i
\(451\) 1.12682 1.41299i 0.0530599 0.0665350i
\(452\) −9.18177 + 20.0046i −0.431874 + 0.940937i
\(453\) 0.138810 0.288242i 0.00652186 0.0135428i
\(454\) 0.677289 6.55558i 0.0317867 0.307669i
\(455\) −2.98050 0.421047i −0.139728 0.0197390i
\(456\) −0.202794 + 0.0773410i −0.00949670 + 0.00362182i
\(457\) −2.70553 + 3.39262i −0.126559 + 0.158700i −0.841074 0.540920i \(-0.818076\pi\)
0.714515 + 0.699620i \(0.246648\pi\)
\(458\) 26.4604 26.9545i 1.23641 1.25950i
\(459\) 1.73601i 0.0810299i
\(460\) −6.26732 4.81107i −0.292215 0.224317i
\(461\) −7.76722 + 16.1288i −0.361756 + 0.751193i −0.999824 0.0187870i \(-0.994020\pi\)
0.638068 + 0.769980i \(0.279734\pi\)
\(462\) −0.625521 0.155257i −0.0291019 0.00722321i
\(463\) −16.5200 34.3041i −0.767750 1.59425i −0.803801 0.594899i \(-0.797192\pi\)
0.0360510 0.999350i \(-0.488522\pi\)
\(464\) 11.0225 + 12.8187i 0.511707 + 0.595095i
\(465\) −1.04556 0.238642i −0.0484867 0.0110668i
\(466\) −2.80071 + 4.55021i −0.129741 + 0.210784i
\(467\) 18.5981 8.95636i 0.860616 0.414451i 0.0491091 0.998793i \(-0.484362\pi\)
0.811507 + 0.584342i \(0.198648\pi\)
\(468\) −0.973158 + 4.65940i −0.0449842 + 0.215381i
\(469\) 6.56354 3.87095i 0.303076 0.178744i
\(470\) −15.7460 + 16.0401i −0.726310 + 0.739873i
\(471\) 2.24858i 0.103609i
\(472\) 21.3884 + 32.0308i 0.984483 + 1.47434i
\(473\) −8.77044 4.22362i −0.403265 0.194202i
\(474\) −0.793344 1.23705i −0.0364395 0.0568196i
\(475\) 0.473583 2.07490i 0.0217295 0.0952031i
\(476\) 14.2714 + 1.74746i 0.654130 + 0.0800947i
\(477\) −1.76188 7.71929i −0.0806709 0.353442i
\(478\) 3.55407 3.62044i 0.162559 0.165595i
\(479\) −4.94893 21.6827i −0.226123 0.990708i −0.952769 0.303696i \(-0.901779\pi\)
0.726646 0.687012i \(-0.241078\pi\)
\(480\) −0.580831 + 0.637207i −0.0265112 + 0.0290844i
\(481\) 3.69448 + 0.843241i 0.168454 + 0.0384485i
\(482\) −1.68282 + 0.606375i −0.0766506 + 0.0276196i
\(483\) −0.777748 + 0.0655329i −0.0353888 + 0.00298185i
\(484\) 16.2936 4.03743i 0.740619 0.183520i
\(485\) −1.53668 1.92694i −0.0697771 0.0874978i
\(486\) 4.02321 0.491035i 0.182496 0.0222738i
\(487\) 32.1640 25.6499i 1.45749 1.16231i 0.502913 0.864337i \(-0.332262\pi\)
0.954575 0.297970i \(-0.0963097\pi\)
\(488\) −20.4339 19.3302i −0.925000 0.875035i
\(489\) 1.84195i 0.0832960i
\(490\) 14.1130 0.921090i 0.637562 0.0416106i
\(491\) 20.0236i 0.903652i 0.892106 + 0.451826i \(0.149227\pi\)
−0.892106 + 0.451826i \(0.850773\pi\)
\(492\) −0.217067 0.0996301i −0.00978615 0.00449167i
\(493\) 8.97876 7.16033i 0.404383 0.322485i
\(494\) 0.0981381 + 0.804078i 0.00441544 + 0.0361772i
\(495\) 4.29818 + 5.38975i 0.193189 + 0.242251i
\(496\) 25.7921 + 11.2652i 1.15810 + 0.505825i
