Properties

Label 1950.4.a.h.1.1
Level $1950$
Weight $4$
Character 1950.1
Self dual yes
Analytic conductor $115.054$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1950,4,Mod(1,1950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1950.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1950.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.053724511\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1950.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +3.00000 q^{3} +4.00000 q^{4} -6.00000 q^{6} +32.0000 q^{7} -8.00000 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q-2.00000 q^{2} +3.00000 q^{3} +4.00000 q^{4} -6.00000 q^{6} +32.0000 q^{7} -8.00000 q^{8} +9.00000 q^{9} +50.0000 q^{11} +12.0000 q^{12} +13.0000 q^{13} -64.0000 q^{14} +16.0000 q^{16} +30.0000 q^{17} -18.0000 q^{18} -120.000 q^{19} +96.0000 q^{21} -100.000 q^{22} +20.0000 q^{23} -24.0000 q^{24} -26.0000 q^{26} +27.0000 q^{27} +128.000 q^{28} +82.0000 q^{29} -44.0000 q^{31} -32.0000 q^{32} +150.000 q^{33} -60.0000 q^{34} +36.0000 q^{36} +306.000 q^{37} +240.000 q^{38} +39.0000 q^{39} +108.000 q^{41} -192.000 q^{42} +356.000 q^{43} +200.000 q^{44} -40.0000 q^{46} +178.000 q^{47} +48.0000 q^{48} +681.000 q^{49} +90.0000 q^{51} +52.0000 q^{52} -198.000 q^{53} -54.0000 q^{54} -256.000 q^{56} -360.000 q^{57} -164.000 q^{58} +94.0000 q^{59} -62.0000 q^{61} +88.0000 q^{62} +288.000 q^{63} +64.0000 q^{64} -300.000 q^{66} +140.000 q^{67} +120.000 q^{68} +60.0000 q^{69} -778.000 q^{71} -72.0000 q^{72} -62.0000 q^{73} -612.000 q^{74} -480.000 q^{76} +1600.00 q^{77} -78.0000 q^{78} -1096.00 q^{79} +81.0000 q^{81} -216.000 q^{82} +462.000 q^{83} +384.000 q^{84} -712.000 q^{86} +246.000 q^{87} -400.000 q^{88} +1224.00 q^{89} +416.000 q^{91} +80.0000 q^{92} -132.000 q^{93} -356.000 q^{94} -96.0000 q^{96} -614.000 q^{97} -1362.00 q^{98} +450.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 3.00000 0.577350
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) 32.0000 1.72784 0.863919 0.503631i \(-0.168003\pi\)
0.863919 + 0.503631i \(0.168003\pi\)
\(8\) −8.00000 −0.353553
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 50.0000 1.37051 0.685253 0.728305i \(-0.259692\pi\)
0.685253 + 0.728305i \(0.259692\pi\)
\(12\) 12.0000 0.288675
\(13\) 13.0000 0.277350
\(14\) −64.0000 −1.22177
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 30.0000 0.428004 0.214002 0.976833i \(-0.431350\pi\)
0.214002 + 0.976833i \(0.431350\pi\)
\(18\) −18.0000 −0.235702
\(19\) −120.000 −1.44894 −0.724471 0.689306i \(-0.757916\pi\)
−0.724471 + 0.689306i \(0.757916\pi\)
\(20\) 0 0
\(21\) 96.0000 0.997567
\(22\) −100.000 −0.969094
\(23\) 20.0000 0.181317 0.0906584 0.995882i \(-0.471103\pi\)
0.0906584 + 0.995882i \(0.471103\pi\)
\(24\) −24.0000 −0.204124
\(25\) 0 0
\(26\) −26.0000 −0.196116
\(27\) 27.0000 0.192450
\(28\) 128.000 0.863919
\(29\) 82.0000 0.525070 0.262535 0.964923i \(-0.415442\pi\)
0.262535 + 0.964923i \(0.415442\pi\)
\(30\) 0 0
\(31\) −44.0000 −0.254924 −0.127462 0.991843i \(-0.540683\pi\)
−0.127462 + 0.991843i \(0.540683\pi\)
\(32\) −32.0000 −0.176777
\(33\) 150.000 0.791262
\(34\) −60.0000 −0.302645
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) 306.000 1.35962 0.679812 0.733386i \(-0.262061\pi\)
0.679812 + 0.733386i \(0.262061\pi\)
\(38\) 240.000 1.02456
\(39\) 39.0000 0.160128
\(40\) 0 0
\(41\) 108.000 0.411385 0.205692 0.978617i \(-0.434055\pi\)
0.205692 + 0.978617i \(0.434055\pi\)
\(42\) −192.000 −0.705387
\(43\) 356.000 1.26255 0.631273 0.775561i \(-0.282533\pi\)
0.631273 + 0.775561i \(0.282533\pi\)
\(44\) 200.000 0.685253
\(45\) 0 0
\(46\) −40.0000 −0.128210
\(47\) 178.000 0.552425 0.276212 0.961097i \(-0.410921\pi\)
0.276212 + 0.961097i \(0.410921\pi\)
\(48\) 48.0000 0.144338
\(49\) 681.000 1.98542
\(50\) 0 0
\(51\) 90.0000 0.247108
\(52\) 52.0000 0.138675
\(53\) −198.000 −0.513158 −0.256579 0.966523i \(-0.582595\pi\)
−0.256579 + 0.966523i \(0.582595\pi\)
\(54\) −54.0000 −0.136083
\(55\) 0 0
\(56\) −256.000 −0.610883
\(57\) −360.000 −0.836547
\(58\) −164.000 −0.371280
\(59\) 94.0000 0.207420 0.103710 0.994608i \(-0.466929\pi\)
0.103710 + 0.994608i \(0.466929\pi\)
\(60\) 0 0
\(61\) −62.0000 −0.130136 −0.0650679 0.997881i \(-0.520726\pi\)
−0.0650679 + 0.997881i \(0.520726\pi\)
\(62\) 88.0000 0.180258
\(63\) 288.000 0.575946
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −300.000 −0.559507
\(67\) 140.000 0.255279 0.127640 0.991821i \(-0.459260\pi\)
0.127640 + 0.991821i \(0.459260\pi\)
\(68\) 120.000 0.214002
\(69\) 60.0000 0.104683
\(70\) 0 0
\(71\) −778.000 −1.30045 −0.650223 0.759744i \(-0.725324\pi\)
−0.650223 + 0.759744i \(0.725324\pi\)
\(72\) −72.0000 −0.117851
\(73\) −62.0000 −0.0994048 −0.0497024 0.998764i \(-0.515827\pi\)
−0.0497024 + 0.998764i \(0.515827\pi\)
