Properties

Label 1950.2.z.d.1699.1
Level $1950$
Weight $2$
Character 1950.1699
Analytic conductor $15.571$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1950,2,Mod(1699,1950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1950.1699"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1950, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.z (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,-2,0,0,2,0,6,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1699.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1950.1699
Dual form 1950.2.z.d.1849.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{6} +(-2.59808 + 1.50000i) q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(1.50000 - 2.59808i) q^{11} +1.00000i q^{12} +(-2.59808 - 2.50000i) q^{13} +3.00000 q^{14} +(-0.500000 + 0.866025i) q^{16} -1.00000i q^{18} +(1.50000 + 2.59808i) q^{19} -3.00000 q^{21} +(-2.59808 + 1.50000i) q^{22} +(3.46410 + 2.00000i) q^{23} +(0.500000 - 0.866025i) q^{24} +(1.00000 + 3.46410i) q^{26} +1.00000i q^{27} +(-2.59808 - 1.50000i) q^{28} +(-2.00000 + 3.46410i) q^{29} +6.00000 q^{31} +(0.866025 - 0.500000i) q^{32} +(2.59808 - 1.50000i) q^{33} +(-0.500000 + 0.866025i) q^{36} +(7.79423 + 4.50000i) q^{37} -3.00000i q^{38} +(-1.00000 - 3.46410i) q^{39} +(5.00000 - 8.66025i) q^{41} +(2.59808 + 1.50000i) q^{42} +(-8.66025 + 5.00000i) q^{43} +3.00000 q^{44} +(-2.00000 - 3.46410i) q^{46} +3.00000i q^{47} +(-0.866025 + 0.500000i) q^{48} +(1.00000 - 1.73205i) q^{49} +(0.866025 - 3.50000i) q^{52} +9.00000i q^{53} +(0.500000 - 0.866025i) q^{54} +(1.50000 + 2.59808i) q^{56} +3.00000i q^{57} +(3.46410 - 2.00000i) q^{58} +(6.00000 + 10.3923i) q^{59} +(3.00000 + 5.19615i) q^{61} +(-5.19615 - 3.00000i) q^{62} +(-2.59808 - 1.50000i) q^{63} -1.00000 q^{64} -3.00000 q^{66} +(-6.92820 - 4.00000i) q^{67} +(2.00000 + 3.46410i) q^{69} +(7.00000 + 12.1244i) q^{71} +(0.866025 - 0.500000i) q^{72} -8.00000i q^{73} +(-4.50000 - 7.79423i) q^{74} +(-1.50000 + 2.59808i) q^{76} +9.00000i q^{77} +(-0.866025 + 3.50000i) q^{78} -6.00000 q^{79} +(-0.500000 + 0.866025i) q^{81} +(-8.66025 + 5.00000i) q^{82} +16.0000i q^{83} +(-1.50000 - 2.59808i) q^{84} +10.0000 q^{86} +(-3.46410 + 2.00000i) q^{87} +(-2.59808 - 1.50000i) q^{88} +(-1.50000 + 2.59808i) q^{89} +(10.5000 + 2.59808i) q^{91} +4.00000i q^{92} +(5.19615 + 3.00000i) q^{93} +(1.50000 - 2.59808i) q^{94} +1.00000 q^{96} +(-6.92820 + 4.00000i) q^{97} +(-1.73205 + 1.00000i) q^{98} +3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{6} + 2 q^{9} + 6 q^{11} + 12 q^{14} - 2 q^{16} + 6 q^{19} - 12 q^{21} + 2 q^{24} + 4 q^{26} - 8 q^{29} + 24 q^{31} - 2 q^{36} - 4 q^{39} + 20 q^{41} + 12 q^{44} - 8 q^{46} + 4 q^{49}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) −2.59808 + 1.50000i −0.981981 + 0.566947i −0.902867 0.429919i \(-0.858542\pi\)
−0.0791130 + 0.996866i \(0.525209\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −2.59808 2.50000i −0.720577 0.693375i
\(14\) 3.00000 0.801784
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 1.50000 + 2.59808i 0.344124 + 0.596040i 0.985194 0.171442i \(-0.0548427\pi\)
−0.641071 + 0.767482i \(0.721509\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) −2.59808 + 1.50000i −0.553912 + 0.319801i
\(23\) 3.46410 + 2.00000i 0.722315 + 0.417029i 0.815604 0.578610i \(-0.196405\pi\)
