Properties

Label 1950.2.z.d.1849.1
Level $1950$
Weight $2$
Character 1950.1849
Analytic conductor $15.571$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1950,2,Mod(1699,1950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1950.1699"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1950, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.z (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,-2,0,0,2,0,6,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1849.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1950.1849
Dual form 1950.2.z.d.1699.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{6} +(-2.59808 - 1.50000i) q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(1.50000 + 2.59808i) q^{11} -1.00000i q^{12} +(-2.59808 + 2.50000i) q^{13} +3.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +1.00000i q^{18} +(1.50000 - 2.59808i) q^{19} -3.00000 q^{21} +(-2.59808 - 1.50000i) q^{22} +(3.46410 - 2.00000i) q^{23} +(0.500000 + 0.866025i) q^{24} +(1.00000 - 3.46410i) q^{26} -1.00000i q^{27} +(-2.59808 + 1.50000i) q^{28} +(-2.00000 - 3.46410i) q^{29} +6.00000 q^{31} +(0.866025 + 0.500000i) q^{32} +(2.59808 + 1.50000i) q^{33} +(-0.500000 - 0.866025i) q^{36} +(7.79423 - 4.50000i) q^{37} +3.00000i q^{38} +(-1.00000 + 3.46410i) q^{39} +(5.00000 + 8.66025i) q^{41} +(2.59808 - 1.50000i) q^{42} +(-8.66025 - 5.00000i) q^{43} +3.00000 q^{44} +(-2.00000 + 3.46410i) q^{46} -3.00000i q^{47} +(-0.866025 - 0.500000i) q^{48} +(1.00000 + 1.73205i) q^{49} +(0.866025 + 3.50000i) q^{52} -9.00000i q^{53} +(0.500000 + 0.866025i) q^{54} +(1.50000 - 2.59808i) q^{56} -3.00000i q^{57} +(3.46410 + 2.00000i) q^{58} +(6.00000 - 10.3923i) q^{59} +(3.00000 - 5.19615i) q^{61} +(-5.19615 + 3.00000i) q^{62} +(-2.59808 + 1.50000i) q^{63} -1.00000 q^{64} -3.00000 q^{66} +(-6.92820 + 4.00000i) q^{67} +(2.00000 - 3.46410i) q^{69} +(7.00000 - 12.1244i) q^{71} +(0.866025 + 0.500000i) q^{72} +8.00000i q^{73} +(-4.50000 + 7.79423i) q^{74} +(-1.50000 - 2.59808i) q^{76} -9.00000i q^{77} +(-0.866025 - 3.50000i) q^{78} -6.00000 q^{79} +(-0.500000 - 0.866025i) q^{81} +(-8.66025 - 5.00000i) q^{82} -16.0000i q^{83} +(-1.50000 + 2.59808i) q^{84} +10.0000 q^{86} +(-3.46410 - 2.00000i) q^{87} +(-2.59808 + 1.50000i) q^{88} +(-1.50000 - 2.59808i) q^{89} +(10.5000 - 2.59808i) q^{91} -4.00000i q^{92} +(5.19615 - 3.00000i) q^{93} +(1.50000 + 2.59808i) q^{94} +1.00000 q^{96} +(-6.92820 - 4.00000i) q^{97} +(-1.73205 - 1.00000i) q^{98} +3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{6} + 2 q^{9} + 6 q^{11} + 12 q^{14} - 2 q^{16} + 6 q^{19} - 12 q^{21} + 2 q^{24} + 4 q^{26} - 8 q^{29} + 24 q^{31} - 2 q^{36} - 4 q^{39} + 20 q^{41} + 12 q^{44} - 8 q^{46} + 4 q^{49}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) −0.500000 + 0.866025i −0.204124 + 0.353553i
\(7\) −2.59808 1.50000i −0.981981 0.566947i −0.0791130 0.996866i \(-0.525209\pi\)
−0.902867 + 0.429919i \(0.858542\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −2.59808 + 2.50000i −0.720577 + 0.693375i
\(14\) 3.00000 0.801784
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 1.50000 2.59808i 0.344124 0.596040i −0.641071 0.767482i \(-0.721509\pi\)
0.985194 + 0.171442i \(0.0548427\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) −2.59808 1.50000i −0.553912 0.319801i
\(23\) 3.46410 2.00000i 0.722315 0.417029i −0.0932891 0.995639i \(-0.529738\pi\)
0.815604 + 0.578610i \(0.196405\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) 0 0
\(26\) 1.00000 3.46410i 0.196116 0.679366i
\(27\) 1.00000i 0.192450i
\(28\) −2.59808 + 1.50000i −0.490990 + 0.283473i
\(29\) −2.00000 3.46410i −0.371391 0.643268i 0.618389 0.785872i \(-0.287786\pi\)
−0.989780 + 0.142605i \(0.954452\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 2.59808 + 1.50000i 0.452267 + 0.261116i
\(34\) 0 0
\(35\) 0 0
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 7.79423 4.50000i 1.28136 0.739795i 0.304266 0.952587i \(-0.401589\pi\)
0.977098 + 0.212792i \(0.0682556\pi\)
\(38\) 3.00000i 0.486664i
\(39\) −1.00000 + 3.46410i −0.160128 + 0.554700i
\(40\) 0 0
\(41\) 5.00000 + 8.66025i 0.780869 + 1.35250i 0.931436 + 0.363905i \(0.118557\pi\)
−0.150567 + 0.988600i \(0.548110\pi\)
\(42\) 2.59808 1.50000i 0.400892 0.231455i
\(43\) −8.66025 5.00000i −1.32068 0.762493i −0.336840 0.941562i \(-0.609358\pi\)
−0.983836 + 0.179069i \(0.942691\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) −2.00000 + 3.46410i −0.294884 + 0.510754i
\(47\) 3.00000i 0.437595i −0.975770 0.218797i \(-0.929787\pi\)
0.975770 0.218797i \(-0.0702134\pi\)
\(48\) −0.866025 0.500000i −0.125000 0.0721688i
\(49\) 1.00000 + 1.73205i 0.142857 + 0.247436i
\(50\) 0 0
\(51\) 0 0
\(52\) 0.866025 + 3.50000i 0.120096 + 0.485363i
\(53\) 9.00000i 1.23625i −0.786082 0.618123i \(-0.787894\pi\)
0.786082 0.618123i \(-0.212106\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) 0 0
\(56\) 1.50000 2.59808i 0.200446 0.347183i
\(57\) 3.00000i 0.397360i
\(58\) 3.46410 + 2.00000i 0.454859 + 0.262613i
\(59\) 6.00000 10.3923i 0.781133 1.35296i −0.150148 0.988663i \(-0.547975\pi\)
0.931282 0.364299i \(-0.118692\pi\)
\(60\) 0 0
\(61\) 3.00000 5.19615i 0.384111 0.665299i −0.607535 0.794293i \(-0.707841\pi\)
0.991645 + 0.128994i \(0.0411748\pi\)
\(62\) −5.19615 + 3.00000i −0.659912 + 0.381000i
\(63\) −2.59808 + 1.50000i −0.327327 + 0.188982i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −3.00000 −0.369274
\(67\) −6.92820 + 4.00000i −0.846415 + 0.488678i −0.859440 0.511237i \(-0.829187\pi\)
0.0130248 + 0.999915i \(0.495854\pi\)
\(68\) 0 0
\(69\) 2.00000 3.46410i 0.240772 0.417029i
\(70\) 0 0
\(71\) 7.00000 12.1244i 0.830747 1.43890i −0.0666994 0.997773i \(-0.521247\pi\)
0.897447 0.441123i \(-0.145420\pi\)
\(72\) 0.866025 + 0.500000i 0.102062 + 0.0589256i
\(73\) 8.00000i 0.936329i 0.883641 + 0.468165i \(0.155085\pi\)
−0.883641 + 0.468165i \(0.844915\pi\)
\(74\) −4.50000 + 7.79423i −0.523114 + 0.906061i
\(75\) 0 0
\(76\) −1.50000 2.59808i −0.172062 0.298020i
\(77\) 9.00000i 1.02565i
\(78\) −0.866025 3.50000i −0.0980581 0.396297i
