Properties

Label 196.2
Level 196
Weight 2
Dimension 610
Nonzero newspaces 8
Newform subspaces 16
Sturm bound 4704
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 16 \)
Sturm bound: \(4704\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(196))\).

Total New Old
Modular forms 1326 706 620
Cusp forms 1027 610 417
Eisenstein series 299 96 203

Trace form

\( 610 q - 15 q^{2} + 2 q^{3} - 15 q^{4} - 24 q^{5} - 21 q^{6} + 4 q^{7} - 33 q^{8} - 34 q^{9} - 33 q^{10} - 6 q^{11} - 45 q^{12} - 50 q^{13} - 30 q^{14} - 12 q^{15} - 39 q^{16} - 24 q^{17} - 27 q^{18} - 2 q^{19}+ \cdots + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(196))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
196.2.a \(\chi_{196}(1, \cdot)\) 196.2.a.a 1 1
196.2.a.b 1
196.2.a.c 2
196.2.d \(\chi_{196}(195, \cdot)\) 196.2.d.a 4 1
196.2.d.b 4
196.2.d.c 8
196.2.e \(\chi_{196}(165, \cdot)\) 196.2.e.a 2 2
196.2.e.b 4
196.2.f \(\chi_{196}(19, \cdot)\) 196.2.f.a 4 2
196.2.f.b 4
196.2.f.c 8
196.2.f.d 16
196.2.i \(\chi_{196}(29, \cdot)\) 196.2.i.a 24 6
196.2.j \(\chi_{196}(27, \cdot)\) 196.2.j.a 156 6
196.2.m \(\chi_{196}(9, \cdot)\) 196.2.m.a 60 12
196.2.p \(\chi_{196}(3, \cdot)\) 196.2.p.a 312 12

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(196))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(196)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 2}\)