−0.0932891 + 0.995639i \(0.529738\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) 0 0
\(26\) 1.00000 + 3.46410i 0.196116 + 0.679366i
\(27\) 1.00000i 0.192450i
\(28\) −2.59808 1.50000i −0.490990 0.283473i
\(29\) −2.00000 + 3.46410i −0.371391 + 0.643268i −0.989780 0.142605i \(-0.954452\pi\)
0.618389 + 0.785872i \(0.287786\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 2.59808 1.50000i 0.452267 0.261116i
\(34\) 0 0
\(35\) 0 0
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 7.79423 + 4.50000i 1.28136 + 0.739795i 0.977098 0.212792i \(-0.0682556\pi\)
0.304266 + 0.952587i \(0.401589\pi\)
\(38\) 3.00000i 0.486664i
\(39\) −1.00000 3.46410i −0.160128 0.554700i
\(40\) 0 0
\(41\) 5.00000 8.66025i 0.780869 1.35250i −0.150567 0.988600i \(-0.548110\pi\)
0.931436 0.363905i \(-0.118557\pi\)
\(42\) 2.59808 + 1.50000i 0.400892 + 0.231455i
\(43\) −8.66025 + 5.00000i −1.32068 + 0.762493i −0.983836 0.179069i \(-0.942691\pi\)
−0.336840 + 0.941562i \(0.609358\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) −2.00000 3.46410i −0.294884 0.510754i
\(47\) 3.00000i 0.437595i 0.975770 + 0.218797i \(0.0702134\pi\)
−0.975770 + 0.218797i \(0.929787\pi\)
\(48\) −0.866025 + 0.500000i −0.125000 + 0.0721688i
\(49\) 1.00000 1.73205i 0.142857 0.247436i
\(50\) 0 0
\(51\) 0 0
\(52\) 0.866025 3.50000i 0.120096 0.485363i
\(53\) 9.00000i 1.23625i 0.786082 + 0.618123i \(0.212106\pi\)
−0.786082 + 0.618123i \(0.787894\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) 0 0
\(56\) 1.50000 + 2.59808i 0.200446 + 0.347183i
\(57\) 3.00000i 0.397360i
\(58\) 3.46410 2.00000i 0.454859 0.262613i
\(59\) 6.00000 + 10.3923i 0.781133 + 1.35296i 0.931282 + 0.364299i \(0.118692\pi\)
−0.150148 + 0.988663i \(0.547975\pi\)
\(60\) 0 0
\(61\) 3.00000 + 5.19615i 0.384111 + 0.665299i 0.991645 0.128994i \(-0.0411748\pi\)
−0.607535 + 0.794293i \(0.707841\pi\)
\(62\) −5.19615 3.00000i −0.659912 0.381000i
\(63\) −2.59808 1.50000i −0.327327 0.188982i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −3.00000 −0.369274
\(67\) −6.92820 4.00000i −0.846415 0.488678i 0.0130248 0.999915i \(-0.495854\pi\)
−0.859440 + 0.511237i \(0.829187\pi\)
\(68\) 0 0
\(69\) 2.00000 + 3.46410i 0.240772 + 0.417029i
\(70\) 0 0
\(71\) 7.00000 + 12.1244i 0.830747 + 1.43890i 0.897447 + 0.441123i \(0.145420\pi\)
−0.0666994 + 0.997773i \(0.521247\pi\)
\(72\) 0.866025 0.500000i 0.102062 0.0589256i
\(73\) 8.00000i 0.936329i −0.883641 0.468165i \(-0.844915\pi\)
0.883641 0.468165i \(-0.155085\pi\)
\(74\) −4.50000 7.79423i −0.523114 0.906061i
\(75\) 0 0
\(76\) −1.50000 + 2.59808i −0.172062 + 0.298020i
\(77\) 9.00000i 1.02565i
\(78\) −0.866025 + 3.50000i −0.0980581 + 0.396297i
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −8.66025 + 5.00000i −0.956365 + 0.552158i
\(83\) 16.0000i 1.75623i 0.478451 + 0.878114i \(0.341198\pi\)
−0.478451 + 0.878114i \(0.658802\pi\)
\(84\) −1.50000 2.59808i −0.163663 0.283473i
\(85\) 0 0
\(86\) 10.0000 1.07833
\(87\) −3.46410 + 2.00000i −0.371391 + 0.214423i
\(88\) −2.59808 1.50000i −0.276956 0.159901i
\(89\) −1.50000 + 2.59808i −0.159000 + 0.275396i −0.934508 0.355942i \(-0.884160\pi\)
0.775509 + 0.631337i \(0.217494\pi\)
\(90\) 0 0
\(91\) 10.5000 + 2.59808i 1.10070 + 0.272352i
\(92\) 4.00000i 0.417029i
\(93\) 5.19615 + 3.00000i 0.538816 + 0.311086i