\(497\) 17.3712 25.9929i 0.779206 1.16594i
\(498\) −0.430094 1.19360i −0.0192730 0.0534867i
\(499\) 8.49474 + 1.93887i 0.380277 + 0.0867957i 0.408386 0.912809i \(-0.366092\pi\)
−0.0281096 + 0.999605i \(0.508949\pi\)
\(500\) −5.46969 22.0737i −0.244612 0.987165i
\(501\) 0.0885333 + 0.387890i 0.00395538 + 0.0173296i
\(502\) 18.4289 + 18.0911i 0.822523 + 0.807445i
\(503\) −3.39697 14.8831i −0.151463 0.663605i −0.992460 0.122565i \(-0.960888\pi\)
0.840997 0.541040i \(-0.181969\pi\)
\(504\) 0.00868105 22.3648i 0.000386685 0.996206i
\(505\) 1.05579 4.62574i 0.0469822 0.205843i
\(506\) −5.31474 + 3.40845i −0.236269 + 0.151524i
\(507\) 1.18861 + 0.572403i 0.0527879 + 0.0254213i
\(508\) −12.4591 + 16.2303i −0.552785 + 0.720105i
\(509\) 5.41910i 0.240197i 0.992762 + 0.120099i \(0.0383211\pi\)
−0.992762 + 0.120099i \(0.961679\pi\)
\(510\) 0.417961 + 0.410300i 0.0185076 + 0.0181684i
\(511\) 9.98263 + 31.3297i 0.441606 + 1.38595i
\(512\) 18.0918 13.5900i 0.799551 0.600599i
\(513\) 0.414032 0.199387i 0.0182800 0.00880317i
\(514\) −3.96365 2.43968i −0.174829 0.107610i
\(515\) −10.6227 2.42456i −0.468093 0.106839i
\(516\) −0.263011 + 1.25928i −0.0115784 + 0.0554365i
\(517\) 7.79333 + 16.1830i 0.342750 + 0.711728i
\(518\) −17.8019 0.336290i −0.782170 0.0147757i
\(519\) −0.704631 + 1.46318i −0.0309298 + 0.0642265i
\(520\) 1.78698 + 2.67615i 0.0783644 + 0.117357i
\(521\) 32.2327i 1.41214i −0.708143 0.706069i \(-0.750467\pi\)
0.708143 0.706069i \(-0.249533\pi\)
\(522\) −12.7478 12.5141i −0.557955 0.547727i
\(523\) −0.510259 + 0.639845i −0.0223121 + 0.0279785i −0.792862 0.609401i \(-0.791410\pi\)
0.770550 + 0.637379i \(0.219982\pi\)
\(524\) −32.2398 + 26.7009i −1.40840 + 1.16643i
\(525\) −0.694396 0.464070i −0.0303059 0.0202537i
\(526\) 30.6334 + 3.16488i 1.33568 + 0.137995i
\(527\) 8.29534 17.2255i 0.361351 0.750352i
\(528\) 0.321705 + 0.609284i 0.0140004 + 0.0265157i
\(529\) 9.57297 12.0041i 0.416216 0.521919i
\(530\) −4.55848 2.80581i −0.198008 0.121877i
\(531\) −25.3740 31.8181i −1.10114 1.38079i
\(532\) −1.22237 3.60439i −0.0529964 0.156270i
\(533\) −0.555778 + 0.696924i −0.0240734 + 0.0301871i
\(534\) 2.08048 0.749664i 0.0900313 0.0324412i
\(535\) −20.5081 + 9.87616i −0.886640 + 0.426984i
\(536\) −7.76068 2.47611i −0.335210 0.106952i
\(537\) 2.11382 0.482466i 0.0912181 0.0208199i
\(538\) −12.4738 + 36.7347i −0.537785 + 1.58375i
\(539\) 3.13070 10.8597i 0.134849 0.467759i
\(540\) 1.11161 1.44808i 0.0478361 0.0623154i
\(541\) −5.20805 22.8180i −0.223912 0.981020i −0.954502 0.298205i \(-0.903612\pi\)
0.730590 0.682816i \(-0.239245\pi\)
\(542\) 14.2432 + 39.5280i 0.611799 + 1.69788i