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −8.66025 5.00000i −0.956365 0.552158i
\(83\) 16.0000i 1.75623i −0.478451 0.878114i \(-0.658802\pi\)
0.478451 0.878114i \(-0.341198\pi\)
\(84\) −1.50000 + 2.59808i −0.163663 + 0.283473i
\(85\) 0 0
\(86\) 10.0000 1.07833
\(87\) −3.46410 2.00000i −0.371391 0.214423i
\(88\) −2.59808 + 1.50000i −0.276956 + 0.159901i
\(89\) −1.50000 2.59808i −0.159000 0.275396i 0.775509 0.631337i \(-0.217494\pi\)
−0.934508 + 0.355942i \(0.884160\pi\)
\(90\) 0 0
\(91\) 10.5000 2.59808i 1.10070 0.272352i
\(92\) 4.00000i 0.417029i
\(93\) 5.19615 3.00000i 0.538816 0.311086i
\(94\) 1.50000 + 2.59808i 0.154713 + 0.267971i
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) −6.92820 4.00000i −0.703452 0.406138i 0.105180 0.994453i \(-0.466458\pi\)
−0.808632 + 0.588315i \(0.799792\pi\)
\(98\) −1.73205 1.00000i −0.174964 0.101015i
\(99\) 3.00000 0.301511
\(100\) 0 0
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) 15.0000i 1.47799i 0.673709 + 0.738997i \(0.264700\pi\)
−0.673709 + 0.738997i \(0.735300\pi\)
\(104\) −2.50000 2.59808i −0.245145 0.254762i
\(105\) 0 0
\(106\) 4.50000 + 7.79423i 0.437079 + 0.757042i
\(107\) 1.73205 1.00000i 0.167444 0.0966736i −0.413936 0.910306i \(-0.635846\pi\)
0.581380 + 0.813632i \(0.302513\pi\)
\(108\) −0.866025 0.500000i −0.0833333 0.0481125i
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 4.50000 7.79423i 0.427121 0.739795i
\(112\) 3.00000i 0.283473i
\(113\) −6.92820 4.00000i −0.651751 0.376288i 0.137376 0.990519i \(-0.456133\pi\)
−0.789127 + 0.614231i \(0.789466\pi\)
\(114\) 1.50000 + 2.59808i 0.140488 + 0.243332i
\(115\) 0 0
\(116\) −4.00000 −0.371391
\(117\) 0.866025 + 3.50000i 0.0800641 + 0.323575i
\(118\) 12.0000i 1.10469i
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 6.00000i 0.543214i
\(123\) 8.66025 + 5.00000i 0.780869 + 0.450835i
\(124\) 3.00000 5.19615i 0.269408 0.466628i
\(125\) 0 0
\(126\) 1.50000 2.59808i 0.133631 0.231455i
\(127\) 2.59808 1.50000i 0.230542 0.133103i −0.380280 0.924871i \(-0.624172\pi\)
0.610822 + 0.791768i \(0.290839\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) −3.00000 −0.262111 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(132\) 2.59808 1.50000i 0.226134 0.130558i
\(133\) −7.79423 + 4.50000i −0.675845 + 0.390199i
\(134\) 4.00000 6.92820i 0.345547 0.598506i
\(135\) 0 0
\(136\) 0 0
\(137\) −10.3923 6.00000i −0.887875 0.512615i −0.0146279 0.999893i \(-0.504656\pi\)
−0.873247 + 0.487278i \(0.837990\pi\)
\(138\) 4.00000i 0.340503i
\(139\) −8.50000 + 14.7224i −0.720961 + 1.24874i 0.239655 + 0.970858i \(0.422966\pi\)
−0.960615 + 0.277882i \(0.910368\pi\)
\(140\) 0 0
\(141\) −1.50000 2.59808i −0.126323 0.218797i
\(142\) 14.0000i 1.17485i
\(143\) −10.3923 3.00000i −0.869048 0.250873i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −4.00000 6.92820i −0.331042 0.573382i
\(147\) 1.73205 + 1.00000i 0.142857 + 0.0824786i
\(148\) 9.00000i 0.739795i
\(149\) −1.00000 + 1.73205i −0.0819232 + 0.141895i −0.904076 0.427372i \(-0.859440\pi\)
0.822153 + 0.569267i \(0.192773\pi\)
\(150\) 0 0
\(151\) 14.0000 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(152\) 2.59808 + 1.50000i 0.210732 + 0.121666i
\(153\) 0 0
\(154\) 4.50000 + 7.79423i 0.362620 + 0.628077i
\(155\) 0 0
\(156\) 2.50000 + 2.59808i 0.200160 + 0.208013i
\(157\) 17.0000i 1.35675i −0.734717 0.678374i \(-0.762685\pi\)
0.734717 0.678374i \(-0.237315\pi\)
\(158\) 5.19615 3.00000i 0.413384 0.238667i
\(159\) −4.50000 7.79423i −0.356873 0.618123i
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) 0.866025 + 0.500000i 0.0680414 + 0.0392837i
\(163\) 17.3205 + 10.0000i 1.35665 + 0.783260i 0.989170 0.146772i \(-0.0468885\pi\)
0.367477 + 0.930033i \(0.380222\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) 8.00000 + 13.8564i 0.620920 + 1.07547i
\(167\) 7.79423 4.50000i 0.603136 0.348220i −0.167139 0.985933i \(-0.553453\pi\)
0.770274 + 0.637713i \(0.220119\pi\)
\(168\) 3.00000i 0.231455i
\(169\) 0.500000 12.9904i 0.0384615 0.999260i
\(170\) 0 0
\(171\) −1.50000 2.59808i −0.114708 0.198680i
\(172\) −8.66025 + 5.00000i −0.660338 + 0.381246i
\(173\) 11.2583 + 6.50000i 0.855955 + 0.494186i 0.862656 0.505792i \(-0.168800\pi\)
−0.00670064 + 0.999978i \(0.502133\pi\)
\(174\) 4.00000 0.303239
\(175\) 0 0
\(176\) 1.50000 2.59808i 0.113067 0.195837i
\(177\) 12.0000i 0.901975i
\(178\) 2.59808 + 1.50000i 0.194734 + 0.112430i
\(179\) 2.00000 + 3.46410i 0.149487 + 0.258919i 0.931038 0.364922i \(-0.118904\pi\)
−0.781551 + 0.623841i \(0.785571\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) −7.79423 + 7.50000i −0.577747 + 0.555937i
\(183\) 6.00000i 0.443533i
\(184\) 2.00000 + 3.46410i 0.147442 + 0.255377i
\(185\) 0 0
\(186\) −3.00000 + 5.19615i −0.219971 + 0.381000i
\(187\) 0 0
\(188\) −2.59808 1.50000i −0.189484 0.109399i
\(189\) −1.50000 + 2.59808i −0.109109 + 0.188982i
\(190\) 0 0
\(191\) 3.00000 5.19615i 0.217072 0.375980i −0.736839 0.676068i \(-0.763683\pi\)
0.953912 + 0.300088i \(0.0970159\pi\)
\(192\) −0.866025 + 0.500000i −0.0625000 + 0.0360844i
\(193\) −6.92820 + 4.00000i −0.498703 + 0.287926i −0.728178 0.685388i \(-0.759632\pi\)
0.229475 + 0.973315i \(0.426299\pi\)
\(194\) 8.00000 0.574367
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) 9.52628 5.50000i 0.678719 0.391859i −0.120653 0.992695i \(-0.538499\pi\)
0.799372 + 0.600836i \(0.205166\pi\)
\(198\) −2.59808 + 1.50000i −0.184637 + 0.106600i
\(199\) −5.00000 + 8.66025i −0.354441 + 0.613909i −0.987022 0.160585i \(-0.948662\pi\)
0.632581 + 0.774494i \(0.281995\pi\)
\(200\) 0 0
\(201\) −4.00000 + 6.92820i −0.282138 + 0.488678i
\(202\) 0 0
\(203\) 12.0000i 0.842235i
\(204\) 0 0
\(205\) 0 0
\(206\) −7.50000 12.9904i −0.522550 0.905083i
\(207\) 4.00000i 0.278019i
\(208\) 3.46410 + 1.00000i 0.240192 + 0.0693375i
\(209\) 9.00000 0.622543
\(210\) 0 0
\(211\) −4.50000 7.79423i −0.309793 0.536577i 0.668524 0.743690i \(-0.266926\pi\)
−0.978317 + 0.207114i \(0.933593\pi\)
\(212\) −7.79423 4.50000i −0.535310 0.309061i