\(94\) 1.50000 2.59808i 0.154713 0.267971i
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) −6.92820 + 4.00000i −0.703452 + 0.406138i −0.808632 0.588315i \(-0.799792\pi\)
0.105180 + 0.994453i \(0.466458\pi\)
\(98\) −1.73205 + 1.00000i −0.174964 + 0.101015i
\(99\) 3.00000 0.301511
\(100\) 0 0
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 15.0000i 1.47799i −0.673709 0.738997i \(-0.735300\pi\)
0.673709 0.738997i \(-0.264700\pi\)
\(104\) −2.50000 + 2.59808i −0.245145 + 0.254762i
\(105\) 0 0
\(106\) 4.50000 7.79423i 0.437079 0.757042i
\(107\) 1.73205 + 1.00000i 0.167444 + 0.0966736i 0.581380 0.813632i \(-0.302513\pi\)
−0.413936 + 0.910306i \(0.635846\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 4.50000 + 7.79423i 0.427121 + 0.739795i
\(112\) 3.00000i 0.283473i
\(113\) −6.92820 + 4.00000i −0.651751 + 0.376288i −0.789127 0.614231i \(-0.789466\pi\)
0.137376 + 0.990519i \(0.456133\pi\)
\(114\) 1.50000 2.59808i 0.140488 0.243332i
\(115\) 0 0
\(116\) −4.00000 −0.371391
\(117\) 0.866025 3.50000i 0.0800641 0.323575i
\(118\) 12.0000i 1.10469i
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 6.00000i 0.543214i
\(123\) 8.66025 5.00000i 0.780869 0.450835i
\(124\) 3.00000 + 5.19615i 0.269408 + 0.466628i
\(125\) 0 0
\(126\) 1.50000 + 2.59808i 0.133631 + 0.231455i
\(127\) 2.59808 + 1.50000i 0.230542 + 0.133103i 0.610822 0.791768i \(-0.290839\pi\)
−0.380280 + 0.924871i \(0.624172\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) −3.00000 −0.262111 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(132\) 2.59808 + 1.50000i 0.226134 + 0.130558i
\(133\) −7.79423 4.50000i −0.675845 0.390199i
\(134\) 4.00000 + 6.92820i 0.345547 + 0.598506i
\(135\) 0 0
\(136\) 0 0
\(137\) −10.3923 + 6.00000i −0.887875 + 0.512615i −0.873247 0.487278i \(-0.837990\pi\)
−0.0146279 + 0.999893i \(0.504656\pi\)
\(138\) 4.00000i 0.340503i
\(139\) −8.50000 14.7224i −0.720961 1.24874i −0.960615 0.277882i \(-0.910368\pi\)
0.239655 0.970858i \(-0.422966\pi\)
\(140\) 0 0
\(141\) −1.50000 + 2.59808i −0.126323 + 0.218797i
\(142\) 14.0000i 1.17485i
\(143\) −10.3923 + 3.00000i −0.869048 + 0.250873i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −4.00000 + 6.92820i −0.331042 + 0.573382i
\(147\) 1.73205 1.00000i 0.142857 0.0824786i
\(148\) 9.00000i 0.739795i
\(149\) −1.00000 1.73205i −0.0819232 0.141895i 0.822153 0.569267i \(-0.192773\pi\)
−0.904076 + 0.427372i \(0.859440\pi\)
\(150\) 0 0
\(151\) 14.0000 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(152\) 2.59808 1.50000i 0.210732 0.121666i
\(153\) 0 0
\(154\) 4.50000 7.79423i 0.362620 0.628077i
\(155\) 0 0
\(156\) 2.50000 2.59808i 0.200160 0.208013i
\(157\) 17.0000i 1.35675i 0.734717 + 0.678374i \(0.237315\pi\)
−0.734717 + 0.678374i \(0.762685\pi\)
\(158\) 5.19615 + 3.00000i 0.413384 + 0.238667i
\(159\) −4.50000 + 7.79423i −0.356873 + 0.618123i
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) 0.866025 0.500000i 0.0680414 0.0392837i
\(163\) 17.3205 10.0000i 1.35665 0.783260i 0.367477 0.930033i \(-0.380222\pi\)
0.989170 + 0.146772i \(0.0468885\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) 8.00000 13.8564i 0.620920 1.07547i
\(167\) 7.79423 + 4.50000i 0.603136 + 0.348220i 0.770274 0.637713i \(-0.220119\pi\)
−0.167139 + 0.985933i \(0.553453\pi\)
\(168\) 3.00000i 0.231455i
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) 0 0