\(543\) −0.644173 1.33764i −0.0276441 0.0574036i
\(544\) −8.77072 12.6228i −0.376041 0.541197i
\(545\) 6.04099 + 4.81753i 0.258768 + 0.206360i
\(546\) 0.308524 + 0.0765769i 0.0132036 + 0.00327719i
\(547\) −23.6862 + 18.8891i −1.01275 + 0.807642i −0.981421 0.191868i \(-0.938546\pi\)
−0.0313296 + 0.999509i \(0.509974\pi\)
\(548\) −18.8224 + 15.5887i −0.804054 + 0.665914i
\(549\) 23.2371 + 18.5310i 0.991735 + 0.790882i
\(550\) −6.72042 0.694319i −0.286560 0.0296059i
\(551\) −2.73896 1.31901i −0.116684 0.0561919i
\(552\) 0.606150 + 0.573408i 0.0257994 + 0.0244059i
\(553\) 22.1977 13.0914i 0.943942 0.556704i
\(554\) 2.79249 4.53684i 0.118641 0.192752i
\(555\) −0.567059 0.452215i −0.0240703 0.0191954i
\(556\) −16.7718 33.2396i −0.711284 1.40967i
\(557\) −34.1917 −1.44875 −0.724374 0.689407i \(-0.757871\pi\)
−0.724374 + 0.689407i \(0.757871\pi\)
\(558\) −28.1598 9.56209i −1.19210 0.404796i
\(559\) 4.32582 + 2.08320i 0.182963 + 0.0881101i
\(560\) −10.7855 10.5960i −0.455769 0.447762i
\(561\) 0.421686 0.203073i 0.0178036 0.00857376i
\(562\) −31.6956 + 3.86846i −1.33700 + 0.163181i
\(563\) −6.31741 + 27.6784i −0.266247 + 1.16651i 0.648094 + 0.761560i \(0.275566\pi\)
−0.914341 + 0.404945i \(0.867291\pi\)
\(564\) 1.82816 1.51407i 0.0769793 0.0637539i
\(565\) −6.82206 14.1662i −0.287006 0.595975i
\(566\) −4.61323 + 0.563047i −0.193908 + 0.0236666i
\(567\) 1.97656 + 23.4580i 0.0830078 + 0.985142i
\(568\) −33.0950 + 4.66213i −1.38864 + 0.195619i
\(569\) 12.4796 0.523172 0.261586 0.965180i \(-0.415754\pi\)
0.261586 + 0.965180i \(0.415754\pi\)
\(570\) 0.0498506 0.146807i 0.00208801 0.00614907i
\(571\) 15.0567 31.2657i 0.630105 1.30843i −0.304422 0.952537i \(-0.598463\pi\)
0.934528 0.355890i \(-0.115822\pi\)
\(572\) 2.49600 0.618491i 0.104363 0.0258604i
\(573\) 0.0187823 + 0.00428694i 0.000784641 + 0.000179089i
\(574\) 1.88817 3.73851i 0.0788108 0.156042i
\(575\) −7.97676 + 1.82064i −0.332654 + 0.0759261i
\(576\) −17.8371 + 15.9210i −0.743211 + 0.663373i
\(577\) 37.8950 8.64930i 1.57759 0.360075i 0.658021 0.753000i \(-0.271394\pi\)
0.919571 + 0.392925i \(0.128537\pi\)
\(578\) 11.4483 7.34201i 0.476186 0.305388i
\(579\) 0.254997 1.11722i 0.0105973 0.0464299i
\(580\) −12.0745 + 0.223407i −0.501367 + 0.00927647i
\(581\) 21.1983 6.75443i 0.879453 0.280221i
\(582\) 0.140511 + 0.219097i 0.00582437 + 0.00908186i
\(583\) −3.34427 + 2.66697i −0.138506 + 0.110455i
\(584\) 17.8689 30.2715i 0.739422 1.25264i
\(585\) −2.11998 2.65837i −0.0876503 0.109910i
\(586\) −24.7462 2.55665i −1.02225 0.105614i
\(587\) −46.5433 −1.92105 −0.960523 0.278201i \(-0.910262\pi\)
−0.960523 + 0.278201i \(0.910262\pi\)