\(213\) 14.0000i 0.959264i
\(214\) −1.00000 + 1.73205i −0.0683586 + 0.118401i
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) −15.5885 9.00000i −1.05821 0.610960i
\(218\) −1.73205 + 1.00000i −0.117309 + 0.0677285i
\(219\) 4.00000 + 6.92820i 0.270295 + 0.468165i
\(220\) 0 0
\(221\) 0 0
\(222\) 9.00000i 0.604040i
\(223\) 9.52628 5.50000i 0.637927 0.368307i −0.145889 0.989301i \(-0.546604\pi\)
0.783815 + 0.620994i \(0.213271\pi\)
\(224\) −1.50000 2.59808i −0.100223 0.173591i
\(225\) 0 0
\(226\) 8.00000 0.532152
\(227\) 13.8564 + 8.00000i 0.919682 + 0.530979i 0.883534 0.468368i \(-0.155158\pi\)
0.0361484 + 0.999346i \(0.488491\pi\)
\(228\) −2.59808 1.50000i −0.172062 0.0993399i
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) −4.50000 7.79423i −0.296078 0.512823i
\(232\) 3.46410 2.00000i 0.227429 0.131306i
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) −2.50000 2.59808i −0.163430 0.169842i
\(235\) 0 0
\(236\) −6.00000 10.3923i −0.390567 0.676481i
\(237\) −5.19615 + 3.00000i −0.337526 + 0.194871i
\(238\) 0 0
\(239\) 26.0000 1.68180 0.840900 0.541190i \(-0.182026\pi\)
0.840900 + 0.541190i \(0.182026\pi\)
\(240\) 0 0
\(241\) −3.50000 + 6.06218i −0.225455 + 0.390499i −0.956456 0.291877i \(-0.905720\pi\)
0.731001 + 0.682376i \(0.239053\pi\)
\(242\) 2.00000i 0.128565i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) −3.00000 5.19615i −0.192055 0.332650i
\(245\) 0 0
\(246\) −10.0000 −0.637577
\(247\) 2.59808 + 10.5000i 0.165312 + 0.668099i
\(248\) 6.00000i 0.381000i
\(249\) −8.00000 13.8564i −0.506979 0.878114i
\(250\) 0 0
\(251\) 0.500000 0.866025i 0.0315597 0.0546630i −0.849814 0.527082i \(-0.823286\pi\)
0.881374 + 0.472419i \(0.156619\pi\)
\(252\) 3.00000i 0.188982i
\(253\) 10.3923 + 6.00000i 0.653359 + 0.377217i
\(254\) −1.50000 + 2.59808i −0.0941184 + 0.163018i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 10.3923 6.00000i 0.648254 0.374270i −0.139533 0.990217i \(-0.544560\pi\)
0.787787 + 0.615948i \(0.211227\pi\)
\(258\) 8.66025 5.00000i 0.539164 0.311286i
\(259\) −27.0000 −1.67770
\(260\) 0 0
\(261\) −4.00000 −0.247594
\(262\) 2.59808 1.50000i 0.160510 0.0926703i
\(263\) 26.8468 15.5000i 1.65544 0.955771i 0.680666 0.732594i \(-0.261691\pi\)
0.974778 0.223177i \(-0.0716428\pi\)
\(264\) −1.50000 + 2.59808i −0.0923186 + 0.159901i
\(265\) 0 0
\(266\) 4.50000 7.79423i 0.275913 0.477895i
\(267\) −2.59808 1.50000i −0.159000 0.0917985i
\(268\) 8.00000i 0.488678i
\(269\) −2.00000 + 3.46410i −0.121942 + 0.211210i −0.920534 0.390664i \(-0.872246\pi\)
0.798591 + 0.601874i \(0.205579\pi\)
\(270\) 0 0
\(271\) 6.00000 + 10.3923i 0.364474 + 0.631288i 0.988692 0.149963i \(-0.0479155\pi\)
−0.624218 + 0.781251i \(0.714582\pi\)
\(272\) 0 0
\(273\) 7.79423 7.50000i 0.471728 0.453921i
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) −2.00000 3.46410i −0.120386 0.208514i
\(277\) 26.8468 + 15.5000i 1.61307 + 0.931305i 0.988654 + 0.150210i \(0.0479951\pi\)
0.624413 + 0.781094i \(0.285338\pi\)
\(278\) 17.0000i 1.01959i
\(279\) 3.00000 5.19615i 0.179605 0.311086i
\(280\) 0 0
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 2.59808 + 1.50000i 0.154713 + 0.0893237i
\(283\) −5.19615 + 3.00000i −0.308879 + 0.178331i −0.646425 0.762978i \(-0.723737\pi\)
0.337546 + 0.941309i \(0.390403\pi\)
\(284\) −7.00000 12.1244i −0.415374 0.719448i
\(285\) 0 0
\(286\) 10.5000 2.59808i 0.620878 0.153627i
\(287\) 30.0000i 1.77084i
\(288\) 0.866025 0.500000i 0.0510310 0.0294628i
\(289\) −8.50000 14.7224i −0.500000 0.866025i
\(290\) 0 0
\(291\) −8.00000 −0.468968
\(292\) 6.92820 + 4.00000i 0.405442 + 0.234082i
\(293\) −0.866025 0.500000i −0.0505937 0.0292103i 0.474490 0.880261i \(-0.342633\pi\)
−0.525084 + 0.851051i \(0.675966\pi\)
\(294\) −2.00000 −0.116642
\(295\) 0 0
\(296\) 4.50000 + 7.79423i 0.261557 + 0.453030i
\(297\) 2.59808 1.50000i 0.150756 0.0870388i
\(298\) 2.00000i 0.115857i
\(299\) −4.00000 + 13.8564i −0.231326 + 0.801337i
\(300\) 0 0
\(301\) 15.0000 + 25.9808i 0.864586 + 1.49751i
\(302\) −12.1244 + 7.00000i −0.697678 + 0.402805i
\(303\) 0 0
\(304\) −3.00000 −0.172062
\(305\) 0 0
\(306\) 0 0
\(307\) 26.0000i 1.48390i 0.670456 + 0.741949i \(0.266098\pi\)
−0.670456 + 0.741949i \(0.733902\pi\)
\(308\) −7.79423 4.50000i −0.444117 0.256411i
\(309\) 7.50000 + 12.9904i 0.426660 + 0.738997i
\(310\) 0 0
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) −3.46410 1.00000i −0.196116 0.0566139i
\(313\) 26.0000i 1.46961i −0.678280 0.734803i \(-0.737274\pi\)
0.678280 0.734803i \(-0.262726\pi\)
\(314\) 8.50000 + 14.7224i 0.479683 + 0.830835i
\(315\) 0 0
\(316\) −3.00000 + 5.19615i −0.168763 + 0.292306i
\(317\) 17.0000i 0.954815i 0.878682 + 0.477408i \(0.158423\pi\)
−0.878682 + 0.477408i \(0.841577\pi\)
\(318\) 7.79423 + 4.50000i 0.437079 + 0.252347i
\(319\) 6.00000 10.3923i 0.335936 0.581857i
\(320\) 0 0
\(321\) 1.00000 1.73205i 0.0558146 0.0966736i
\(322\) 10.3923 6.00000i 0.579141 0.334367i
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −20.0000 −1.10770
\(327\) 1.73205 1.00000i 0.0957826 0.0553001i
\(328\) −8.66025 + 5.00000i −0.478183 + 0.276079i
\(329\) −4.50000 + 7.79423i −0.248093 + 0.429710i
\(330\) 0 0
\(331\) 14.0000 24.2487i 0.769510 1.33283i −0.168320 0.985732i \(-0.553834\pi\)
0.937829 0.347097i \(-0.112833\pi\)
\(332\) −13.8564 8.00000i −0.760469 0.439057i
\(333\) 9.00000i 0.493197i
\(334\) −4.50000 + 7.79423i −0.246229 + 0.426481i
\(335\) 0 0
\(336\) 1.50000 + 2.59808i 0.0818317 + 0.141737i
\(337\) 6.00000i 0.326841i 0.986557 + 0.163420i \(0.0522527\pi\)
−0.986557 + 0.163420i \(0.947747\pi\)
\(338\) 6.06218 + 11.5000i 0.329739 + 0.625518i
\(339\) −8.00000 −0.434500
\(340\) 0 0
\(341\) 9.00000 + 15.5885i 0.487377 + 0.844162i
\(342\) 2.59808 + 1.50000i 0.140488 + 0.0811107i
\(343\) 15.0000i 0.809924i
\(344\) 5.00000 8.66025i 0.269582 0.466930i
\(345\) 0 0
\(346\) −13.0000 −0.698884
\(347\) 20.7846 + 12.0000i 1.11578 + 0.644194i 0.940319 0.340293i \(-0.110526\pi\)
0.175457 + 0.984487i \(0.443860\pi\)
\(348\) −3.46410 + 2.00000i −0.185695 + 0.107211i