\(171\) −1.50000 + 2.59808i −0.114708 + 0.198680i
\(172\) −8.66025 5.00000i −0.660338 0.381246i
\(173\) 11.2583 6.50000i 0.855955 0.494186i −0.00670064 0.999978i \(-0.502133\pi\)
0.862656 + 0.505792i \(0.168800\pi\)
\(174\) 4.00000 0.303239
\(175\) 0 0
\(176\) 1.50000 + 2.59808i 0.113067 + 0.195837i
\(177\) 12.0000i 0.901975i
\(178\) 2.59808 1.50000i 0.194734 0.112430i
\(179\) 2.00000 3.46410i 0.149487 0.258919i −0.781551 0.623841i \(-0.785571\pi\)
0.931038 + 0.364922i \(0.118904\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) −7.79423 7.50000i −0.577747 0.555937i
\(183\) 6.00000i 0.443533i
\(184\) 2.00000 3.46410i 0.147442 0.255377i
\(185\) 0 0
\(186\) −3.00000 5.19615i −0.219971 0.381000i
\(187\) 0 0
\(188\) −2.59808 + 1.50000i −0.189484 + 0.109399i
\(189\) −1.50000 2.59808i −0.109109 0.188982i
\(190\) 0 0
\(191\) 3.00000 + 5.19615i 0.217072 + 0.375980i 0.953912 0.300088i \(-0.0970159\pi\)
−0.736839 + 0.676068i \(0.763683\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) −6.92820 4.00000i −0.498703 0.287926i 0.229475 0.973315i \(-0.426299\pi\)
−0.728178 + 0.685388i \(0.759632\pi\)
\(194\) 8.00000 0.574367
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) 9.52628 + 5.50000i 0.678719 + 0.391859i 0.799372 0.600836i \(-0.205166\pi\)
−0.120653 + 0.992695i \(0.538499\pi\)
\(198\) −2.59808 1.50000i −0.184637 0.106600i
\(199\) −5.00000 8.66025i −0.354441 0.613909i 0.632581 0.774494i \(-0.281995\pi\)
−0.987022 + 0.160585i \(0.948662\pi\)
\(200\) 0 0
\(201\) −4.00000 6.92820i −0.282138 0.488678i
\(202\) 0 0
\(203\) 12.0000i 0.842235i
\(204\) 0 0
\(205\) 0 0
\(206\) −7.50000 + 12.9904i −0.522550 + 0.905083i
\(207\) 4.00000i 0.278019i
\(208\) 3.46410 1.00000i 0.240192 0.0693375i
\(209\) 9.00000 0.622543
\(210\) 0 0
\(211\) −4.50000 + 7.79423i −0.309793 + 0.536577i −0.978317 0.207114i \(-0.933593\pi\)
0.668524 + 0.743690i \(0.266926\pi\)
\(212\) −7.79423 + 4.50000i −0.535310 + 0.309061i
\(213\) 14.0000i 0.959264i
\(214\) −1.00000 1.73205i −0.0683586 0.118401i
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) −15.5885 + 9.00000i −1.05821 + 0.610960i
\(218\) −1.73205 1.00000i −0.117309 0.0677285i
\(219\) 4.00000 6.92820i 0.270295 0.468165i
\(220\) 0 0
\(221\) 0 0
\(222\) 9.00000i 0.604040i
\(223\) 9.52628 + 5.50000i 0.637927 + 0.368307i 0.783815 0.620994i \(-0.213271\pi\)
−0.145889 + 0.989301i \(0.546604\pi\)
\(224\) −1.50000 + 2.59808i −0.100223 + 0.173591i
\(225\) 0 0
\(226\) 8.00000 0.532152
\(227\) 13.8564 8.00000i 0.919682 0.530979i 0.0361484 0.999346i \(-0.488491\pi\)
0.883534 + 0.468368i \(0.155158\pi\)
\(228\) −2.59808 + 1.50000i −0.172062 + 0.0993399i
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) −4.50000 + 7.79423i −0.296078 + 0.512823i
\(232\) 3.46410 + 2.00000i 0.227429 + 0.131306i
\(233\) 6.00000i 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) −2.50000 + 2.59808i −0.163430 + 0.169842i
\(235\) 0 0
\(236\) −6.00000 + 10.3923i −0.390567 + 0.676481i
\(237\) −5.19615 3.00000i −0.337526 0.194871i
\(238\) 0 0
\(239\) 26.0000 1.68180 0.840900 0.541190i \(-0.182026\pi\)
0.840900 + 0.541190i \(0.182026\pi\)
\(240\) 0 0
\(241\) −3.50000 6.06218i −0.225455 0.390499i 0.731001 0.682376i \(-0.239053\pi\)
−0.956456 + 0.291877i \(0.905720\pi\)
\(242\) 2.00000i 0.128565i