\(74\) −612.000 −0.961399
\(75\) 0 0
\(76\) −480.000 −0.724471
\(77\) 1600.00 2.36801
\(78\) −78.0000 −0.113228
\(79\) −1096.00 −1.56088 −0.780441 0.625230i \(-0.785005\pi\)
−0.780441 + 0.625230i \(0.785005\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −216.000 −0.290893
\(83\) 462.000 0.610977 0.305488 0.952196i \(-0.401180\pi\)
0.305488 + 0.952196i \(0.401180\pi\)
\(84\) 384.000 0.498784
\(85\) 0 0
\(86\) −712.000 −0.892755
\(87\) 246.000 0.303149
\(88\) −400.000 −0.484547
\(89\) 1224.00 1.45779 0.728897 0.684623i \(-0.240033\pi\)
0.728897 + 0.684623i \(0.240033\pi\)
\(90\) 0 0
\(91\) 416.000 0.479216
\(92\) 80.0000 0.0906584
\(93\) −132.000 −0.147180
\(94\) −356.000 −0.390623
\(95\) 0 0
\(96\) −96.0000 −0.102062
\(97\) −614.000 −0.642704 −0.321352 0.946960i \(-0.604137\pi\)
−0.321352 + 0.946960i \(0.604137\pi\)
\(98\) −1362.00 −1.40391
\(99\) 450.000 0.456835
\(100\) 0 0
\(101\) 1058.00 1.04233 0.521163 0.853457i \(-0.325498\pi\)
0.521163 + 0.853457i \(0.325498\pi\)
\(102\) −180.000 −0.174732
\(103\) −1768.00 −1.69132 −0.845661 0.533720i \(-0.820794\pi\)
−0.845661 + 0.533720i \(0.820794\pi\)
\(104\) −104.000 −0.0980581
\(105\) 0 0
\(106\) 396.000 0.362858
\(107\) 1808.00 1.63351 0.816757 0.576982i \(-0.195770\pi\)
0.816757 + 0.576982i \(0.195770\pi\)
\(108\) 108.000 0.0962250
\(109\) −1886.00 −1.65730 −0.828652 0.559765i \(-0.810891\pi\)
−0.828652 + 0.559765i \(0.810891\pi\)
\(110\) 0 0
\(111\) 918.000 0.784979
\(112\) 512.000 0.431959
\(113\) −1246.00 −1.03729 −0.518645 0.854990i \(-0.673563\pi\)
−0.518645 + 0.854990i \(0.673563\pi\)
\(114\) 720.000 0.591528
\(115\) 0 0
\(116\) 328.000 0.262535
\(117\) 117.000 0.0924500
\(118\) −188.000 −0.146668
\(119\) 960.000 0.739521
\(120\) 0 0
\(121\) 1169.00 0.878287
\(122\) 124.000 0.0920199
\(123\) 324.000 0.237513
\(124\) −176.000 −0.127462
\(125\) 0 0
\(126\) −576.000 −0.407255
\(127\) −1624.00 −1.13470 −0.567349 0.823477i \(-0.692031\pi\)
−0.567349 + 0.823477i \(0.692031\pi\)
\(128\) −128.000 −0.0883883
\(129\) 1068.00 0.728931
\(130\) 0 0
\(131\) −2072.00 −1.38192 −0.690960 0.722893i \(-0.742812\pi\)
−0.690960 + 0.722893i \(0.742812\pi\)
\(132\) 600.000 0.395631
\(133\) −3840.00 −2.50354
\(134\) −280.000 −0.180510
\(135\) 0 0
\(136\) −240.000 −0.151322
\(137\) 756.000 0.471456 0.235728 0.971819i \(-0.424253\pi\)
0.235728 + 0.971819i \(0.424253\pi\)
\(138\) −120.000 −0.0740223
\(139\) 172.000 0.104956 0.0524779 0.998622i \(-0.483288\pi\)
0.0524779 + 0.998622i \(0.483288\pi\)
\(140\) 0 0
\(141\) 534.000 0.318943
\(142\) 1556.00 0.919554
\(143\) 650.000 0.380110
\(144\) 144.000 0.0833333
\(145\) 0 0
\(146\) 124.000 0.0702898
\(147\) 2043.00 1.14628
\(148\) 1224.00 0.679812
\(149\) 1272.00 0.699371 0.349686 0.936867i \(-0.386288\pi\)
0.349686 + 0.936867i \(0.386288\pi\)
\(150\) 0 0
\(151\) 1404.00 0.756662 0.378331 0.925670i \(-0.376498\pi\)
0.378331 + 0.925670i \(0.376498\pi\)
\(152\) 960.000 0.512278
\(153\) 270.000 0.142668
\(154\) −3200.00 −1.67444
\(155\) 0 0
\(156\) 156.000 0.0800641
\(157\) 2170.00 1.10309 0.551544 0.834146i \(-0.314039\pi\)
0.551544 + 0.834146i \(0.314039\pi\)
\(158\) 2192.00 1.10371
\(159\) −594.000 −0.296272
\(160\) 0 0
\(161\) 640.000 0.313286
\(162\) −162.000 −0.0785674
\(163\) −248.000 −0.119171 −0.0595855 0.998223i \(-0.518978\pi\)
−0.0595855 + 0.998223i \(0.518978\pi\)
\(164\) 432.000 0.205692
\(165\) 0 0
\(166\) −924.000 −0.432026
\(167\) −102.000 −0.0472635 −0.0236317 0.999721i \(-0.507523\pi\)
−0.0236317 + 0.999721i \(0.507523\pi\)
\(168\) −768.000 −0.352693
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −1080.00 −0.482980
\(172\) 1424.00 0.631273
\(173\) −682.000 −0.299720 −0.149860 0.988707i \(-0.547882\pi\)
−0.149860 + 0.988707i \(0.547882\pi\)
\(174\) −492.000 −0.214359
\(175\) 0 0
\(176\) 800.000 0.342627
\(177\) 282.000 0.119754
\(178\) −2448.00 −1.03082
\(179\) −612.000 −0.255548 −0.127774 0.991803i \(-0.540783\pi\)
−0.127774 + 0.991803i \(0.540783\pi\)
\(180\) 0 0
\(181\) −66.0000 −0.0271035 −0.0135518 0.999908i \(-0.504314\pi\)
−0.0135518 + 0.999908i \(0.504314\pi\)
\(182\) −832.000 −0.338857
\(183\) −186.000 −0.0751340
\(184\) −160.000 −0.0641052
\(185\) 0 0
\(186\) 264.000 0.104072
\(187\) 1500.00 0.586582
\(188\) 712.000 0.276212
\(189\) 864.000 0.332522
\(190\) 0 0
\(191\) 608.000 0.230332 0.115166 0.993346i \(-0.463260\pi\)
0.115166 + 0.993346i \(0.463260\pi\)
\(192\) 192.000 0.0721688
\(193\) −1370.00 −0.510957 −0.255479 0.966815i \(-0.582233\pi\)
−0.255479 + 0.966815i \(0.582233\pi\)
\(194\) 1228.00 0.454460
\(195\) 0 0
\(196\) 2724.00 0.992711
\(197\) 4908.00 1.77503 0.887514 0.460781i \(-0.152431\pi\)
0.887514 + 0.460781i \(0.152431\pi\)
\(198\) −900.000 −0.323031
\(199\) −328.000 −0.116841 −0.0584204 0.998292i \(-0.518606\pi\)