\(588\) −1.49253 0.0564099i −0.0615509 0.00232631i
\(589\) −5.06097 −0.208533
\(590\) −27.3672 2.82744i −1.12669 0.116404i
\(591\) −0.491110 0.615832i −0.0202016 0.0253320i
\(592\) 12.4101 + 14.4325i 0.510054 + 0.593172i
\(593\) 3.28269 2.61786i 0.134804 0.107503i −0.553766 0.832672i \(-0.686810\pi\)
0.688571 + 0.725169i \(0.258239\pi\)
\(594\) −0.787530 1.22798i −0.0323128 0.0503848i
\(595\) −7.46393 + 7.05527i −0.305991 + 0.289238i
\(596\) −0.424506 22.9433i −0.0173884 0.939795i
\(597\) −0.164409 + 0.720322i −0.00672881 + 0.0294808i
\(598\) 2.62137 1.68114i 0.107196 0.0687469i
\(599\) 21.6951 4.95177i 0.886438 0.202324i 0.245023 0.969517i \(-0.421205\pi\)
0.641416 + 0.767194i \(0.278347\pi\)
\(600\) 0.124548 + 0.884129i 0.00508466 + 0.0360944i
\(601\) −18.7980 + 4.29052i −0.766786 + 0.175014i −0.587986 0.808871i \(-0.700079\pi\)
−0.178801 + 0.983885i \(0.557222\pi\)
\(602\) −21.8947 5.43437i −0.892363 0.221488i
\(603\) 8.39168 + 1.91535i 0.341736 + 0.0779989i
\(604\) −1.44251 5.82146i −0.0586951 0.236872i
\(605\) −5.20273 + 10.8036i −0.211521 + 0.439228i
\(606\) −0.161111 + 0.474462i −0.00654469 + 0.0192737i
\(607\) −34.5050 −1.40052 −0.700258 0.713890i \(-0.746932\pi\)
−0.700258 + 0.713890i \(0.746932\pi\)
\(608\) −2.00314 + 3.54156i −0.0812381 + 0.143629i
\(609\) −0.866972 + 0.819505i −0.0351315 + 0.0332080i
\(610\) 19.9449 2.43429i 0.807547 0.0985616i
\(611\) −3.84388 7.98190i −0.155507 0.322913i
\(612\) 10.3594 + 12.5085i 0.418756 + 0.505624i
\(613\) 10.4992 46.0000i 0.424059 1.85792i −0.0837987 0.996483i \(-0.526705\pi\)
0.507858 0.861441i \(-0.330438\pi\)
\(614\) 9.36728 1.14328i 0.378033 0.0461391i
\(615\) 0.153715 0.0740253i 0.00619839 0.00298499i
\(616\) −10.8878 + 5.23807i −0.438681 + 0.211048i
\(617\) 33.3337 + 16.0527i 1.34196 + 0.646256i 0.960539 0.278144i \(-0.0897194\pi\)
0.381424 + 0.924400i \(0.375434\pi\)
\(618\) 1.08957 + 0.369981i 0.0438290 + 0.0148828i
\(619\) 21.7564 0.874465 0.437233 0.899348i \(-0.355959\pi\)
0.437233 + 0.899348i \(0.355959\pi\)
\(620\) −17.9494 + 9.05677i −0.720865 + 0.363729i
\(621\) −1.38123 1.10149i −0.0554269 0.0442015i
\(622\) −5.85455 + 9.51165i −0.234746 + 0.381382i
\(623\) 11.7731 + 36.9491i 0.471681 + 1.48034i
\(624\) −0.158673 0.300515i −0.00635202 0.0120302i
\(625\) 1.30662 + 0.629234i 0.0522647 + 0.0251694i
\(626\) −1.52285 0.157333i −0.0608652 0.00628828i
\(627\) −0.0968646 0.0772470i −0.00386840 0.00308495i
\(628\) −26.8874 32.4650i −1.07292 1.29549i
\(629\) 10.1091 8.06175i 0.403077 0.321443i
\(630\) 12.3001 + 10.1949i 0.490047 + 0.406176i
\(631\) −19.7677 15.7642i −0.786941 0.627564i 0.145306 0.989387i \(-0.453583\pi\)