\(349\) 8.00000 + 13.8564i 0.428230 + 0.741716i 0.996716 0.0809766i \(-0.0258039\pi\)
−0.568486 + 0.822693i \(0.692471\pi\)
\(350\) 0 0
\(351\) 2.50000 + 2.59808i 0.133440 + 0.138675i
\(352\) 3.00000i 0.159901i
\(353\) 6.92820 4.00000i 0.368751 0.212899i −0.304162 0.952620i \(-0.598376\pi\)
0.672913 + 0.739722i \(0.265043\pi\)
\(354\) 6.00000 + 10.3923i 0.318896 + 0.552345i
\(355\) 0 0
\(356\) −3.00000 −0.159000
\(357\) 0 0
\(358\) −3.46410 2.00000i −0.183083 0.105703i
\(359\) −30.0000 −1.58334 −0.791670 0.610949i \(-0.790788\pi\)
−0.791670 + 0.610949i \(0.790788\pi\)
\(360\) 0 0
\(361\) 5.00000 + 8.66025i 0.263158 + 0.455803i
\(362\) 8.66025 5.00000i 0.455173 0.262794i
\(363\) 2.00000i 0.104973i
\(364\) 3.00000 10.3923i 0.157243 0.544705i
\(365\) 0 0
\(366\) 3.00000 + 5.19615i 0.156813 + 0.271607i
\(367\) 6.92820 4.00000i 0.361649 0.208798i −0.308155 0.951336i \(-0.599711\pi\)
0.669804 + 0.742538i \(0.266378\pi\)
\(368\) −3.46410 2.00000i −0.180579 0.104257i
\(369\) 10.0000 0.520579
\(370\) 0 0
\(371\) −13.5000 + 23.3827i −0.700885 + 1.21397i
\(372\) 6.00000i 0.311086i
\(373\) −22.5167 13.0000i −1.16587 0.673114i −0.213165 0.977016i \(-0.568377\pi\)
−0.952703 + 0.303902i \(0.901711\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) 13.8564 + 4.00000i 0.713641 + 0.206010i
\(378\) 3.00000i 0.154303i
\(379\) −16.5000 28.5788i −0.847548 1.46800i −0.883390 0.468639i \(-0.844745\pi\)
0.0358418 0.999357i \(-0.488589\pi\)
\(380\) 0 0
\(381\) 1.50000 2.59808i 0.0768473 0.133103i
\(382\) 6.00000i 0.306987i
\(383\) 3.46410 + 2.00000i 0.177007 + 0.102195i 0.585886 0.810394i \(-0.300747\pi\)
−0.408879 + 0.912589i \(0.634080\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) 0 0
\(386\) 4.00000 6.92820i 0.203595 0.352636i
\(387\) −8.66025 + 5.00000i −0.440225 + 0.254164i
\(388\) −6.92820 + 4.00000i −0.351726 + 0.203069i
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.73205 + 1.00000i −0.0874818 + 0.0505076i
\(393\) −2.59808 + 1.50000i −0.131056 + 0.0756650i
\(394\) −5.50000 + 9.52628i −0.277086 + 0.479927i
\(395\) 0 0
\(396\) 1.50000 2.59808i 0.0753778 0.130558i
\(397\) 19.9186 + 11.5000i 0.999685 + 0.577168i 0.908155 0.418634i \(-0.137491\pi\)
0.0915300 + 0.995802i \(0.470824\pi\)
\(398\) 10.0000i 0.501255i
\(399\) −4.50000 + 7.79423i −0.225282 + 0.390199i
\(400\) 0 0
\(401\) 13.5000 + 23.3827i 0.674158 + 1.16768i 0.976714 + 0.214544i \(0.0688266\pi\)
−0.302556 + 0.953131i \(0.597840\pi\)
\(402\) 8.00000i 0.399004i
\(403\) −15.5885 + 15.0000i −0.776516 + 0.747203i
\(404\) 0 0
\(405\) 0 0
\(406\) −6.00000 10.3923i −0.297775 0.515761i
\(407\) 23.3827 + 13.5000i 1.15904 + 0.669170i
\(408\) 0 0
\(409\) −3.50000 + 6.06218i −0.173064 + 0.299755i −0.939490 0.342578i \(-0.888700\pi\)
0.766426 + 0.642333i \(0.222033\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 12.9904 + 7.50000i 0.639990 + 0.369498i
\(413\) −31.1769 + 18.0000i −1.53412 + 0.885722i
\(414\) 2.00000 + 3.46410i 0.0982946 + 0.170251i
\(415\) 0 0
\(416\) −3.50000 + 0.866025i −0.171602 + 0.0424604i
\(417\) 17.0000i 0.832494i
\(418\) −7.79423 + 4.50000i −0.381228 + 0.220102i
\(419\) −6.00000 10.3923i −0.293119 0.507697i 0.681426 0.731887i \(-0.261360\pi\)
−0.974546 + 0.224189i \(0.928027\pi\)
\(420\) 0 0
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) 7.79423 + 4.50000i 0.379417 + 0.219057i
\(423\) −2.59808 1.50000i −0.126323 0.0729325i
\(424\) 9.00000 0.437079
\(425\) 0 0
\(426\) 7.00000 + 12.1244i 0.339151 + 0.587427i
\(427\) −15.5885 + 9.00000i −0.754378 + 0.435541i
\(428\) 2.00000i 0.0966736i
\(429\) −10.5000 + 2.59808i −0.506945 + 0.125436i
\(430\) 0 0
\(431\) 6.00000 + 10.3923i 0.289010 + 0.500580i 0.973574 0.228373i \(-0.0733406\pi\)
−0.684564 + 0.728953i \(0.740007\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) −13.8564 8.00000i −0.665896 0.384455i 0.128624 0.991693i \(-0.458944\pi\)
−0.794520 + 0.607238i \(0.792277\pi\)
\(434\) 18.0000 0.864028
\(435\) 0 0
\(436\) 1.00000 1.73205i 0.0478913 0.0829502i
\(437\) 12.0000i 0.574038i
\(438\) −6.92820 4.00000i −0.331042 0.191127i
\(439\) −15.0000 25.9808i −0.715911 1.23999i −0.962607 0.270901i \(-0.912678\pi\)
0.246696 0.969093i \(-0.420655\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) 10.0000i 0.475114i 0.971374 + 0.237557i \(0.0763467\pi\)
−0.971374 + 0.237557i \(0.923653\pi\)
\(444\) −4.50000 7.79423i −0.213561 0.369898i
\(445\) 0 0
\(446\) −5.50000 + 9.52628i −0.260433 + 0.451082i
\(447\) 2.00000i 0.0945968i
\(448\) 2.59808 + 1.50000i 0.122748 + 0.0708683i
\(449\) −17.5000 + 30.3109i −0.825876 + 1.43046i 0.0753719 + 0.997155i \(0.475986\pi\)
−0.901248 + 0.433304i \(0.857348\pi\)
\(450\) 0 0
\(451\) −15.0000 + 25.9808i −0.706322 + 1.22339i
\(452\) −6.92820 + 4.00000i −0.325875 + 0.188144i
\(453\) 12.1244 7.00000i 0.569652 0.328889i
\(454\) −16.0000 −0.750917
\(455\) 0 0
\(456\) 3.00000 0.140488
\(457\) −36.3731 + 21.0000i −1.70146 + 0.982339i −0.757174 + 0.653213i \(0.773421\pi\)
−0.944286 + 0.329125i \(0.893246\pi\)
\(458\) −8.66025 + 5.00000i −0.404667 + 0.233635i
\(459\) 0 0
\(460\) 0 0
\(461\) 16.0000 27.7128i 0.745194 1.29071i −0.204910 0.978781i \(-0.565690\pi\)
0.950104 0.311933i \(-0.100977\pi\)
\(462\) 7.79423 + 4.50000i 0.362620 + 0.209359i
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) −2.00000 + 3.46410i −0.0928477 + 0.160817i
\(465\) 0 0
\(466\) −3.00000 5.19615i −0.138972 0.240707i
\(467\) 8.00000i 0.370196i 0.982720 + 0.185098i \(0.0592602\pi\)
−0.982720 + 0.185098i \(0.940740\pi\)
\(468\) 3.46410 + 1.00000i 0.160128 + 0.0462250i
\(469\) 24.0000 1.10822
\(470\) 0 0
\(471\) −8.50000 14.7224i −0.391659 0.678374i
\(472\) 10.3923 + 6.00000i 0.478345 + 0.276172i
\(473\) 30.0000i 1.37940i
\(474\) 3.00000 5.19615i 0.137795 0.238667i
\(475\) 0 0
\(476\) 0 0
\(477\) −7.79423 4.50000i −0.356873 0.206041i
\(478\) −22.5167 + 13.0000i −1.02989 + 0.594606i
\(479\) 6.00000 + 10.3923i 0.274147 + 0.474837i 0.969920 0.243426i \(-0.0782712\pi\)
−0.695773 + 0.718262i \(0.744938\pi\)
\(480\) 0 0
\(481\) −9.00000 + 31.1769i −0.410365 + 1.42154i