−0.0584204 + 0.998292i \(0.518606\pi\)
\(200\) 0 0
\(201\) 420.000 0.147386
\(202\) −2116.00 −0.737036
\(203\) 2624.00 0.907235
\(204\) 360.000 0.123554
\(205\) 0 0
\(206\) 3536.00 1.19595
\(207\) 180.000 0.0604390
\(208\) 208.000 0.0693375
\(209\) −6000.00 −1.98578
\(210\) 0 0
\(211\) 1316.00 0.429371 0.214685 0.976683i \(-0.431127\pi\)
0.214685 + 0.976683i \(0.431127\pi\)
\(212\) −792.000 −0.256579
\(213\) −2334.00 −0.750812
\(214\) −3616.00 −1.15507
\(215\) 0 0
\(216\) −216.000 −0.0680414
\(217\) −1408.00 −0.440467
\(218\) 3772.00 1.17189
\(219\) −186.000 −0.0573914
\(220\) 0 0
\(221\) 390.000 0.118707
\(222\) −1836.00 −0.555064
\(223\) 1932.00 0.580163 0.290081 0.957002i \(-0.406318\pi\)
0.290081 + 0.957002i \(0.406318\pi\)
\(224\) −1024.00 −0.305441
\(225\) 0 0
\(226\) 2492.00 0.733475
\(227\) −4998.00 −1.46136 −0.730680 0.682720i \(-0.760797\pi\)
−0.730680 + 0.682720i \(0.760797\pi\)
\(228\) −1440.00 −0.418273
\(229\) −78.0000 −0.0225082 −0.0112541 0.999937i \(-0.503582\pi\)
−0.0112541 + 0.999937i \(0.503582\pi\)
\(230\) 0 0
\(231\) 4800.00 1.36717
\(232\) −656.000 −0.185640
\(233\) 1282.00 0.360458 0.180229 0.983625i \(-0.442316\pi\)
0.180229 + 0.983625i \(0.442316\pi\)
\(234\) −234.000 −0.0653720
\(235\) 0 0
\(236\) 376.000 0.103710
\(237\) −3288.00 −0.901175
\(238\) −1920.00 −0.522921
\(239\) 294.000 0.0795702 0.0397851 0.999208i \(-0.487333\pi\)
0.0397851 + 0.999208i \(0.487333\pi\)
\(240\) 0 0
\(241\) −4962.00 −1.32627 −0.663134 0.748501i \(-0.730774\pi\)
−0.663134 + 0.748501i \(0.730774\pi\)
\(242\) −2338.00 −0.621043
\(243\) 243.000 0.0641500
\(244\) −248.000 −0.0650679
\(245\) 0 0
\(246\) −648.000 −0.167947
\(247\) −1560.00 −0.401864
\(248\) 352.000 0.0901291
\(249\) 1386.00 0.352748
\(250\) 0 0
\(251\) 744.000 0.187095 0.0935475 0.995615i \(-0.470179\pi\)
0.0935475 + 0.995615i \(0.470179\pi\)
\(252\) 1152.00 0.287973
\(253\) 1000.00 0.248496
\(254\) 3248.00 0.802353
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1026.00 0.249028 0.124514 0.992218i \(-0.460263\pi\)
0.124514 + 0.992218i \(0.460263\pi\)
\(258\) −2136.00 −0.515432
\(259\) 9792.00 2.34921
\(260\) 0 0
\(261\) 738.000 0.175023
\(262\) 4144.00 0.977165
\(263\) 5532.00 1.29703 0.648513 0.761204i \(-0.275391\pi\)
0.648513 + 0.761204i \(0.275391\pi\)
\(264\) −1200.00 −0.279753
\(265\) 0 0
\(266\) 7680.00 1.77027
\(267\) 3672.00 0.841658
\(268\) 560.000 0.127640
\(269\) −3534.00 −0.801010 −0.400505 0.916294i \(-0.631165\pi\)
−0.400505 + 0.916294i \(0.631165\pi\)
\(270\) 0 0
\(271\) 2392.00 0.536176 0.268088 0.963394i \(-0.413608\pi\)
0.268088 + 0.963394i \(0.413608\pi\)
\(272\) 480.000 0.107001
\(273\) 1248.00 0.276675
\(274\) −1512.00 −0.333370
\(275\) 0 0
\(276\) 240.000 0.0523417
\(277\) −6102.00 −1.32359 −0.661794 0.749686i \(-0.730204\pi\)
−0.661794 + 0.749686i \(0.730204\pi\)
\(278\) −344.000 −0.0742149
\(279\) −396.000 −0.0849746
\(280\) 0 0
\(281\) −7540.00 −1.60071 −0.800354 0.599528i \(-0.795355\pi\)
−0.800354 + 0.599528i \(0.795355\pi\)
\(282\) −1068.00 −0.225527
\(283\) 2756.00 0.578895 0.289447 0.957194i \(-0.406528\pi\)
0.289447 + 0.957194i \(0.406528\pi\)
\(284\) −3112.00 −0.650223
\(285\) 0 0
\(286\) −1300.00 −0.268778
\(287\) 3456.00 0.710806
\(288\) −288.000 −0.0589256
\(289\) −4013.00 −0.816813
\(290\) 0 0
\(291\) −1842.00 −0.371065
\(292\) −248.000 −0.0497024
\(293\) −968.000 −0.193007 −0.0965037 0.995333i \(-0.530766\pi\)
−0.0965037 + 0.995333i \(0.530766\pi\)
\(294\) −4086.00 −0.810545
\(295\) 0 0
\(296\) −2448.00 −0.480700
\(297\) 1350.00 0.263754
\(298\) −2544.00 −0.494530
\(299\) 260.000 0.0502883
\(300\) 0 0
\(301\) 11392.0 2.18147
\(302\) −2808.00 −0.535041
\(303\) 3174.00 0.601787
\(304\) −1920.00 −0.362235
\(305\) 0 0
\(306\) −540.000 −0.100882
\(307\) 6436.00 1.19649 0.598244 0.801314i \(-0.295865\pi\)
0.598244 + 0.801314i \(0.295865\pi\)
\(308\) 6400.00 1.18401
\(309\) −5304.00 −0.976485
\(310\) 0 0
\(311\) 7932.00 1.44625 0.723123 0.690719i \(-0.242706\pi\)
0.723123 + 0.690719i \(0.242706\pi\)
\(312\) −312.000 −0.0566139
\(313\) −10358.0 −1.87051 −0.935254 0.353978i \(-0.884829\pi\)
−0.935254 + 0.353978i \(0.884829\pi\)
\(314\) −4340.00 −0.780001
\(315\) 0 0
\(316\) −4384.00 −0.780441
\(317\) 2820.00 0.499643 0.249822 0.968292i \(-0.419628\pi\)
0.249822 + 0.968292i \(0.419628\pi\)
\(318\) 1188.00 0.209496
\(319\) 4100.00 0.719611
\(320\) 0 0
\(321\) 5424.00 0.943110
\(322\) −1280.00 −0.221527
\(323\) −3600.00 −0.620153
\(324\) 324.000 0.0555556
\(325\) 0 0
\(326\) 496.000 0.0842666
\(327\) −5658.00 −0.956844
\(328\) −864.000 −0.145446
\(329\) 5696.00 0.954500
\(330\) 0 0
\(331\) −4180.00 −0.694120 −0.347060 0.937843i \(-0.612820\pi\)
−0.347060 + 0.937843i \(0.612820\pi\)
\(332\) 1848.00 0.305488
\(333\) 2754.00 0.453208