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) −3.00000 + 5.19615i −0.192055 + 0.332650i
\(245\) 0 0
\(246\) −10.0000 −0.637577
\(247\) 2.59808 10.5000i 0.165312 0.668099i
\(248\) 6.00000i 0.381000i
\(249\) −8.00000 + 13.8564i −0.506979 + 0.878114i
\(250\) 0 0
\(251\) 0.500000 + 0.866025i 0.0315597 + 0.0546630i 0.881374 0.472419i \(-0.156619\pi\)
−0.849814 + 0.527082i \(0.823286\pi\)
\(252\) 3.00000i 0.188982i
\(253\) 10.3923 6.00000i 0.653359 0.377217i
\(254\) −1.50000 2.59808i −0.0941184 0.163018i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 10.3923 + 6.00000i 0.648254 + 0.374270i 0.787787 0.615948i \(-0.211227\pi\)
−0.139533 + 0.990217i \(0.544560\pi\)
\(258\) 8.66025 + 5.00000i 0.539164 + 0.311286i
\(259\) −27.0000 −1.67770
\(260\) 0 0
\(261\) −4.00000 −0.247594
\(262\) 2.59808 + 1.50000i 0.160510 + 0.0926703i
\(263\) 26.8468 + 15.5000i 1.65544 + 0.955771i 0.974778 + 0.223177i \(0.0716428\pi\)
0.680666 + 0.732594i \(0.261691\pi\)
\(264\) −1.50000 2.59808i −0.0923186 0.159901i
\(265\) 0 0
\(266\) 4.50000 + 7.79423i 0.275913 + 0.477895i
\(267\) −2.59808 + 1.50000i −0.159000 + 0.0917985i
\(268\) 8.00000i 0.488678i
\(269\) −2.00000 3.46410i −0.121942 0.211210i 0.798591 0.601874i \(-0.205579\pi\)
−0.920534 + 0.390664i \(0.872246\pi\)
\(270\) 0 0
\(271\) 6.00000 10.3923i 0.364474 0.631288i −0.624218 0.781251i \(-0.714582\pi\)
0.988692 + 0.149963i \(0.0479155\pi\)
\(272\) 0 0
\(273\) 7.79423 + 7.50000i 0.471728 + 0.453921i
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) −2.00000 + 3.46410i −0.120386 + 0.208514i
\(277\) 26.8468 15.5000i 1.61307 0.931305i 0.624413 0.781094i \(-0.285338\pi\)
0.988654 0.150210i \(-0.0479951\pi\)
\(278\) 17.0000i 1.01959i
\(279\) 3.00000 + 5.19615i 0.179605 + 0.311086i
\(280\) 0 0
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 2.59808 1.50000i 0.154713 0.0893237i
\(283\) −5.19615 3.00000i −0.308879 0.178331i 0.337546 0.941309i \(-0.390403\pi\)
−0.646425 + 0.762978i \(0.723737\pi\)
\(284\) −7.00000 + 12.1244i −0.415374 + 0.719448i
\(285\) 0 0
\(286\) 10.5000 + 2.59808i 0.620878 + 0.153627i
\(287\) 30.0000i 1.77084i
\(288\) 0.866025 + 0.500000i 0.0510310 + 0.0294628i
\(289\) −8.50000 + 14.7224i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) −8.00000 −0.468968
\(292\) 6.92820 4.00000i 0.405442 0.234082i
\(293\) −0.866025 + 0.500000i −0.0505937 + 0.0292103i −0.525084 0.851051i \(-0.675966\pi\)
0.474490 + 0.880261i \(0.342633\pi\)
\(294\) −2.00000 −0.116642
\(295\) 0 0
\(296\) 4.50000 7.79423i 0.261557 0.453030i
\(297\) 2.59808 + 1.50000i 0.150756 + 0.0870388i
\(298\) 2.00000i 0.115857i
\(299\) −4.00000 13.8564i −0.231326 0.801337i
\(300\) 0 0
\(301\) 15.0000 25.9808i 0.864586 1.49751i
\(302\) −12.1244 7.00000i −0.697678 0.402805i
\(303\) 0 0
\(304\) −3.00000 −0.172062
\(305\) 0 0
\(306\) 0 0
\(307\) 26.0000i 1.48390i −0.670456 0.741949i \(-0.733902\pi\)
0.670456 0.741949i \(-0.266098\pi\)
\(308\) −7.79423 + 4.50000i −0.444117 + 0.256411i
\(309\) 7.50000 12.9904i 0.426660 0.738997i
\(310\) 0 0
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) −3.46410 + 1.00000i −0.196116 + 0.0566139i
\(313\) 26.0000i 1.46961i 0.678280 + 0.734803i \(0.262726\pi\)
−0.678280 + 0.734803i \(0.737274\pi\)
\(314\) 8.50000 14.7224i 0.479683 0.830835i
\(315\) 0 0
\(316\) −3.00000 5.19615i −0.168763 0.292306i