\(482\) 7.00000i 0.318841i
\(483\) −10.3923 + 6.00000i −0.472866 + 0.273009i
\(484\) −1.00000 1.73205i −0.0454545 0.0787296i
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) −25.1147 14.5000i −1.13806 0.657058i −0.192109 0.981374i \(-0.561533\pi\)
−0.945949 + 0.324316i \(0.894866\pi\)
\(488\) 5.19615 + 3.00000i 0.235219 + 0.135804i
\(489\) 20.0000 0.904431
\(490\) 0 0
\(491\) −2.50000 4.33013i −0.112823 0.195416i 0.804084 0.594515i \(-0.202656\pi\)
−0.916908 + 0.399100i \(0.869323\pi\)
\(492\) 8.66025 5.00000i 0.390434 0.225417i
\(493\) 0 0
\(494\) −7.50000 7.79423i −0.337441 0.350679i
\(495\) 0 0
\(496\) −3.00000 5.19615i −0.134704 0.233314i
\(497\) −36.3731 + 21.0000i −1.63156 + 0.941979i
\(498\) 13.8564 + 8.00000i 0.620920 + 0.358489i
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 4.50000 7.79423i 0.201045 0.348220i
\(502\) 1.00000i 0.0446322i
\(503\) 18.1865 + 10.5000i 0.810897 + 0.468172i 0.847267 0.531167i \(-0.178246\pi\)
−0.0363700 + 0.999338i \(0.511579\pi\)
\(504\) −1.50000 2.59808i −0.0668153 0.115728i
\(505\) 0 0
\(506\) −12.0000 −0.533465
\(507\) −6.06218 11.5000i −0.269231 0.510733i
\(508\) 3.00000i 0.133103i
\(509\) 5.00000 + 8.66025i 0.221621 + 0.383859i 0.955300 0.295637i \(-0.0955319\pi\)
−0.733679 + 0.679496i \(0.762199\pi\)
\(510\) 0 0
\(511\) 12.0000 20.7846i 0.530849 0.919457i
\(512\) 1.00000i 0.0441942i
\(513\) −2.59808 1.50000i −0.114708 0.0662266i
\(514\) −6.00000 + 10.3923i −0.264649 + 0.458385i
\(515\) 0 0
\(516\) −5.00000 + 8.66025i −0.220113 + 0.381246i
\(517\) 7.79423 4.50000i 0.342790 0.197910i
\(518\) 23.3827 13.5000i 1.02738 0.593156i
\(519\) 13.0000 0.570637
\(520\) 0 0
\(521\) −35.0000 −1.53338 −0.766689 0.642019i \(-0.778097\pi\)
−0.766689 + 0.642019i \(0.778097\pi\)
\(522\) 3.46410 2.00000i 0.151620 0.0875376i
\(523\) −19.0526 + 11.0000i −0.833110 + 0.480996i −0.854916 0.518766i \(-0.826392\pi\)
0.0218062 + 0.999762i \(0.493058\pi\)
\(524\) −1.50000 + 2.59808i −0.0655278 + 0.113497i
\(525\) 0 0
\(526\) −15.5000 + 26.8468i −0.675832 + 1.17058i
\(527\) 0 0
\(528\) 3.00000i 0.130558i
\(529\) −3.50000 + 6.06218i −0.152174 + 0.263573i
\(530\) 0 0
\(531\) −6.00000 10.3923i −0.260378 0.450988i
\(532\) 9.00000i 0.390199i
\(533\) −34.6410 10.0000i −1.50047 0.433148i
\(534\) 3.00000 0.129823
\(535\) 0 0
\(536\) −4.00000 6.92820i −0.172774 0.299253i
\(537\) 3.46410 + 2.00000i 0.149487 + 0.0863064i
\(538\) 4.00000i 0.172452i
\(539\) −3.00000 + 5.19615i −0.129219 + 0.223814i
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) −10.3923 6.00000i −0.446388 0.257722i
\(543\) −8.66025 + 5.00000i −0.371647 + 0.214571i
\(544\) 0 0
\(545\) 0 0
\(546\) −3.00000 + 10.3923i −0.128388 + 0.444750i
\(547\) 22.0000i 0.940652i 0.882493 + 0.470326i \(0.155864\pi\)
−0.882493 + 0.470326i \(0.844136\pi\)
\(548\) −10.3923 + 6.00000i −0.443937 + 0.256307i
\(549\) −3.00000 5.19615i −0.128037 0.221766i
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 3.46410 + 2.00000i 0.147442 + 0.0851257i
\(553\) 15.5885 + 9.00000i 0.662889 + 0.382719i
\(554\) −31.0000 −1.31706
\(555\) 0 0
\(556\) 8.50000 + 14.7224i 0.360480 + 0.624370i
\(557\) −7.79423 + 4.50000i −0.330252 + 0.190671i −0.655953 0.754802i \(-0.727733\pi\)
0.325701 + 0.945473i \(0.394400\pi\)
\(558\) 6.00000i 0.254000i
\(559\) 35.0000 8.66025i 1.48034 0.366290i
\(560\) 0 0
\(561\) 0 0
\(562\) 25.9808 15.0000i 1.09593 0.632737i
\(563\) 17.3205 + 10.0000i 0.729972 + 0.421450i 0.818412 0.574632i \(-0.194855\pi\)
−0.0884397 + 0.996082i \(0.528188\pi\)
\(564\) −3.00000 −0.126323
\(565\) 0 0
\(566\) 3.00000 5.19615i 0.126099 0.218411i
\(567\) 3.00000i 0.125988i
\(568\) 12.1244 + 7.00000i 0.508727 + 0.293713i
\(569\) −19.5000 33.7750i −0.817483 1.41592i −0.907532 0.419984i \(-0.862036\pi\)
0.0900490 0.995937i \(-0.471298\pi\)
\(570\) 0 0
\(571\) 23.0000 0.962520 0.481260 0.876578i \(-0.340179\pi\)
0.481260 + 0.876578i \(0.340179\pi\)
\(572\) −7.79423 + 7.50000i −0.325893 + 0.313591i
\(573\) 6.00000i 0.250654i
\(574\) 15.0000 + 25.9808i 0.626088 + 1.08442i
\(575\) 0 0
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 38.0000i 1.58196i −0.611842 0.790980i \(-0.709571\pi\)
0.611842 0.790980i \(-0.290429\pi\)
\(578\) 14.7224 + 8.50000i 0.612372 + 0.353553i
\(579\) −4.00000 + 6.92820i −0.166234 + 0.287926i
\(580\) 0 0
\(581\) −24.0000 + 41.5692i −0.995688 + 1.72458i
\(582\) 6.92820 4.00000i 0.287183 0.165805i
\(583\) 23.3827 13.5000i 0.968412 0.559113i
\(584\) −8.00000 −0.331042
\(585\) 0 0
\(586\) 1.00000 0.0413096
\(587\) 15.5885 9.00000i 0.643404 0.371470i −0.142520 0.989792i \(-0.545521\pi\)
0.785925 + 0.618322i \(0.212187\pi\)
\(588\) 1.73205 1.00000i 0.0714286 0.0412393i
\(589\) 9.00000 15.5885i 0.370839 0.642311i
\(590\) 0 0
\(591\) 5.50000 9.52628i 0.226240 0.391859i
\(592\) −7.79423 4.50000i −0.320341 0.184949i
\(593\) 36.0000i 1.47834i −0.673517 0.739171i \(-0.735217\pi\)
0.673517 0.739171i \(-0.264783\pi\)
\(594\) −1.50000 + 2.59808i −0.0615457 + 0.106600i
\(595\) 0 0
\(596\) 1.00000 + 1.73205i 0.0409616 + 0.0709476i
\(597\) 10.0000i 0.409273i
\(598\) −3.46410 14.0000i −0.141658 0.572503i
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) −10.5000 18.1865i −0.428304 0.741844i 0.568419 0.822739i \(-0.307555\pi\)
−0.996723 + 0.0808953i \(0.974222\pi\)
\(602\) −25.9808 15.0000i −1.05890 0.611354i
\(603\) 8.00000i 0.325785i
\(604\) 7.00000 12.1244i 0.284826 0.493333i
\(605\) 0 0
\(606\) 0 0
\(607\) −23.3827 13.5000i −0.949074 0.547948i −0.0562808 0.998415i \(-0.517924\pi\)
−0.892793 + 0.450467i \(0.851258\pi\)
\(608\) 2.59808 1.50000i 0.105366 0.0608330i
\(609\) 6.00000 + 10.3923i 0.243132 + 0.421117i
\(610\) 0 0
\(611\) 7.50000 + 7.79423i 0.303418 + 0.315321i
\(612\) 0 0
\(613\) 6.06218 3.50000i 0.244849 0.141364i −0.372554 0.928010i \(-0.621518\pi\)
0.617403 + 0.786647i \(0.288185\pi\)
\(614\) −13.0000 22.5167i −0.524637 0.908698i
\(615\) 0 0
\(616\) 9.00000 0.362620
\(617\) 25.9808 + 15.0000i 1.04595 + 0.603877i 0.921512 0.388351i \(-0.126955\pi\)