\(334\) 204.000 0.0334203
\(335\) 0 0
\(336\) 1536.00 0.249392
\(337\) 5026.00 0.812414 0.406207 0.913781i \(-0.366851\pi\)
0.406207 + 0.913781i \(0.366851\pi\)
\(338\) −338.000 −0.0543928
\(339\) −3738.00 −0.598880
\(340\) 0 0
\(341\) −2200.00 −0.349374
\(342\) 2160.00 0.341519
\(343\) 10816.0 1.70265
\(344\) −2848.00 −0.446378
\(345\) 0 0
\(346\) 1364.00 0.211934
\(347\) 7332.00 1.13430 0.567150 0.823614i \(-0.308046\pi\)
0.567150 + 0.823614i \(0.308046\pi\)
\(348\) 984.000 0.151575
\(349\) −8162.00 −1.25187 −0.625934 0.779876i \(-0.715282\pi\)
−0.625934 + 0.779876i \(0.715282\pi\)
\(350\) 0 0
\(351\) 351.000 0.0533761
\(352\) −1600.00 −0.242274
\(353\) −1244.00 −0.187568 −0.0937839 0.995593i \(-0.529896\pi\)
−0.0937839 + 0.995593i \(0.529896\pi\)
\(354\) −564.000 −0.0846787
\(355\) 0 0
\(356\) 4896.00 0.728897
\(357\) 2880.00 0.426963
\(358\) 1224.00 0.180699
\(359\) 9558.00 1.40516 0.702579 0.711605i \(-0.252032\pi\)
0.702579 + 0.711605i \(0.252032\pi\)
\(360\) 0 0
\(361\) 7541.00 1.09943
\(362\) 132.000 0.0191651
\(363\) 3507.00 0.507079
\(364\) 1664.00 0.239608
\(365\) 0 0
\(366\) 372.000 0.0531277
\(367\) 11032.0 1.56912 0.784558 0.620055i \(-0.212890\pi\)
0.784558 + 0.620055i \(0.212890\pi\)
\(368\) 320.000 0.0453292
\(369\) 972.000 0.137128
\(370\) 0 0
\(371\) −6336.00 −0.886654
\(372\) −528.000 −0.0735901
\(373\) −5474.00 −0.759874 −0.379937 0.925012i \(-0.624054\pi\)
−0.379937 + 0.925012i \(0.624054\pi\)
\(374\) −3000.00 −0.414776
\(375\) 0 0
\(376\) −1424.00 −0.195312
\(377\) 1066.00 0.145628
\(378\) −1728.00 −0.235129
\(379\) −7040.00 −0.954144 −0.477072 0.878864i \(-0.658302\pi\)
−0.477072 + 0.878864i \(0.658302\pi\)
\(380\) 0 0
\(381\) −4872.00 −0.655118
\(382\) −1216.00 −0.162869
\(383\) 1830.00 0.244148 0.122074 0.992521i \(-0.461045\pi\)
0.122074 + 0.992521i \(0.461045\pi\)
\(384\) −384.000 −0.0510310
\(385\) 0 0
\(386\) 2740.00 0.361301
\(387\) 3204.00 0.420849
\(388\) −2456.00 −0.321352
\(389\) 10158.0 1.32399 0.661994 0.749509i \(-0.269711\pi\)
0.661994 + 0.749509i \(0.269711\pi\)
\(390\) 0 0
\(391\) 600.000 0.0776044
\(392\) −5448.00 −0.701953
\(393\) −6216.00 −0.797852
\(394\) −9816.00 −1.25513
\(395\) 0 0
\(396\) 1800.00 0.228418
\(397\) 12658.0 1.60022 0.800109 0.599854i \(-0.204775\pi\)
0.800109 + 0.599854i \(0.204775\pi\)
\(398\) 656.000 0.0826189
\(399\) −11520.0 −1.44542
\(400\) 0 0
\(401\) 15720.0 1.95765 0.978827 0.204689i \(-0.0656182\pi\)
0.978827 + 0.204689i \(0.0656182\pi\)
\(402\) −840.000 −0.104217
\(403\) −572.000 −0.0707031
\(404\) 4232.00 0.521163
\(405\) 0 0
\(406\) −5248.00 −0.641512
\(407\) 15300.0 1.86337
\(408\) −720.000 −0.0873660
\(409\) 7654.00 0.925345 0.462672 0.886529i \(-0.346891\pi\)
0.462672 + 0.886529i \(0.346891\pi\)
\(410\) 0 0
\(411\) 2268.00 0.272195
\(412\) −7072.00 −0.845661
\(413\) 3008.00 0.358387
\(414\) −360.000 −0.0427368
\(415\) 0 0
\(416\) −416.000 −0.0490290
\(417\) 516.000 0.0605962
\(418\) 12000.0 1.40416
\(419\) −1848.00 −0.215467 −0.107734 0.994180i \(-0.534359\pi\)
−0.107734 + 0.994180i \(0.534359\pi\)
\(420\) 0 0
\(421\) −12542.0 −1.45192 −0.725962 0.687735i \(-0.758605\pi\)
−0.725962 + 0.687735i \(0.758605\pi\)
\(422\) −2632.00 −0.303611
\(423\) 1602.00 0.184142
\(424\) 1584.00 0.181429
\(425\) 0 0
\(426\) 4668.00 0.530905
\(427\) −1984.00 −0.224854
\(428\) 7232.00 0.816757
\(429\) 1950.00 0.219457
\(430\) 0 0
\(431\) −5238.00 −0.585396 −0.292698 0.956205i \(-0.594553\pi\)
−0.292698 + 0.956205i \(0.594553\pi\)
\(432\) 432.000 0.0481125
\(433\) 8258.00 0.916522 0.458261 0.888818i \(-0.348472\pi\)
0.458261 + 0.888818i \(0.348472\pi\)
\(434\) 2816.00 0.311457
\(435\) 0 0
\(436\) −7544.00 −0.828652
\(437\) −2400.00 −0.262718
\(438\) 372.000 0.0405818
\(439\) −6304.00 −0.685361 −0.342681 0.939452i \(-0.611335\pi\)
−0.342681 + 0.939452i \(0.611335\pi\)
\(440\) 0 0
\(441\) 6129.00 0.661808
\(442\) −780.000 −0.0839385
\(443\) −12744.0 −1.36678 −0.683392 0.730051i \(-0.739496\pi\)
−0.683392 + 0.730051i \(0.739496\pi\)
\(444\) 3672.00 0.392490
\(445\) 0 0
\(446\) −3864.00 −0.410237
\(447\) 3816.00 0.403782
\(448\) 2048.00 0.215980
\(449\) −11776.0 −1.23774 −0.618868 0.785495i \(-0.712409\pi\)
−0.618868 + 0.785495i \(0.712409\pi\)
\(450\) 0 0
\(451\) 5400.00 0.563805
\(452\) −4984.00 −0.518645
\(453\) 4212.00 0.436859
\(454\) 9996.00 1.03334
\(455\) 0 0
\(456\) 2880.00 0.295764
\(457\) −2134.00 −0.218434 −0.109217 0.994018i \(-0.534834\pi\)
−0.109217 + 0.994018i \(0.534834\pi\)
\(458\) 156.000 0.0159157
\(459\) 810.000 0.0823694
\(460\) 0 0
\(461\) 2724.00 0.275205 0.137602 0.990488i \(-0.456060\pi\)
0.137602 + 0.990488i \(0.456060\pi\)
\(462\) −9600.00 −0.966737
\(463\) 5648.00 0.566922 0.283461 0.958984i \(-0.408517\pi\)
0.283461 + 0.958984i \(0.408517\pi\)
\(464\) 1312.00 0.131267