\(317\) 17.0000i 0.954815i −0.878682 0.477408i \(-0.841577\pi\)
0.878682 0.477408i \(-0.158423\pi\)
\(318\) 7.79423 4.50000i 0.437079 0.252347i
\(319\) 6.00000 + 10.3923i 0.335936 + 0.581857i
\(320\) 0 0
\(321\) 1.00000 + 1.73205i 0.0558146 + 0.0966736i
\(322\) 10.3923 + 6.00000i 0.579141 + 0.334367i
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −20.0000 −1.10770
\(327\) 1.73205 + 1.00000i 0.0957826 + 0.0553001i
\(328\) −8.66025 5.00000i −0.478183 0.276079i
\(329\) −4.50000 7.79423i −0.248093 0.429710i
\(330\) 0 0
\(331\) 14.0000 + 24.2487i 0.769510 + 1.33283i 0.937829 + 0.347097i \(0.112833\pi\)
−0.168320 + 0.985732i \(0.553834\pi\)
\(332\) −13.8564 + 8.00000i −0.760469 + 0.439057i
\(333\) 9.00000i 0.493197i
\(334\) −4.50000 7.79423i −0.246229 0.426481i
\(335\) 0 0
\(336\) 1.50000 2.59808i 0.0818317 0.141737i
\(337\) 6.00000i 0.326841i −0.986557 0.163420i \(-0.947747\pi\)
0.986557 0.163420i \(-0.0522527\pi\)
\(338\) 6.06218 11.5000i 0.329739 0.625518i
\(339\) −8.00000 −0.434500
\(340\) 0 0
\(341\) 9.00000 15.5885i 0.487377 0.844162i
\(342\) 2.59808 1.50000i 0.140488 0.0811107i
\(343\) 15.0000i 0.809924i
\(344\) 5.00000 + 8.66025i 0.269582 + 0.466930i
\(345\) 0 0
\(346\) −13.0000 −0.698884
\(347\) 20.7846 12.0000i 1.11578 0.644194i 0.175457 0.984487i \(-0.443860\pi\)
0.940319 + 0.340293i \(0.110526\pi\)
\(348\) −3.46410 2.00000i −0.185695 0.107211i
\(349\) 8.00000 13.8564i 0.428230 0.741716i −0.568486 0.822693i \(-0.692471\pi\)
0.996716 + 0.0809766i \(0.0258039\pi\)
\(350\) 0 0
\(351\) 2.50000 2.59808i 0.133440 0.138675i
\(352\) 3.00000i 0.159901i
\(353\) 6.92820 + 4.00000i 0.368751 + 0.212899i 0.672913 0.739722i \(-0.265043\pi\)
−0.304162 + 0.952620i \(0.598376\pi\)
\(354\) 6.00000 10.3923i 0.318896 0.552345i
\(355\) 0 0
\(356\) −3.00000 −0.159000
\(357\) 0 0
\(358\) −3.46410 + 2.00000i −0.183083 + 0.105703i
\(359\) −30.0000 −1.58334 −0.791670 0.610949i \(-0.790788\pi\)
−0.791670 + 0.610949i \(0.790788\pi\)
\(360\) 0 0
\(361\) 5.00000 8.66025i 0.263158 0.455803i
\(362\) 8.66025 + 5.00000i 0.455173 + 0.262794i
\(363\) 2.00000i 0.104973i
\(364\) 3.00000 + 10.3923i 0.157243 + 0.544705i
\(365\) 0 0
\(366\) 3.00000 5.19615i 0.156813 0.271607i
\(367\) 6.92820 + 4.00000i 0.361649 + 0.208798i 0.669804 0.742538i \(-0.266378\pi\)
−0.308155 + 0.951336i \(0.599711\pi\)
\(368\) −3.46410 + 2.00000i −0.180579 + 0.104257i
\(369\) 10.0000 0.520579
\(370\) 0 0
\(371\) −13.5000 23.3827i −0.700885 1.21397i
\(372\) 6.00000i 0.311086i
\(373\) −22.5167 + 13.0000i −1.16587 + 0.673114i −0.952703 0.303902i \(-0.901711\pi\)
−0.213165 + 0.977016i \(0.568377\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) 13.8564 4.00000i 0.713641 0.206010i
\(378\) 3.00000i 0.154303i
\(379\) −16.5000 + 28.5788i −0.847548 + 1.46800i 0.0358418 + 0.999357i \(0.488589\pi\)
−0.883390 + 0.468639i \(0.844745\pi\)
\(380\) 0 0
\(381\) 1.50000 + 2.59808i 0.0768473 + 0.133103i
\(382\) 6.00000i 0.306987i
\(383\) 3.46410 2.00000i 0.177007 0.102195i −0.408879 0.912589i \(-0.634080\pi\)
0.585886 + 0.810394i \(0.300747\pi\)
\(384\) 0.500000 + 0.866025i 0.0255155 + 0.0441942i
\(385\) 0 0
\(386\) 4.00000 + 6.92820i 0.203595 + 0.352636i
\(387\) −8.66025 5.00000i −0.440225 0.254164i
\(388\) −6.92820 4.00000i −0.351726 0.203069i
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.73205 1.00000i −0.0874818 0.0505076i