0.124434 + 0.992228i \(0.460288\pi\)
\(618\) −12.9904 7.50000i −0.522550 0.301694i
\(619\) 23.0000 0.924448 0.462224 0.886763i \(-0.347052\pi\)
0.462224 + 0.886763i \(0.347052\pi\)
\(620\) 0 0
\(621\) −2.00000 3.46410i −0.0802572 0.139010i
\(622\) 3.46410 2.00000i 0.138898 0.0801927i
\(623\) 9.00000i 0.360577i
\(624\) 3.50000 0.866025i 0.140112 0.0346688i
\(625\) 0 0
\(626\) 13.0000 + 22.5167i 0.519584 + 0.899947i
\(627\) 7.79423 4.50000i 0.311272 0.179713i
\(628\) −14.7224 8.50000i −0.587489 0.339187i
\(629\) 0 0
\(630\) 0 0
\(631\) −6.00000 + 10.3923i −0.238856 + 0.413711i −0.960386 0.278672i \(-0.910106\pi\)
0.721530 + 0.692383i \(0.243439\pi\)
\(632\) 6.00000i 0.238667i
\(633\) −7.79423 4.50000i −0.309793 0.178859i
\(634\) −8.50000 14.7224i −0.337578 0.584702i
\(635\) 0 0
\(636\) −9.00000 −0.356873
\(637\) −6.92820 2.00000i −0.274505 0.0792429i
\(638\) 12.0000i 0.475085i
\(639\) −7.00000 12.1244i −0.276916 0.479632i
\(640\) 0 0
\(641\) −17.5000 + 30.3109i −0.691208 + 1.19721i 0.280234 + 0.959932i \(0.409588\pi\)
−0.971442 + 0.237276i \(0.923745\pi\)
\(642\) 2.00000i 0.0789337i
\(643\) 24.2487 + 14.0000i 0.956276 + 0.552106i 0.895025 0.446016i \(-0.147158\pi\)
0.0612510 + 0.998122i \(0.480491\pi\)
\(644\) −6.00000 + 10.3923i −0.236433 + 0.409514i
\(645\) 0 0
\(646\) 0 0
\(647\) −38.9711 + 22.5000i −1.53211 + 0.884566i −0.532850 + 0.846210i \(0.678879\pi\)
−0.999264 + 0.0383563i \(0.987788\pi\)
\(648\) 0.866025 0.500000i 0.0340207 0.0196419i
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) −18.0000 −0.705476
\(652\) 17.3205 10.0000i 0.678323 0.391630i
\(653\) −2.59808 + 1.50000i −0.101671 + 0.0586995i −0.549973 0.835182i \(-0.685362\pi\)
0.448303 + 0.893882i \(0.352029\pi\)
\(654\) −1.00000 + 1.73205i −0.0391031 + 0.0677285i
\(655\) 0 0
\(656\) 5.00000 8.66025i 0.195217 0.338126i
\(657\) 6.92820 + 4.00000i 0.270295 + 0.156055i
\(658\) 9.00000i 0.350857i
\(659\) 2.00000 3.46410i 0.0779089 0.134942i −0.824439 0.565951i \(-0.808509\pi\)
0.902348 + 0.431009i \(0.141842\pi\)
\(660\) 0 0
\(661\) −15.0000 25.9808i −0.583432 1.01053i −0.995069 0.0991864i \(-0.968376\pi\)
0.411636 0.911348i \(-0.364957\pi\)
\(662\) 28.0000i 1.08825i
\(663\) 0 0
\(664\) 16.0000 0.620920
\(665\) 0 0
\(666\) 4.50000 + 7.79423i 0.174371 + 0.302020i
\(667\) −13.8564 8.00000i −0.536522 0.309761i
\(668\) 9.00000i 0.348220i
\(669\) 5.50000 9.52628i 0.212642 0.368307i
\(670\) 0 0
\(671\) 18.0000 0.694882
\(672\) −2.59808 1.50000i −0.100223 0.0578638i
\(673\) −41.5692 + 24.0000i −1.60238 + 0.925132i −0.611365 + 0.791349i \(0.709379\pi\)
−0.991011 + 0.133783i \(0.957287\pi\)
\(674\) −3.00000 5.19615i −0.115556 0.200148i
\(675\) 0 0
\(676\) −11.0000 6.92820i −0.423077 0.266469i
\(677\) 6.00000i 0.230599i −0.993331 0.115299i \(-0.963217\pi\)
0.993331 0.115299i \(-0.0367827\pi\)
\(678\) 6.92820 4.00000i 0.266076 0.153619i
\(679\) 12.0000 + 20.7846i 0.460518 + 0.797640i
\(680\) 0 0
\(681\) 16.0000 0.613121
\(682\) −15.5885 9.00000i −0.596913 0.344628i
\(683\) 25.9808 + 15.0000i 0.994126 + 0.573959i 0.906505 0.422195i \(-0.138740\pi\)
0.0876211 + 0.996154i \(0.472074\pi\)
\(684\) −3.00000 −0.114708
\(685\) 0 0
\(686\) −7.50000 12.9904i −0.286351 0.495975i
\(687\) 8.66025 5.00000i 0.330409 0.190762i
\(688\) 10.0000i 0.381246i
\(689\) 22.5000 + 23.3827i 0.857182 + 0.890809i
\(690\) 0 0
\(691\) 3.50000 + 6.06218i 0.133146 + 0.230616i 0.924888 0.380240i \(-0.124159\pi\)
−0.791742 + 0.610856i \(0.790825\pi\)
\(692\) 11.2583 6.50000i 0.427977 0.247093i
\(693\) −7.79423 4.50000i −0.296078 0.170941i
\(694\) −24.0000 −0.911028
\(695\) 0 0
\(696\) 2.00000 3.46410i 0.0758098 0.131306i
\(697\) 0 0
\(698\) −13.8564 8.00000i −0.524473 0.302804i
\(699\) 3.00000 + 5.19615i 0.113470 + 0.196537i
\(700\) 0 0
\(701\) 24.0000 0.906467 0.453234 0.891392i \(-0.350270\pi\)
0.453234 + 0.891392i \(0.350270\pi\)
\(702\) −3.46410 1.00000i −0.130744 0.0377426i
\(703\) 27.0000i 1.01832i
\(704\) −1.50000 2.59808i −0.0565334 0.0979187i
\(705\) 0 0
\(706\) −4.00000 + 6.92820i −0.150542 + 0.260746i
\(707\) 0 0
\(708\) −10.3923 6.00000i −0.390567 0.225494i
\(709\) −20.0000 + 34.6410i −0.751116 + 1.30097i 0.196167 + 0.980571i \(0.437151\pi\)
−0.947282 + 0.320400i \(0.896183\pi\)
\(710\) 0 0
\(711\) −3.00000 + 5.19615i −0.112509 + 0.194871i
\(712\) 2.59808 1.50000i 0.0973670 0.0562149i
\(713\) 20.7846 12.0000i 0.778390 0.449404i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 22.5167 13.0000i 0.840900 0.485494i
\(718\) 25.9808 15.0000i 0.969593 0.559795i
\(719\) −18.0000 + 31.1769i −0.671287 + 1.16270i 0.306253 + 0.951950i \(0.400925\pi\)
−0.977539 + 0.210752i \(0.932409\pi\)
\(720\) 0 0
\(721\) 22.5000 38.9711i 0.837944 1.45136i
\(722\) −8.66025 5.00000i −0.322301 0.186081i
\(723\) 7.00000i 0.260333i
\(724\) −5.00000 + 8.66025i −0.185824 + 0.321856i
\(725\) 0 0
\(726\) 1.00000 + 1.73205i 0.0371135 + 0.0642824i
\(727\) 3.00000i 0.111264i −0.998451 0.0556319i \(-0.982283\pi\)
0.998451 0.0556319i \(-0.0177173\pi\)
\(728\) 2.59808 + 10.5000i 0.0962911 + 0.389156i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) −5.19615 3.00000i −0.192055 0.110883i
\(733\) 53.0000i 1.95760i −0.204819 0.978800i \(-0.565661\pi\)
0.204819 0.978800i \(-0.434339\pi\)
\(734\) −4.00000 + 6.92820i −0.147643 + 0.255725i
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) −20.7846 12.0000i −0.765611 0.442026i
\(738\) −8.66025 + 5.00000i −0.318788 + 0.184053i
\(739\) 5.50000 + 9.52628i 0.202321 + 0.350430i 0.949276 0.314445i \(-0.101818\pi\)
−0.746955 + 0.664875i \(0.768485\pi\)
\(740\) 0 0
\(741\) 7.50000 + 7.79423i 0.275519 + 0.286328i
\(742\) 27.0000i 0.991201i
\(743\) −41.5692 + 24.0000i −1.52503 + 0.880475i −0.525467 + 0.850814i \(0.676109\pi\)
−0.999560 + 0.0296605i \(0.990557\pi\)
\(744\) 3.00000 + 5.19615i 0.109985 + 0.190500i
\(745\) 0 0
\(746\) 26.0000 0.951928
\(747\) −13.8564 8.00000i −0.506979 0.292705i
\(748\) 0 0
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 12.0000 + 20.7846i 0.437886 + 0.758441i 0.997526 0.0702946i \(-0.0223939\pi\)