\(465\) 0 0
\(466\) −2564.00 −0.254882
\(467\) 18224.0 1.80579 0.902897 0.429856i \(-0.141436\pi\)
0.902897 + 0.429856i \(0.141436\pi\)
\(468\) 468.000 0.0462250
\(469\) 4480.00 0.441081
\(470\) 0 0
\(471\) 6510.00 0.636868
\(472\) −752.000 −0.0733339
\(473\) 17800.0 1.73033
\(474\) 6576.00 0.637227
\(475\) 0 0
\(476\) 3840.00 0.369761
\(477\) −1782.00 −0.171053
\(478\) −588.000 −0.0562646
\(479\) 9066.00 0.864794 0.432397 0.901683i \(-0.357668\pi\)
0.432397 + 0.901683i \(0.357668\pi\)
\(480\) 0 0
\(481\) 3978.00 0.377092
\(482\) 9924.00 0.937813
\(483\) 1920.00 0.180876
\(484\) 4676.00 0.439144
\(485\) 0 0
\(486\) −486.000 −0.0453609
\(487\) −8948.00 −0.832593 −0.416296 0.909229i \(-0.636672\pi\)
−0.416296 + 0.909229i \(0.636672\pi\)
\(488\) 496.000 0.0460100
\(489\) −744.000 −0.0688034
\(490\) 0 0
\(491\) 8720.00 0.801483 0.400741 0.916191i \(-0.368753\pi\)
0.400741 + 0.916191i \(0.368753\pi\)
\(492\) 1296.00 0.118756
\(493\) 2460.00 0.224732
\(494\) 3120.00 0.284161
\(495\) 0 0
\(496\) −704.000 −0.0637309
\(497\) −24896.0 −2.24696
\(498\) −2772.00 −0.249430
\(499\) 6604.00 0.592456 0.296228 0.955117i \(-0.404271\pi\)
0.296228 + 0.955117i \(0.404271\pi\)
\(500\) 0 0
\(501\) −306.000 −0.0272876
\(502\) −1488.00 −0.132296
\(503\) −3404.00 −0.301743 −0.150872 0.988553i \(-0.548208\pi\)
−0.150872 + 0.988553i \(0.548208\pi\)
\(504\) −2304.00 −0.203628
\(505\) 0 0
\(506\) −2000.00 −0.175713
\(507\) 507.000 0.0444116
\(508\) −6496.00 −0.567349
\(509\) −76.0000 −0.00661815 −0.00330908 0.999995i \(-0.501053\pi\)
−0.00330908 + 0.999995i \(0.501053\pi\)
\(510\) 0 0
\(511\) −1984.00 −0.171755
\(512\) −512.000 −0.0441942
\(513\) −3240.00 −0.278849
\(514\) −2052.00 −0.176089
\(515\) 0 0
\(516\) 4272.00 0.364466
\(517\) 8900.00 0.757102
\(518\) −19584.0 −1.66114
\(519\) −2046.00 −0.173043
\(520\) 0 0
\(521\) 12054.0 1.01362 0.506809 0.862058i \(-0.330825\pi\)
0.506809 + 0.862058i \(0.330825\pi\)
\(522\) −1476.00 −0.123760
\(523\) −276.000 −0.0230758 −0.0115379 0.999933i \(-0.503673\pi\)
−0.0115379 + 0.999933i \(0.503673\pi\)
\(524\) −8288.00 −0.690960
\(525\) 0 0
\(526\) −11064.0 −0.917136
\(527\) −1320.00 −0.109108
\(528\) 2400.00 0.197816
\(529\) −11767.0 −0.967124
\(530\) 0 0
\(531\) 846.000 0.0691399
\(532\) −15360.0 −1.25177
\(533\) 1404.00 0.114098
\(534\) −7344.00 −0.595142
\(535\) 0 0
\(536\) −1120.00 −0.0902549
\(537\) −1836.00 −0.147540
\(538\) 7068.00 0.566400
\(539\) 34050.0 2.72103
\(540\) 0 0
\(541\) 13778.0 1.09494 0.547470 0.836825i \(-0.315591\pi\)
0.547470 + 0.836825i \(0.315591\pi\)
\(542\) −4784.00 −0.379134
\(543\) −198.000 −0.0156482
\(544\) −960.000 −0.0756611
\(545\) 0 0
\(546\) −2496.00 −0.195639
\(547\) 10844.0 0.847634 0.423817 0.905748i \(-0.360690\pi\)
0.423817 + 0.905748i \(0.360690\pi\)
\(548\) 3024.00 0.235728
\(549\) −558.000 −0.0433786
\(550\) 0 0
\(551\) −9840.00 −0.760795
\(552\) −480.000 −0.0370112
\(553\) −35072.0 −2.69695
\(554\) 12204.0 0.935917
\(555\) 0 0
\(556\) 688.000 0.0524779
\(557\) −20544.0 −1.56280 −0.781398 0.624033i \(-0.785493\pi\)
−0.781398 + 0.624033i \(0.785493\pi\)
\(558\) 792.000 0.0600861
\(559\) 4628.00 0.350167
\(560\) 0 0
\(561\) 4500.00 0.338663
\(562\) 15080.0 1.13187
\(563\) −6988.00 −0.523107 −0.261553 0.965189i \(-0.584235\pi\)
−0.261553 + 0.965189i \(0.584235\pi\)
\(564\) 2136.00 0.159471
\(565\) 0 0
\(566\) −5512.00 −0.409340
\(567\) 2592.00 0.191982
\(568\) 6224.00 0.459777
\(569\) −706.000 −0.0520159 −0.0260080 0.999662i \(-0.508280\pi\)
−0.0260080 + 0.999662i \(0.508280\pi\)
\(570\) 0 0
\(571\) −17532.0 −1.28492 −0.642462 0.766318i \(-0.722087\pi\)
−0.642462 + 0.766318i \(0.722087\pi\)
\(572\) 2600.00 0.190055
\(573\) 1824.00 0.132982
\(574\) −6912.00 −0.502616
\(575\) 0 0
\(576\) 576.000 0.0416667
\(577\) 14814.0 1.06883 0.534415 0.845222i \(-0.320532\pi\)
0.534415 + 0.845222i \(0.320532\pi\)
\(578\) 8026.00 0.577574
\(579\) −4110.00 −0.295001
\(580\) 0 0
\(581\) 14784.0 1.05567
\(582\) 3684.00 0.262383
\(583\) −9900.00 −0.703287
\(584\) 496.000 0.0351449
\(585\) 0 0
\(586\) 1936.00 0.136477
\(587\) −14170.0 −0.996352 −0.498176 0.867076i \(-0.665997\pi\)
−0.498176 + 0.867076i \(0.665997\pi\)
\(588\) 8172.00 0.573142
\(589\) 5280.00 0.369369
\(590\) 0 0
\(591\) 14724.0 1.02481
\(592\) 4896.00 0.339906
\(593\) 11744.0 0.813269 0.406634 0.913591i \(-0.366702\pi\)
0.406634 + 0.913591i \(0.366702\pi\)
\(594\) −2700.00 −0.186502
\(595\) 0 0
\(596\) 5088.00 0.349686
\(597\) −984.000 −0.0674580
\(598\) −520.000 −0.0355592
\(599\) −15076.0 −1.02836 −0.514181 0.857682i \(-0.671904\pi\)
−0.514181 + 0.857682i \(0.671904\pi\)
\(600\) 0 0
\(601\) 20230.0 1.37304 0.686522 0.727109i \(-0.259137\pi\)
0.686522 + 0.727109i \(0.259137\pi\)
\(602\) −22784.0 −1.54254
\(603\) 1260.00 0.0850931
\(604\) 5616.00 0.378331