−0.932247 + 0.361822i \(0.882155\pi\)
\(632\) −26.2464 8.37413i −1.04402 0.333105i
\(633\) −0.0377967 0.0784857i −0.00150228 0.00311953i
\(634\) 4.65938 + 12.9308i 0.185047 + 0.513547i
\(635\) −3.25236 14.2495i −0.129066 0.565476i
\(636\) 0.448404 + 0.344215i 0.0177804 + 0.0136490i
\(637\) −1.54414 + 5.35628i −0.0611812 + 0.212223i
\(638\) −3.10298 + 9.13810i −0.122848 + 0.361781i
\(639\) 34.4293 7.85826i 1.36200 0.310868i
\(640\) −0.766651 + 16.1453i −0.0303046 + 0.638199i
\(641\) 21.4306 10.3204i 0.846459 0.407633i 0.0401968 0.999192i \(-0.487202\pi\)
0.806262 + 0.591559i \(0.201487\pi\)
\(642\) 2.26150 0.814889i 0.0892542 0.0321611i
\(643\) −6.50045 + 8.15131i −0.256353 + 0.321456i −0.893308 0.449444i \(-0.851622\pi\)
0.636956 + 0.770901i \(0.280193\pi\)
\(644\) −10.4455 + 10.2461i −0.411612 + 0.403753i
\(645\) −0.572957 0.718466i −0.0225602 0.0282896i
\(646\) 2.35379 + 1.44879i 0.0926088 + 0.0570020i
\(647\) −2.24435 + 2.81432i −0.0882344 + 0.110642i −0.823989 0.566606i \(-0.808256\pi\)
0.735755 + 0.677248i \(0.236828\pi\)
\(648\) 17.2948 18.2823i 0.679403 0.718197i
\(649\) −9.53932 + 19.8086i −0.374451 + 0.777556i
\(650\) 3.31469 + 0.342457i 0.130013 + 0.0134323i
\(651\) −0.708440 + 1.85542i −0.0277660 + 0.0727197i
\(652\) 22.0252 + 26.5942i 0.862573 + 1.04151i
\(653\) −8.82550 + 11.0668i −0.345369 + 0.433078i −0.923931 0.382560i \(-0.875043\pi\)
0.578562 + 0.815638i \(0.303614\pi\)
\(654\) −0.582304 0.571630i −0.0227699 0.0223525i
\(655\) 29.9027i 1.16839i
\(656\) −4.32535 + 1.15712i −0.168877 + 0.0451781i
\(657\) −16.1157 + 33.4646i −0.628733 + 1.30558i
\(658\) 25.3338 + 33.0285i 0.987613 + 1.28758i
\(659\) 12.4421 + 25.8363i 0.484676 + 1.00644i 0.989676 + 0.143321i \(0.0457783\pi\)
−0.505000 + 0.863119i \(0.668507\pi\)
\(660\) −0.481779 0.100624i −0.0187532 0.00391678i
\(661\) −31.8246 7.26375i −1.23783 0.282527i −0.446986 0.894541i \(-0.647502\pi\)
−0.790847 + 0.612014i \(0.790360\pi\)
\(662\) −2.34635 1.44421i −0.0911936 0.0561309i
\(663\) −0.207987 + 0.100161i −0.00807754 + 0.00388994i
\(664\) −20.4823 12.0904i −0.794866 0.469200i
\(665\) 2.53992 + 0.969797i 0.0984939 + 0.0376071i
\(666\) −14.3526 14.0895i −0.556152 0.545957i
\(667\) 11.6870i 0.452524i
\(668\) 5.91644 + 4.54172i 0.228914 + 0.175725i
\(669\) −1.30748 0.629652i −0.0505503 0.0243437i
\(670\) 4.89827 3.14136i 0.189237 0.121361i
\(671\) 3.57292 15.6540i 0.137931 0.604315i
\(672\) 1.01799 + 1.23013i 0.0392696 + 0.0474534i
\(673\) −6.73569 29.5110i −0.259642 1.13757i −0.921636 0.388056i \(-0.873147\pi\)
0.661994 0.749509i \(-0.269710\pi\)
\(674\) 26.8200 + 26.3283i 1.03307 + 1.01413i
\(675\) −0.420664 1.84305i −0.0161914 0.0709390i