−0.559640 + 0.828736i \(0.689061\pi\)
\(752\) −2.59808 + 1.50000i −0.0947421 + 0.0546994i
\(753\) 1.00000i 0.0364420i
\(754\) −14.0000 + 3.46410i −0.509850 + 0.126155i
\(755\) 0 0
\(756\) 1.50000 + 2.59808i 0.0545545 + 0.0944911i
\(757\) 14.7224 8.50000i 0.535096 0.308938i −0.207993 0.978130i \(-0.566693\pi\)
0.743089 + 0.669193i \(0.233360\pi\)
\(758\) 28.5788 + 16.5000i 1.03803 + 0.599307i
\(759\) 12.0000 0.435572
\(760\) 0 0
\(761\) 15.5000 26.8468i 0.561875 0.973195i −0.435458 0.900209i \(-0.643414\pi\)
0.997333 0.0729864i \(-0.0232530\pi\)
\(762\) 3.00000i 0.108679i
\(763\) −5.19615 3.00000i −0.188113 0.108607i
\(764\) −3.00000 5.19615i −0.108536 0.187990i
\(765\) 0 0
\(766\) −4.00000 −0.144526
\(767\) 10.3923 + 42.0000i 0.375244 + 1.51653i
\(768\) 1.00000i 0.0360844i
\(769\) 23.0000 + 39.8372i 0.829401 + 1.43657i 0.898509 + 0.438956i \(0.144652\pi\)
−0.0691074 + 0.997609i \(0.522015\pi\)
\(770\) 0 0
\(771\) 6.00000 10.3923i 0.216085 0.374270i
\(772\) 8.00000i 0.287926i
\(773\) −6.06218 3.50000i −0.218041 0.125886i 0.387002 0.922079i \(-0.373511\pi\)
−0.605043 + 0.796193i \(0.706844\pi\)
\(774\) 5.00000 8.66025i 0.179721 0.311286i
\(775\) 0 0
\(776\) 4.00000 6.92820i 0.143592 0.248708i
\(777\) −23.3827 + 13.5000i −0.838849 + 0.484310i
\(778\) 20.7846 12.0000i 0.745164 0.430221i
\(779\) 30.0000 1.07486
\(780\) 0 0
\(781\) 42.0000 1.50288
\(782\) 0 0
\(783\) −3.46410 + 2.00000i −0.123797 + 0.0714742i
\(784\) 1.00000 1.73205i 0.0357143 0.0618590i
\(785\) 0 0
\(786\) 1.50000 2.59808i 0.0535032 0.0926703i
\(787\) 31.1769 + 18.0000i 1.11134 + 0.641631i 0.939175 0.343438i \(-0.111592\pi\)
0.172162 + 0.985069i \(0.444925\pi\)
\(788\) 11.0000i 0.391859i
\(789\) 15.5000 26.8468i 0.551815 0.955771i
\(790\) 0 0
\(791\) 12.0000 + 20.7846i 0.426671 + 0.739016i
\(792\) 3.00000i 0.106600i
\(793\) 5.19615 + 21.0000i 0.184521 + 0.745732i
\(794\) −23.0000 −0.816239
\(795\) 0 0
\(796\) 5.00000 + 8.66025i 0.177220 + 0.306955i
\(797\) 36.3731 + 21.0000i 1.28840 + 0.743858i 0.978369 0.206868i \(-0.0663271\pi\)
0.310031 + 0.950726i \(0.399660\pi\)
\(798\) 9.00000i 0.318597i
\(799\) 0 0
\(800\) 0 0
\(801\) −3.00000 −0.106000
\(802\) −23.3827 13.5000i −0.825671 0.476702i
\(803\) −20.7846 + 12.0000i −0.733473 + 0.423471i
\(804\) 4.00000 + 6.92820i 0.141069 + 0.244339i
\(805\) 0 0
\(806\) 6.00000 20.7846i 0.211341 0.732107i
\(807\) 4.00000i 0.140807i
\(808\) 0 0
\(809\) −5.00000 8.66025i −0.175791 0.304478i 0.764644 0.644453i \(-0.222915\pi\)
−0.940435 + 0.339975i \(0.889582\pi\)
\(810\) 0 0
\(811\) −31.0000 −1.08856 −0.544279 0.838905i \(-0.683197\pi\)
−0.544279 + 0.838905i \(0.683197\pi\)
\(812\) 10.3923 + 6.00000i 0.364698 + 0.210559i
\(813\) 10.3923 + 6.00000i 0.364474 + 0.210429i
\(814\) −27.0000 −0.946350
\(815\) 0 0
\(816\) 0 0
\(817\) −25.9808 + 15.0000i −0.908952 + 0.524784i
\(818\) 7.00000i 0.244749i
\(819\) 3.00000 10.3923i 0.104828 0.363137i
\(820\) 0 0
\(821\) −25.0000 43.3013i −0.872506 1.51122i −0.859396 0.511311i \(-0.829160\pi\)
−0.0131101 0.999914i \(-0.504173\pi\)
\(822\) 10.3923 6.00000i 0.362473 0.209274i
\(823\) −9.52628 5.50000i −0.332065 0.191718i 0.324692 0.945820i \(-0.394739\pi\)
−0.656758 + 0.754102i \(0.728073\pi\)
\(824\) −15.0000 −0.522550
\(825\) 0 0
\(826\) 18.0000 31.1769i 0.626300 1.08478i
\(827\) 18.0000i 0.625921i −0.949766 0.312961i \(-0.898679\pi\)
0.949766 0.312961i \(-0.101321\pi\)
\(828\) −3.46410 2.00000i −0.120386 0.0695048i
\(829\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(830\) 0 0
\(831\) 31.0000 1.07538
\(832\) 2.59808 2.50000i 0.0900721 0.0866719i
\(833\) 0 0
\(834\) −8.50000 14.7224i −0.294331 0.509796i
\(835\) 0 0
\(836\) 4.50000 7.79423i 0.155636 0.269569i
\(837\) 6.00000i 0.207390i
\(838\) 10.3923 + 6.00000i 0.358996 + 0.207267i
\(839\) −3.00000 + 5.19615i −0.103572 + 0.179391i −0.913154 0.407615i \(-0.866360\pi\)
0.809582 + 0.587007i \(0.199694\pi\)
\(840\) 0 0
\(841\) 6.50000 11.2583i 0.224138 0.388218i
\(842\) 24.2487 14.0000i 0.835666 0.482472i
\(843\) −25.9808 + 15.0000i −0.894825 + 0.516627i
\(844\) −9.00000 −0.309793
\(845\) 0 0
\(846\) 3.00000 0.103142
\(847\) −5.19615 + 3.00000i −0.178542 + 0.103081i
\(848\) −7.79423 + 4.50000i −0.267655 + 0.154531i
\(849\) −3.00000 + 5.19615i −0.102960 + 0.178331i
\(850\) 0 0
\(851\) 18.0000 31.1769i 0.617032 1.06873i
\(852\) −12.1244 7.00000i −0.415374 0.239816i
\(853\) 26.0000i 0.890223i 0.895475 + 0.445112i \(0.146836\pi\)
−0.895475 + 0.445112i \(0.853164\pi\)
\(854\) 9.00000 15.5885i 0.307974 0.533426i
\(855\) 0 0
\(856\) 1.00000 + 1.73205i 0.0341793 + 0.0592003i
\(857\) 50.0000i 1.70797i −0.520300 0.853984i \(-0.674180\pi\)
0.520300 0.853984i \(-0.325820\pi\)
\(858\) 7.79423 7.50000i 0.266091 0.256046i
\(859\) 5.00000 0.170598 0.0852989 0.996355i \(-0.472815\pi\)
0.0852989 + 0.996355i \(0.472815\pi\)
\(860\) 0 0
\(861\) −15.0000 25.9808i −0.511199 0.885422i
\(862\) −10.3923 6.00000i −0.353963 0.204361i
\(863\) 24.0000i 0.816970i 0.912765 + 0.408485i \(0.133943\pi\)
−0.912765 + 0.408485i \(0.866057\pi\)
\(864\) 0.500000 0.866025i 0.0170103 0.0294628i
\(865\) 0 0
\(866\) 16.0000 0.543702
\(867\) −14.7224 8.50000i −0.500000 0.288675i
\(868\) −15.5885 + 9.00000i −0.529107 + 0.305480i
\(869\) −9.00000 15.5885i −0.305304 0.528802i
\(870\) 0 0
\(871\) 8.00000 27.7128i 0.271070 0.939013i
\(872\) 2.00000i 0.0677285i
\(873\) −6.92820 + 4.00000i −0.234484 + 0.135379i
\(874\) 6.00000 + 10.3923i 0.202953 + 0.351525i
\(875\) 0 0
\(876\) 8.00000 0.270295
\(877\) 32.9090 + 19.0000i 1.11126 + 0.641584i 0.939155 0.343495i \(-0.111611\pi\)
0.172102 + 0.985079i \(0.444944\pi\)
\(878\) 25.9808 + 15.0000i 0.876808 + 0.506225i
\(879\) −1.00000 −0.0337292
\(880\) 0 0
\(881\) 11.5000 + 19.9186i 0.387445 + 0.671074i 0.992105 0.125409i \(-0.0400244\pi\)
−0.604660 + 0.796484i \(0.706691\pi\)
\(882\) −1.73205 + 1.00000i −0.0583212 + 0.0336718i
\(883\) 22.0000i 0.740359i −0.928960 0.370179i \(-0.879296\pi\)
0.928960 0.370179i \(-0.120704\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −5.00000 8.66025i −0.167978 0.290947i