\(605\) 0 0
\(606\) −6348.00 −0.425528
\(607\) 28056.0 1.87604 0.938021 0.346577i \(-0.112656\pi\)
0.938021 + 0.346577i \(0.112656\pi\)
\(608\) 3840.00 0.256139
\(609\) 7872.00 0.523792
\(610\) 0 0
\(611\) 2314.00 0.153215
\(612\) 1080.00 0.0713340
\(613\) −27446.0 −1.80837 −0.904187 0.427136i \(-0.859522\pi\)
−0.904187 + 0.427136i \(0.859522\pi\)
\(614\) −12872.0 −0.846045
\(615\) 0 0
\(616\) −12800.0 −0.837219
\(617\) −8804.00 −0.574450 −0.287225 0.957863i \(-0.592733\pi\)
−0.287225 + 0.957863i \(0.592733\pi\)
\(618\) 10608.0 0.690480
\(619\) 3508.00 0.227784 0.113892 0.993493i \(-0.463668\pi\)
0.113892 + 0.993493i \(0.463668\pi\)
\(620\) 0 0
\(621\) 540.000 0.0348945
\(622\) −15864.0 −1.02265
\(623\) 39168.0 2.51883
\(624\) 624.000 0.0400320
\(625\) 0 0
\(626\) 20716.0 1.32265
\(627\) −18000.0 −1.14649
\(628\) 8680.00 0.551544
\(629\) 9180.00 0.581925
\(630\) 0 0
\(631\) 22084.0 1.39326 0.696632 0.717428i \(-0.254681\pi\)
0.696632 + 0.717428i \(0.254681\pi\)
\(632\) 8768.00 0.551855
\(633\) 3948.00 0.247897
\(634\) −5640.00 −0.353301
\(635\) 0 0
\(636\) −2376.00 −0.148136
\(637\) 8853.00 0.550657
\(638\) −8200.00 −0.508842
\(639\) −7002.00 −0.433482
\(640\) 0 0
\(641\) −7342.00 −0.452405 −0.226202 0.974080i \(-0.572631\pi\)
−0.226202 + 0.974080i \(0.572631\pi\)
\(642\) −10848.0 −0.666879
\(643\) −2996.00 −0.183749 −0.0918746 0.995771i \(-0.529286\pi\)
−0.0918746 + 0.995771i \(0.529286\pi\)
\(644\) 2560.00 0.156643
\(645\) 0 0
\(646\) 7200.00 0.438514
\(647\) −9344.00 −0.567775 −0.283888 0.958858i \(-0.591624\pi\)
−0.283888 + 0.958858i \(0.591624\pi\)
\(648\) −648.000 −0.0392837
\(649\) 4700.00 0.284270
\(650\) 0 0
\(651\) −4224.00 −0.254304
\(652\) −992.000 −0.0595855
\(653\) 16686.0 0.999960 0.499980 0.866037i \(-0.333341\pi\)
0.499980 + 0.866037i \(0.333341\pi\)
\(654\) 11316.0 0.676591
\(655\) 0 0
\(656\) 1728.00 0.102846
\(657\) −558.000 −0.0331349
\(658\) −11392.0 −0.674934
\(659\) 31356.0 1.85350 0.926750 0.375679i \(-0.122590\pi\)
0.926750 + 0.375679i \(0.122590\pi\)
\(660\) 0 0
\(661\) 590.000 0.0347176 0.0173588 0.999849i \(-0.494474\pi\)
0.0173588 + 0.999849i \(0.494474\pi\)
\(662\) 8360.00 0.490817
\(663\) 1170.00 0.0685355
\(664\) −3696.00 −0.216013
\(665\) 0 0
\(666\) −5508.00 −0.320466
\(667\) 1640.00 0.0952040
\(668\) −408.000 −0.0236317
\(669\) 5796.00 0.334957
\(670\) 0 0
\(671\) −3100.00 −0.178352
\(672\) −3072.00 −0.176347
\(673\) −5938.00 −0.340109 −0.170054 0.985435i \(-0.554394\pi\)
−0.170054 + 0.985435i \(0.554394\pi\)
\(674\) −10052.0 −0.574464
\(675\) 0 0
\(676\) 676.000 0.0384615
\(677\) −9486.00 −0.538518 −0.269259 0.963068i \(-0.586779\pi\)
−0.269259 + 0.963068i \(0.586779\pi\)
\(678\) 7476.00 0.423472
\(679\) −19648.0 −1.11049
\(680\) 0 0
\(681\) −14994.0 −0.843717
\(682\) 4400.00 0.247045
\(683\) −26162.0 −1.46568 −0.732841 0.680400i \(-0.761806\pi\)
−0.732841 + 0.680400i \(0.761806\pi\)
\(684\) −4320.00 −0.241490
\(685\) 0 0
\(686\) −21632.0 −1.20396
\(687\) −234.000 −0.0129951
\(688\) 5696.00 0.315637
\(689\) −2574.00 −0.142325
\(690\) 0 0
\(691\) −17348.0 −0.955064 −0.477532 0.878614i \(-0.658468\pi\)
−0.477532 + 0.878614i \(0.658468\pi\)
\(692\) −2728.00 −0.149860
\(693\) 14400.0 0.789337
\(694\) −14664.0 −0.802072
\(695\) 0 0
\(696\) −1968.00 −0.107179
\(697\) 3240.00 0.176074
\(698\) 16324.0 0.885204
\(699\) 3846.00 0.208110
\(700\) 0 0
\(701\) 30.0000 0.00161638 0.000808191 1.00000i \(-0.499743\pi\)
0.000808191 1.00000i \(0.499743\pi\)
\(702\) −702.000 −0.0377426
\(703\) −36720.0 −1.97002
\(704\) 3200.00 0.171313
\(705\) 0 0
\(706\) 2488.00 0.132630
\(707\) 33856.0 1.80097
\(708\) 1128.00 0.0598769
\(709\) 31466.0 1.66676 0.833378 0.552703i \(-0.186404\pi\)
0.833378 + 0.552703i \(0.186404\pi\)
\(710\) 0 0
\(711\) −9864.00 −0.520294
\(712\) −9792.00 −0.515408
\(713\) −880.000 −0.0462220
\(714\) −5760.00 −0.301908
\(715\) 0 0
\(716\) −2448.00 −0.127774
\(717\) 882.000 0.0459399
\(718\) −19116.0 −0.993597
\(719\) −28892.0 −1.49859 −0.749297 0.662234i \(-0.769609\pi\)
−0.749297 + 0.662234i \(0.769609\pi\)
\(720\) 0 0
\(721\) −56576.0 −2.92233
\(722\) −15082.0 −0.777415
\(723\) −14886.0 −0.765721
\(724\) −264.000 −0.0135518
\(725\) 0 0
\(726\) −7014.00 −0.358559
\(727\) −13384.0 −0.682786 −0.341393 0.939921i \(-0.610899\pi\)
−0.341393 + 0.939921i \(0.610899\pi\)
\(728\) −3328.00 −0.169428
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 10680.0 0.540375
\(732\) −744.000 −0.0375670
\(733\) −7130.00 −0.359280 −0.179640 0.983732i \(-0.557493\pi\)
−0.179640 + 0.983732i \(0.557493\pi\)
\(734\) −22064.0 −1.10953
\(735\) 0 0
\(736\) −640.000 −0.0320526
\(737\) 7000.00 0.349862
\(738\) −1944.00 −0.0969643
\(739\) −29268.0 −1.45689 −0.728444 0.685105i \(-0.759756\pi\)
−0.728444 + 0.685105i \(0.759756\pi\)