\(393\) −2.59808 1.50000i −0.131056 0.0756650i
\(394\) −5.50000 9.52628i −0.277086 0.479927i
\(395\) 0 0
\(396\) 1.50000 + 2.59808i 0.0753778 + 0.130558i
\(397\) 19.9186 11.5000i 0.999685 0.577168i 0.0915300 0.995802i \(-0.470824\pi\)
0.908155 + 0.418634i \(0.137491\pi\)
\(398\) 10.0000i 0.501255i
\(399\) −4.50000 7.79423i −0.225282 0.390199i
\(400\) 0 0
\(401\) 13.5000 23.3827i 0.674158 1.16768i −0.302556 0.953131i \(-0.597840\pi\)
0.976714 0.214544i \(-0.0688266\pi\)
\(402\) 8.00000i 0.399004i
\(403\) −15.5885 15.0000i −0.776516 0.747203i
\(404\) 0 0
\(405\) 0 0
\(406\) −6.00000 + 10.3923i −0.297775 + 0.515761i
\(407\) 23.3827 13.5000i 1.15904 0.669170i
\(408\) 0 0
\(409\) −3.50000 6.06218i −0.173064 0.299755i 0.766426 0.642333i \(-0.222033\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 12.9904 7.50000i 0.639990 0.369498i
\(413\) −31.1769 18.0000i −1.53412 0.885722i
\(414\) 2.00000 3.46410i 0.0982946 0.170251i
\(415\) 0 0
\(416\) −3.50000 0.866025i −0.171602 0.0424604i
\(417\) 17.0000i 0.832494i
\(418\) −7.79423 4.50000i −0.381228 0.220102i
\(419\) −6.00000 + 10.3923i −0.293119 + 0.507697i −0.974546 0.224189i \(-0.928027\pi\)
0.681426 + 0.731887i \(0.261360\pi\)
\(420\) 0 0
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) 7.79423 4.50000i 0.379417 0.219057i
\(423\) −2.59808 + 1.50000i −0.126323 + 0.0729325i
\(424\) 9.00000 0.437079
\(425\) 0 0
\(426\) 7.00000 12.1244i 0.339151 0.587427i
\(427\) −15.5885 9.00000i −0.754378 0.435541i
\(428\) 2.00000i 0.0966736i
\(429\) −10.5000 2.59808i −0.506945 0.125436i
\(430\) 0 0
\(431\) 6.00000 10.3923i 0.289010 0.500580i −0.684564 0.728953i \(-0.740007\pi\)
0.973574 + 0.228373i \(0.0733406\pi\)
\(432\) −0.866025 0.500000i −0.0416667 0.0240563i
\(433\) −13.8564 + 8.00000i −0.665896 + 0.384455i −0.794520 0.607238i \(-0.792277\pi\)
0.128624 + 0.991693i \(0.458944\pi\)
\(434\) 18.0000 0.864028
\(435\) 0 0
\(436\) 1.00000 + 1.73205i 0.0478913 + 0.0829502i
\(437\) 12.0000i 0.574038i
\(438\) −6.92820 + 4.00000i −0.331042 + 0.191127i
\(439\) −15.0000 + 25.9808i −0.715911 + 1.23999i 0.246696 + 0.969093i \(0.420655\pi\)
−0.962607 + 0.270901i \(0.912678\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) 10.0000i 0.475114i −0.971374 0.237557i \(-0.923653\pi\)
0.971374 0.237557i \(-0.0763467\pi\)
\(444\) −4.50000 + 7.79423i −0.213561 + 0.369898i
\(445\) 0 0
\(446\) −5.50000 9.52628i −0.260433 0.451082i
\(447\) 2.00000i 0.0945968i
\(448\) 2.59808 1.50000i 0.122748 0.0708683i
\(449\) −17.5000 30.3109i −0.825876 1.43046i −0.901248 0.433304i \(-0.857348\pi\)
0.0753719 0.997155i \(-0.475986\pi\)
\(450\) 0 0
\(451\) −15.0000 25.9808i −0.706322 1.22339i
\(452\) −6.92820 4.00000i −0.325875 0.188144i
\(453\) 12.1244 + 7.00000i 0.569652 + 0.328889i
\(454\) −16.0000 −0.750917
\(455\) 0 0
\(456\) 3.00000 0.140488
\(457\) −36.3731 21.0000i −1.70146 0.982339i −0.944286 0.329125i \(-0.893246\pi\)
−0.757174 0.653213i \(-0.773421\pi\)
\(458\) −8.66025 5.00000i −0.404667 0.233635i
\(459\) 0 0
\(460\) 0 0
\(461\) 16.0000 + 27.7128i 0.745194 + 1.29071i 0.950104 + 0.311933i \(0.100977\pi\)
−0.204910 + 0.978781i \(0.565690\pi\)
\(462\) 7.79423 4.50000i 0.362620 0.209359i
\(463\) 24.0000i 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) −2.00000 3.46410i −0.0928477 0.160817i