\(676\) 24.0057 5.94842i 0.923295 0.228785i
\(677\) −10.1153 2.30874i −0.388761 0.0887322i 0.0236726 0.999720i \(-0.492464\pi\)
−0.412434 + 0.910988i \(0.635321\pi\)
\(678\) 0.562894 + 1.56215i 0.0216178 + 0.0599942i
\(679\) −3.93149 + 2.31865i −0.150877 + 0.0889818i
\(680\) 10.9407 + 0.926138i 0.419557 + 0.0355158i
\(681\) −0.309982 0.388705i −0.0118785 0.0148952i
\(682\) 1.94643 + 15.9477i 0.0745327 + 0.610670i
\(683\) −3.43939 + 2.74282i −0.131605 + 0.104951i −0.687080 0.726582i \(-0.741108\pi\)
0.555475 + 0.831533i \(0.312536\pi\)
\(684\) 1.79340 3.90734i 0.0685724 0.149401i
\(685\) 17.4579i 0.667034i
\(686\) 1.96685 26.1176i 0.0750948 0.997176i
\(687\) 2.84942i 0.108712i
\(688\) 11.2604 + 21.3264i 0.429301 + 0.813062i
\(689\) 1.64949 1.31542i 0.0628404 0.0501136i
\(690\) −0.591645 + 0.0722106i −0.0225235 + 0.00274901i
\(691\) −21.3276 26.7440i −0.811342 1.01739i −0.999379 0.0352288i \(-0.988784\pi\)
0.188037 0.982162i \(-0.439787\pi\)
\(692\) 7.32253 + 29.5511i 0.278361 + 1.12336i
\(693\) 10.9966 6.48540i 0.417725 0.246360i
\(694\) −3.40063 + 1.22536i −0.129086 + 0.0465139i
\(695\) 25.9287 + 5.91806i 0.983532 + 0.224485i
\(696\) 1.27082 + 0.107575i 0.0481702 + 0.00407764i
\(697\) 0.676803 + 2.96527i 0.0256357 + 0.112318i
\(698\) −25.6895 + 26.1692i −0.972363 + 0.990520i
\(699\) 0.0896916 + 0.392965i 0.00339245 + 0.0148633i
\(700\) −15.5748 + 1.60300i −0.588673 + 0.0605878i
\(701\) 4.50543 19.7396i 0.170168 0.745554i −0.815761 0.578389i \(-0.803682\pi\)
0.985929 0.167165i \(-0.0534612\pi\)
\(702\) 0.388431 + 0.605675i 0.0146604 + 0.0228597i
\(703\) −3.08377 1.48507i −0.116307 0.0560103i
\(704\) 11.9303 + 4.95007i 0.449640 + 0.186563i
\(705\) 1.69563i 0.0638611i
\(706\) 11.0223 11.2281i 0.414829 0.422575i
\(707\) −8.20871 3.13426i −0.308720 0.117876i
\(708\) 2.84416 + 0.594028i 0.106890 + 0.0223249i
\(709\) 31.4759 15.1580i 1.18210 0.569270i 0.263578 0.964638i \(-0.415097\pi\)
0.918523 + 0.395368i \(0.129383\pi\)
\(710\) 12.5144 20.3316i 0.469655 0.763030i
\(711\) 28.3804 + 6.47764i 1.06435 + 0.242930i
\(712\) 21.0740 35.7011i 0.789780 1.33795i
\(713\) 8.44180 + 17.5296i 0.316148 + 0.656488i
\(714\) 0.860634 0.660130i 0.0322084 0.0247048i
\(715\) −0.797001 + 1.65499i −0.0298062 + 0.0618931i
\(716\) 24.7503 32.2419i 0.924962 1.20494i
\(717\) 0.382724i 0.0142931i
\(718\) 12.1949 12.4226i 0.455110 0.463609i
\(719\) −3.26447 + 4.09352i −0.121744 + 0.152663i −0.838969 0.544180i \(-0.816841\pi\)
0.717224 + 0.696842i \(0.245412\pi\)
\(720\) −0.631786 17.0672i −0.0235453 0.636059i
\(721\) −7.19763 + 18.8508i −0.268054 + 0.702040i
\(722\) −2.68619 + 26.0000i −0.0999696 + 0.967621i