\(740\) 0 0
\(741\) −4680.00 −0.232016
\(742\) 12672.0 0.626959
\(743\) 9898.00 0.488725 0.244362 0.969684i \(-0.421421\pi\)
0.244362 + 0.969684i \(0.421421\pi\)
\(744\) 1056.00 0.0520361
\(745\) 0 0
\(746\) 10948.0 0.537312
\(747\) 4158.00 0.203659
\(748\) 6000.00 0.293291
\(749\) 57856.0 2.82245
\(750\) 0 0
\(751\) −15120.0 −0.734669 −0.367335 0.930089i \(-0.619730\pi\)
−0.367335 + 0.930089i \(0.619730\pi\)
\(752\) 2848.00 0.138106
\(753\) 2232.00 0.108019
\(754\) −2132.00 −0.102975
\(755\) 0 0
\(756\) 3456.00 0.166261
\(757\) 5454.00 0.261861 0.130931 0.991392i \(-0.458203\pi\)
0.130931 + 0.991392i \(0.458203\pi\)
\(758\) 14080.0 0.674682
\(759\) 3000.00 0.143469
\(760\) 0 0
\(761\) −11988.0 −0.571044 −0.285522 0.958372i \(-0.592167\pi\)
−0.285522 + 0.958372i \(0.592167\pi\)
\(762\) 9744.00 0.463239
\(763\) −60352.0 −2.86355
\(764\) 2432.00 0.115166
\(765\) 0 0
\(766\) −3660.00 −0.172639
\(767\) 1222.00 0.0575279
\(768\) 768.000 0.0360844
\(769\) 1338.00 0.0627432 0.0313716 0.999508i \(-0.490012\pi\)
0.0313716 + 0.999508i \(0.490012\pi\)
\(770\) 0 0
\(771\) 3078.00 0.143776
\(772\) −5480.00 −0.255479
\(773\) 14408.0 0.670401 0.335200 0.942147i \(-0.391196\pi\)
0.335200 + 0.942147i \(0.391196\pi\)
\(774\) −6408.00 −0.297585
\(775\) 0 0
\(776\) 4912.00 0.227230
\(777\) 29376.0 1.35632
\(778\) −20316.0 −0.936200
\(779\) −12960.0 −0.596072
\(780\) 0 0
\(781\) −38900.0 −1.78227
\(782\) −1200.00 −0.0548746
\(783\) 2214.00 0.101050
\(784\) 10896.0 0.496356
\(785\) 0 0
\(786\) 12432.0 0.564166
\(787\) 10660.0 0.482831 0.241415 0.970422i \(-0.422388\pi\)
0.241415 + 0.970422i \(0.422388\pi\)
\(788\) 19632.0 0.887514
\(789\) 16596.0 0.748838
\(790\) 0 0
\(791\) −39872.0 −1.79227
\(792\) −3600.00 −0.161516
\(793\) −806.000 −0.0360932
\(794\) −25316.0 −1.13153
\(795\) 0 0
\(796\) −1312.00 −0.0584204
\(797\) −1974.00 −0.0877323 −0.0438662 0.999037i \(-0.513968\pi\)
−0.0438662 + 0.999037i \(0.513968\pi\)
\(798\) 23040.0 1.02206
\(799\) 5340.00 0.236440
\(800\) 0 0
\(801\) 11016.0 0.485932
\(802\) −31440.0 −1.38427
\(803\) −3100.00 −0.136235
\(804\) 1680.00 0.0736928
\(805\) 0 0
\(806\) 1144.00 0.0499946
\(807\) −10602.0 −0.462464
\(808\) −8464.00 −0.368518
\(809\) 31734.0 1.37912 0.689560 0.724229i \(-0.257804\pi\)
0.689560 + 0.724229i \(0.257804\pi\)
\(810\) 0 0
\(811\) −38824.0 −1.68100 −0.840502 0.541808i \(-0.817740\pi\)
−0.840502 + 0.541808i \(0.817740\pi\)
\(812\) 10496.0 0.453617
\(813\) 7176.00 0.309561
\(814\) −30600.0 −1.31760
\(815\) 0 0
\(816\) 1440.00 0.0617771
\(817\) −42720.0 −1.82936
\(818\) −15308.0 −0.654317
\(819\) 3744.00 0.159739
\(820\) 0 0
\(821\) −16736.0 −0.711438 −0.355719 0.934593i \(-0.615764\pi\)
−0.355719 + 0.934593i \(0.615764\pi\)
\(822\) −4536.00 −0.192471
\(823\) −42096.0 −1.78296 −0.891479 0.453062i \(-0.850332\pi\)
−0.891479 + 0.453062i \(0.850332\pi\)
\(824\) 14144.0 0.597973
\(825\) 0 0
\(826\) −6016.00 −0.253418
\(827\) −24858.0 −1.04522 −0.522610 0.852572i \(-0.675042\pi\)
−0.522610 + 0.852572i \(0.675042\pi\)
\(828\) 720.000 0.0302195
\(829\) 922.000 0.0386277 0.0193139 0.999813i \(-0.493852\pi\)
0.0193139 + 0.999813i \(0.493852\pi\)
\(830\) 0 0
\(831\) −18306.0 −0.764173
\(832\) 832.000 0.0346688
\(833\) 20430.0 0.849769
\(834\) −1032.00 −0.0428480
\(835\) 0 0
\(836\) −24000.0 −0.992892
\(837\) −1188.00 −0.0490601
\(838\) 3696.00 0.152358
\(839\) −14294.0 −0.588181 −0.294090 0.955778i \(-0.595017\pi\)
−0.294090 + 0.955778i \(0.595017\pi\)
\(840\) 0 0
\(841\) −17665.0 −0.724302
\(842\) 25084.0 1.02666
\(843\) −22620.0 −0.924169
\(844\) 5264.00 0.214685
\(845\) 0 0
\(846\) −3204.00 −0.130208
\(847\) 37408.0 1.51754
\(848\) −3168.00 −0.128290
\(849\) 8268.00 0.334225
\(850\) 0 0
\(851\) 6120.00 0.246523
\(852\) −9336.00 −0.375406
\(853\) −37966.0 −1.52395 −0.761976 0.647605i \(-0.775771\pi\)
−0.761976 + 0.647605i \(0.775771\pi\)
\(854\) 3968.00 0.158996
\(855\) 0 0
\(856\) −14464.0 −0.577534
\(857\) −39038.0 −1.55602 −0.778012 0.628249i \(-0.783772\pi\)
−0.778012 + 0.628249i \(0.783772\pi\)
\(858\) −3900.00 −0.155179
\(859\) 20564.0 0.816804 0.408402 0.912802i \(-0.366086\pi\)
0.408402 + 0.912802i \(0.366086\pi\)
\(860\) 0 0
\(861\) 10368.0 0.410384
\(862\) 10476.0 0.413937
\(863\) −39866.0 −1.57248 −0.786242 0.617918i \(-0.787976\pi\)
−0.786242 + 0.617918i \(0.787976\pi\)
\(864\) −864.000 −0.0340207
\(865\) 0 0
\(866\) −16516.0 −0.648079
\(867\) −12039.0 −0.471587
\(868\) −5632.00 −0.220233
\(869\) −54800.0 −2.13920
\(870\) 0 0
\(871\) 1820.00 0.0708018
\(872\) 15088.0 0.585945
\(873\) −5526.00 −0.214235
\(874\) 4800.00 0.185769
\(875\) 0 0
\(876\) −744.000 −0.0286957
\(877\) −30990.0 −1.19322 −0.596612 0.802530i \(-0.703487\pi\)
−0.596612 + 0.802530i \(0.703487\pi\)
\(878\) 12608.0 0.484623
\(879\) −2904.00 −0.111433