\(887\) 7.79423 4.50000i 0.261705 0.151095i −0.363407 0.931630i \(-0.618387\pi\)
0.625112 + 0.780535i \(0.285053\pi\)
\(888\) 7.79423 + 4.50000i 0.261557 + 0.151010i
\(889\) −9.00000 −0.301850
\(890\) 0 0
\(891\) 1.50000 2.59808i 0.0502519 0.0870388i
\(892\) 11.0000i 0.368307i
\(893\) −7.79423 4.50000i −0.260824 0.150587i
\(894\) −1.00000 1.73205i −0.0334450 0.0579284i
\(895\) 0 0
\(896\) −3.00000 −0.100223
\(897\) 3.46410 + 14.0000i 0.115663 + 0.467446i
\(898\) 35.0000i 1.16797i
\(899\) −12.0000 20.7846i −0.400222 0.693206i
\(900\) 0 0
\(901\) 0 0
\(902\) 30.0000i 0.998891i
\(903\) 25.9808 + 15.0000i 0.864586 + 0.499169i
\(904\) 4.00000 6.92820i 0.133038 0.230429i
\(905\) 0 0
\(906\) −7.00000 + 12.1244i −0.232559 + 0.402805i
\(907\) −12.1244 + 7.00000i −0.402583 + 0.232431i −0.687598 0.726092i \(-0.741335\pi\)
0.285015 + 0.958523i \(0.408001\pi\)
\(908\) 13.8564 8.00000i 0.459841 0.265489i
\(909\) 0 0
\(910\) 0 0
\(911\) 28.0000 0.927681 0.463841 0.885919i \(-0.346471\pi\)
0.463841 + 0.885919i \(0.346471\pi\)
\(912\) −2.59808 + 1.50000i −0.0860309 + 0.0496700i
\(913\) 41.5692 24.0000i 1.37574 0.794284i
\(914\) 21.0000 36.3731i 0.694618 1.20311i
\(915\) 0 0
\(916\) 5.00000 8.66025i 0.165205 0.286143i
\(917\) 7.79423 + 4.50000i 0.257388 + 0.148603i
\(918\) 0 0
\(919\) 7.00000 12.1244i 0.230909 0.399946i −0.727167 0.686461i \(-0.759163\pi\)
0.958076 + 0.286515i \(0.0924968\pi\)
\(920\) 0 0
\(921\) 13.0000 + 22.5167i 0.428365 + 0.741949i
\(922\) 32.0000i 1.05386i
\(923\) 12.1244 + 49.0000i 0.399078 + 1.61285i
\(924\) −9.00000 −0.296078
\(925\) 0 0
\(926\) −12.0000 20.7846i −0.394344 0.683025i
\(927\) 12.9904 + 7.50000i 0.426660 + 0.246332i
\(928\) 4.00000i 0.131306i
\(929\) 1.00000 1.73205i 0.0328089 0.0568267i −0.849155 0.528144i \(-0.822888\pi\)
0.881964 + 0.471317i \(0.156221\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 5.19615 + 3.00000i 0.170206 + 0.0982683i
\(933\) −3.46410 + 2.00000i −0.113410 + 0.0654771i
\(934\) −4.00000 6.92820i −0.130884 0.226698i
\(935\) 0 0
\(936\) −3.50000 + 0.866025i −0.114401 + 0.0283069i
\(937\) 14.0000i 0.457360i 0.973502 + 0.228680i \(0.0734410\pi\)
−0.973502 + 0.228680i \(0.926559\pi\)
\(938\) −20.7846 + 12.0000i −0.678642 + 0.391814i
\(939\) −13.0000 22.5167i −0.424239 0.734803i
\(940\) 0 0
\(941\) −32.0000 −1.04317 −0.521585 0.853199i \(-0.674659\pi\)
−0.521585 + 0.853199i \(0.674659\pi\)
\(942\) 14.7224 + 8.50000i 0.479683 + 0.276945i
\(943\) 34.6410 + 20.0000i 1.12807 + 0.651290i
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 15.0000 + 25.9808i 0.487692 + 0.844707i
\(947\) 15.5885 9.00000i 0.506557 0.292461i −0.224860 0.974391i \(-0.572193\pi\)
0.731417 + 0.681930i \(0.238859\pi\)
\(948\) 6.00000i 0.194871i
\(949\) −20.0000 20.7846i −0.649227 0.674697i
\(950\) 0 0
\(951\) 8.50000 + 14.7224i 0.275631 + 0.477408i
\(952\) 0 0
\(953\) 29.4449 + 17.0000i 0.953813 + 0.550684i 0.894263 0.447541i \(-0.147700\pi\)
0.0595495 + 0.998225i \(0.481034\pi\)
\(954\) 9.00000 0.291386
\(955\) 0 0
\(956\) 13.0000 22.5167i 0.420450 0.728241i
\(957\) 12.0000i 0.387905i
\(958\) −10.3923 6.00000i −0.335760 0.193851i
\(959\) 18.0000 + 31.1769i 0.581250 + 1.00676i
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) −7.79423 31.5000i −0.251296 1.01560i
\(963\) 2.00000i 0.0644491i
\(964\) 3.50000 + 6.06218i 0.112727 + 0.195250i
\(965\) 0 0
\(966\) 6.00000 10.3923i 0.193047 0.334367i
\(967\) 25.0000i 0.803946i 0.915652 + 0.401973i \(0.131675\pi\)
−0.915652 + 0.401973i \(0.868325\pi\)
\(968\) 1.73205 + 1.00000i 0.0556702 + 0.0321412i
\(969\) 0 0
\(970\) 0 0
\(971\) −7.50000 + 12.9904i −0.240686 + 0.416881i −0.960910 0.276861i \(-0.910706\pi\)
0.720224 + 0.693742i \(0.244039\pi\)
\(972\) −0.866025 + 0.500000i −0.0277778 + 0.0160375i
\(973\) 44.1673 25.5000i 1.41594 0.817492i
\(974\) 29.0000 0.929220
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) −38.1051 + 22.0000i −1.21909 + 0.703842i −0.964723 0.263265i \(-0.915201\pi\)
−0.254367 + 0.967108i \(0.581867\pi\)
\(978\) −17.3205 + 10.0000i −0.553849 + 0.319765i
\(979\) 4.50000 7.79423i 0.143821 0.249105i
\(980\) 0 0
\(981\) 1.00000 1.73205i 0.0319275 0.0553001i
\(982\) 4.33013 + 2.50000i 0.138180 + 0.0797782i
\(983\) 55.0000i 1.75423i −0.480283 0.877114i \(-0.659466\pi\)
0.480283 0.877114i \(-0.340534\pi\)
\(984\) −5.00000 + 8.66025i −0.159394 + 0.276079i
\(985\) 0 0
\(986\) 0 0
\(987\) 9.00000i 0.286473i
\(988\) 10.3923 + 3.00000i 0.330623 + 0.0954427i
\(989\) −40.0000 −1.27193
\(990\) 0 0
\(991\) −29.0000 50.2295i −0.921215 1.59559i −0.797537 0.603269i \(-0.793864\pi\)
−0.123678 0.992322i \(-0.539469\pi\)
\(992\) 5.19615 + 3.00000i 0.164978 + 0.0952501i
\(993\) 28.0000i 0.888553i
\(994\) 21.0000 36.3731i 0.666080 1.15368i
\(995\) 0 0
\(996\) −16.0000 −0.506979
\(997\) −40.7032 23.5000i −1.28908 0.744252i −0.310592 0.950543i \(-0.600527\pi\)
−0.978491 + 0.206291i \(0.933861\pi\)
\(998\) 17.3205 10.0000i 0.548271 0.316544i
\(999\) −4.50000 7.79423i −0.142374 0.246598i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1950.2.z.d.1849.1 4
5.2 odd 4 1950.2.i.f.601.1 2
5.3 odd 4 390.2.i.e.211.1 yes 2
5.4 even 2 inner 1950.2.z.d.1849.2 4
13.9 even 3 inner 1950.2.z.d.1699.2 4
15.8 even 4 1170.2.i.c.991.1 2
65.3 odd 12 5070.2.a.b.1.1 1
65.9 even 6 inner 1950.2.z.d.1699.1 4
65.22 odd 12 1950.2.i.f.451.1 2
65.23 odd 12 5070.2.a.r.1.1 1
65.28 even 12 5070.2.b.b.1351.2 2
65.48 odd 12 390.2.i.e.61.1 2
65.63 even 12 5070.2.b.b.1351.1 2
195.113 even 12 1170.2.i.c.451.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.i.e.61.1 2 65.48 odd 12
390.2.i.e.211.1 yes 2 5.3 odd 4
1170.2.i.c.451.1 2 195.113 even 12
1170.2.i.c.991.1 2 15.8 even 4
1950.2.i.f.451.1 2 65.22 odd 12
1950.2.i.f.601.1 2 5.2 odd 4
1950.2.z.d.1699.1 4 65.9 even 6 inner
1950.2.z.d.1699.2 4 13.9 even 3 inner
1950.2.z.d.1849.1 4 1.1 even 1 trivial
1950.2.z.d.1849.2 4 5.4 even 2 inner
5070.2.a.b.1.1 1 65.3 odd 12
5070.2.a.r.1.1 1 65.23 odd 12
5070.2.b.b.1351.1 2 65.63 even 12
5070.2.b.b.1351.2 2 65.28 even 12