\(723\) −0.0585478 + 0.121576i −0.00217742 + 0.00452145i
\(724\) −25.2954 11.6102i −0.940098 0.431488i
\(725\) −7.79732 + 9.77753i −0.289585 + 0.363128i
\(726\) 0.663782 1.07842i 0.0246353 0.0400239i
\(727\) −23.9283 30.0051i −0.887450 1.11283i −0.992965 0.118409i \(-0.962221\pi\)
0.105515 0.994418i \(-0.466351\pi\)
\(728\) 5.37014 2.58356i 0.199031 0.0957530i
\(729\) −16.4522 + 20.6304i −0.609342 + 0.764090i
\(730\) 8.51226 + 23.6234i 0.315053 + 0.874341i
\(731\) 14.7600 7.10806i 0.545920 0.262901i
\(732\) −2.12158 + 0.0392542i −0.0784158 + 0.00145088i
\(733\) −27.7748 + 6.33942i −1.02589 + 0.234152i −0.702175 0.712004i \(-0.747788\pi\)
−0.323711 + 0.946156i \(0.604931\pi\)
\(734\) 23.9299 + 8.12578i 0.883270 + 0.299928i
\(735\) 0.711082 0.795418i 0.0262287 0.0293394i
\(736\) 15.6081 + 1.03084i 0.575324 + 0.0379972i
\(737\) −1.03474 4.53349i −0.0381151 0.166993i
\(738\) 4.45091 1.60380i 0.163840 0.0590368i
\(739\) −8.26271 17.1577i −0.303949 0.631156i 0.691919 0.721975i \(-0.256766\pi\)
−0.995867 + 0.0908195i \(0.971051\pi\)
\(740\) −13.5946 + 0.251532i −0.499747 + 0.00924650i
\(741\) 0.0477762 + 0.0381003i 0.00175510 + 0.00139965i
\(742\) −6.32584 + 7.63206i −0.232229 + 0.280182i
\(743\) 9.49452 7.57163i 0.348320 0.277776i −0.433664 0.901075i \(-0.642779\pi\)
0.781984 + 0.623299i \(0.214208\pi\)
\(744\) 1.98382 0.756584i 0.0727305 0.0277377i
\(745\) 12.8158 + 10.2202i 0.469533 + 0.374440i
\(746\) −1.18484 + 11.4682i −0.0433800 + 0.419882i
\(747\) 22.6427 + 10.9042i 0.828455 + 0.398963i
\(748\) 3.66006 7.97430i 0.133825 0.291569i
\(749\) 12.7975 + 40.1639i 0.467609 + 1.46756i
\(750\) −1.46098 0.899254i −0.0533475 0.0328361i
\(751\) 34.1350 + 27.2217i 1.24560 + 0.993335i 0.999711 + 0.0240379i \(0.00765225\pi\)
0.245892 + 0.969297i \(0.420919\pi\)
\(752\) 8.29044 43.7204i 0.302321 1.59432i
\(753\) 1.94816 0.0709949
\(754\) 1.53047 4.50716i 0.0557366 0.164141i
\(755\) 3.85996 + 1.85886i 0.140478 + 0.0676507i
\(756\) −2.36739 2.41347i −0.0861010 0.0877770i
\(757\) −25.2466 + 12.1581i −0.917602 + 0.441894i −0.832215 0.554454i \(-0.812927\pi\)
−0.0853878 + 0.996348i \(0.527213\pi\)
\(758\) 2.76900 + 22.6873i 0.100574 + 0.824040i
\(759\) −0.105987 + 0.464358i −0.00384707 + 0.0168551i
\(760\) −1.03570 2.71569i −0.0375689 0.0985085i
\(761\) 4.39853 + 9.13363i 0.159446 + 0.331094i 0.965352 0.260950i \(-0.0840356\pi\)
−0.805906 + 0.592044i \(0.798321\pi\)
\(762\) 0.187002 + 1.53217i 0.00677437 + 0.0555047i
\(763\) 10.3988 9.82941i 0.376460 0.355849i
\(764\) 0.322440 0.162695i 0.0116655 0.00588609i
\(765\) −11.6017 −0.419460
\(766\) 25.0259 + 8.49794i 0.904223 + 0.307043i
\(767\) 4.70505 9.77014i</