\(880\) 0 0
\(881\) −4458.00 −0.170481 −0.0852405 0.996360i \(-0.527166\pi\)
−0.0852405 + 0.996360i \(0.527166\pi\)
\(882\) −12258.0 −0.467969
\(883\) 3164.00 0.120586 0.0602928 0.998181i \(-0.480797\pi\)
0.0602928 + 0.998181i \(0.480797\pi\)
\(884\) 1560.00 0.0593535
\(885\) 0 0
\(886\) 25488.0 0.966463
\(887\) 32512.0 1.23072 0.615359 0.788247i \(-0.289011\pi\)
0.615359 + 0.788247i \(0.289011\pi\)
\(888\) −7344.00 −0.277532
\(889\) −51968.0 −1.96057
\(890\) 0 0
\(891\) 4050.00 0.152278
\(892\) 7728.00 0.290081
\(893\) −21360.0 −0.800431
\(894\) −7632.00 −0.285517
\(895\) 0 0
\(896\) −4096.00 −0.152721
\(897\) 780.000 0.0290339
\(898\) 23552.0 0.875212
\(899\) −3608.00 −0.133853
\(900\) 0 0
\(901\) −5940.00 −0.219634
\(902\) −10800.0 −0.398670
\(903\) 34176.0 1.25948
\(904\) 9968.00 0.366738
\(905\) 0 0
\(906\) −8424.00 −0.308906
\(907\) −10500.0 −0.384396 −0.192198 0.981356i \(-0.561562\pi\)
−0.192198 + 0.981356i \(0.561562\pi\)
\(908\) −19992.0 −0.730680
\(909\) 9522.00 0.347442
\(910\) 0 0
\(911\) 9840.00 0.357864 0.178932 0.983861i \(-0.442736\pi\)
0.178932 + 0.983861i \(0.442736\pi\)
\(912\) −5760.00 −0.209137
\(913\) 23100.0 0.837348
\(914\) 4268.00 0.154456
\(915\) 0 0
\(916\) −312.000 −0.0112541
\(917\) −66304.0 −2.38773
\(918\) −1620.00 −0.0582440
\(919\) −35040.0 −1.25774 −0.628870 0.777511i \(-0.716482\pi\)
−0.628870 + 0.777511i \(0.716482\pi\)
\(920\) 0 0
\(921\) 19308.0 0.690793
\(922\) −5448.00 −0.194599
\(923\) −10114.0 −0.360679
\(924\) 19200.0 0.683586
\(925\) 0 0
\(926\) −11296.0 −0.400874
\(927\) −15912.0 −0.563774
\(928\) −2624.00 −0.0928201
\(929\) 44172.0 1.56000 0.779998 0.625782i \(-0.215220\pi\)
0.779998 + 0.625782i \(0.215220\pi\)
\(930\) 0 0
\(931\) −81720.0 −2.87676
\(932\) 5128.00 0.180229
\(933\) 23796.0 0.834990
\(934\) −36448.0 −1.27689
\(935\) 0 0
\(936\) −936.000 −0.0326860
\(937\) 54018.0 1.88334 0.941671 0.336535i \(-0.109255\pi\)
0.941671 + 0.336535i \(0.109255\pi\)
\(938\) −8960.00 −0.311892
\(939\) −31074.0 −1.07994
\(940\) 0 0
\(941\) −1672.00 −0.0579231 −0.0289616 0.999581i \(-0.509220\pi\)
−0.0289616 + 0.999581i \(0.509220\pi\)
\(942\) −13020.0 −0.450334
\(943\) 2160.00 0.0745910
\(944\) 1504.00 0.0518549
\(945\) 0 0
\(946\) −35600.0 −1.22353
\(947\) −5238.00 −0.179738 −0.0898691 0.995954i \(-0.528645\pi\)
−0.0898691 + 0.995954i \(0.528645\pi\)
\(948\) −13152.0 −0.450588
\(949\) −806.000 −0.0275699
\(950\) 0 0
\(951\) 8460.00 0.288469
\(952\) −7680.00 −0.261460
\(953\) 50042.0 1.70096 0.850482 0.526004i \(-0.176310\pi\)
0.850482 + 0.526004i \(0.176310\pi\)
\(954\) 3564.00 0.120953
\(955\) 0 0
\(956\) 1176.00 0.0397851
\(957\) 12300.0 0.415468
\(958\) −18132.0 −0.611501
\(959\) 24192.0 0.814599
\(960\) 0 0
\(961\) −27855.0 −0.935014
\(962\) −7956.00 −0.266644
\(963\) 16272.0 0.544505
\(964\) −19848.0 −0.663134
\(965\) 0 0
\(966\) −3840.00 −0.127899
\(967\) −37676.0 −1.25293 −0.626463 0.779452i \(-0.715498\pi\)
−0.626463 + 0.779452i \(0.715498\pi\)
\(968\) −9352.00 −0.310521
\(969\) −10800.0 −0.358045
\(970\) 0 0
\(971\) −17364.0 −0.573880 −0.286940 0.957949i \(-0.592638\pi\)
−0.286940 + 0.957949i \(0.592638\pi\)
\(972\) 972.000 0.0320750
\(973\) 5504.00 0.181346
\(974\) 17896.0 0.588732
\(975\) 0 0
\(976\) −992.000 −0.0325340
\(977\) 14904.0 0.488046 0.244023 0.969769i \(-0.421533\pi\)
0.244023 + 0.969769i \(0.421533\pi\)
\(978\) 1488.00 0.0486513
\(979\) 61200.0 1.99792
\(980\) 0 0
\(981\) −16974.0 −0.552434
\(982\) −17440.0 −0.566734
\(983\) 18038.0 0.585272 0.292636 0.956224i \(-0.405467\pi\)
0.292636 + 0.956224i \(0.405467\pi\)
\(984\) −2592.00 −0.0839735
\(985\) 0 0
\(986\) −4920.00 −0.158909
\(987\) 17088.0 0.551081
\(988\) −6240.00 −0.200932
\(989\) 7120.00 0.228921
\(990\) 0 0
\(991\) 46176.0 1.48015 0.740075 0.672524i \(-0.234790\pi\)
0.740075 + 0.672524i \(0.234790\pi\)
\(992\) 1408.00 0.0450646
\(993\) −12540.0 −0.400750
\(994\) 49792.0 1.58884
\(995\) 0 0
\(996\) 5544.00 0.176374
\(997\) −55838.0 −1.77373 −0.886864 0.462030i \(-0.847121\pi\)
−0.886864 + 0.462030i \(0.847121\pi\)
\(998\) −13208.0 −0.418930
\(999\) 8262.00 0.261660
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1950.4.a.h.1.1 1
5.4 even 2 78.4.a.d.1.1 1
15.14 odd 2 234.4.a.f.1.1 1
20.19 odd 2 624.4.a.e.1.1 1
40.19 odd 2 2496.4.a.i.1.1 1
40.29 even 2 2496.4.a.r.1.1 1
60.59 even 2 1872.4.a.r.1.1 1
65.34 odd 4 1014.4.b.e.337.2 2
65.44 odd 4 1014.4.b.e.337.1 2
65.64 even 2 1014.4.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.4.a.d.1.1 1 5.4 even 2
234.4.a.f.1.1 1 15.14 odd 2
624.4.a.e.1.1 1 20.19 odd 2
1014.4.a.d.1.1 1 65.64 even 2
1014.4.b.e.337.1 2 65.44 odd 4
1014.4.b.e.337.2 2 65.34 odd 4
1872.4.a.r.1.1 1 60.59 even 2
1950.4.a.h.1.1 1 1.1 even 1 trivial
2496.4.a.i.1.1 1 40.19 odd 2
2496.4.a.r.1.1 1 40.29 even 2