\(465\) 0 0
\(466\) −3.00000 + 5.19615i −0.138972 + 0.240707i
\(467\) 8.00000i 0.370196i −0.982720 0.185098i \(-0.940740\pi\)
0.982720 0.185098i \(-0.0592602\pi\)
\(468\) 3.46410 1.00000i 0.160128 0.0462250i
\(469\) 24.0000 1.10822
\(470\) 0 0
\(471\) −8.50000 + 14.7224i −0.391659 + 0.678374i
\(472\) 10.3923 6.00000i 0.478345 0.276172i
\(473\) 30.0000i 1.37940i
\(474\) 3.00000 + 5.19615i 0.137795 + 0.238667i
\(475\) 0 0
\(476\) 0 0
\(477\) −7.79423 + 4.50000i −0.356873 + 0.206041i
\(478\) −22.5167 13.0000i −1.02989 0.594606i
\(479\) 6.00000 10.3923i 0.274147 0.474837i −0.695773 0.718262i \(-0.744938\pi\)
0.969920 + 0.243426i \(0.0782712\pi\)
\(480\) 0 0
\(481\) −9.00000 31.1769i −0.410365 1.42154i
\(482\) 7.00000i 0.318841i
\(483\) −10.3923 6.00000i −0.472866 0.273009i
\(484\) −1.00000 + 1.73205i −0.0454545 + 0.0787296i
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) −25.1147 + 14.5000i −1.13806 + 0.657058i −0.945949 0.324316i \(-0.894866\pi\)
−0.192109 + 0.981374i \(0.561533\pi\)
\(488\) 5.19615 3.00000i 0.235219 0.135804i
\(489\) 20.0000 0.904431
\(490\) 0 0
\(491\) −2.50000 + 4.33013i −0.112823 + 0.195416i −0.916908 0.399100i \(-0.869323\pi\)
0.804084 + 0.594515i \(0.202656\pi\)
\(492\) 8.66025 + 5.00000i 0.390434 + 0.225417i
\(493\) 0 0
\(494\) −7.50000 + 7.79423i −0.337441 + 0.350679i
\(495\) 0 0
\(496\) −3.00000 + 5.19615i −0.134704 + 0.233314i
\(497\) −36.3731 21.0000i −1.63156 0.941979i
\(498\) 13.8564 8.00000i 0.620920 0.358489i
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 4.50000 + 7.79423i 0.201045 + 0.348220i
\(502\) 1.00000i 0.0446322i
\(503\) 18.1865 10.5000i 0.810897 0.468172i −0.0363700 0.999338i \(-0.511579\pi\)
0.847267 + 0.531167i \(0.178246\pi\)
\(504\) −1.50000 + 2.59808i −0.0668153 + 0.115728i
\(505\) 0 0
\(506\) −12.0000 −0.533465
\(507\) −6.06218 + 11.5000i −0.269231 + 0.510733i
\(508\) 3.00000i 0.133103i
\(509\) 5.00000 8.66025i 0.221621 0.383859i −0.733679 0.679496i \(-0.762199\pi\)
0.955300 + 0.295637i \(0.0955319\pi\)
\(510\) 0 0
\(511\) 12.0000 + 20.7846i 0.530849 + 0.919457i
\(512\) 1.00000i 0.0441942i
\(513\) −2.59808 + 1.50000i −0.114708 + 0.0662266i
\(514\) −6.00000 10.3923i −0.264649 0.458385i
\(515\) 0 0
\(516\) −5.00000 8.66025i −0.220113 0.381246i
\(517\) 7.79423 + 4.50000i 0.342790 + 0.197910i
\(518\) 23.3827 + 13.5000i 1.02738 + 0.593156i
\(519\) 13.0000 0.570637
\(520\) 0 0
\(521\) −35.0000 −1.53338 −0.766689 0.642019i \(-0.778097\pi\)
−0.766689 + 0.642019i \(0.778097\pi\)
\(522\) 3.46410 + 2.00000i 0.151620 + 0.0875376i
\(523\) −19.0526 11.0000i −0.833110 0.480996i 0.0218062 0.999762i \(-0.493058\pi\)
−0.854916 + 0.518766i \(0.826392\pi\)
\(524\) −1.50000 2.59808i −0.0655278 0.113497i
\(525\) 0 0
\(526\) −15.5000 26.8468i −0.675832 1.17058i
\(527\) 0 0
\(528\) 3.00000i 0.130558i
\(529\) −3.50000 6.06218i −0.152174 0.263573i
\(530\) 0 0
\(531\) −6.00000 + 10.3923i −0.260378 + 0.450988i
\(532\) 9.00000i 0.390199i
\(533\) −34.6410 + 10.0000i −1.50047 + 0.433148i
\(534\) 3.00000 0.129823
\(535\) 0 0
\(536\) −4.00000 + 6.92820i −0.172774 + 0.299253i
\(537\) 3.46410 2.00000i 0.149487 0.0863064i
\(538\) 4.00000i 0.172452i
\(539\) −3.00000 5.19615i −0.129219 0.223814i
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) −10.3923 + 6.00000i −0.446388 + 0.257722i
\(543\) −8.66025 5.00000i −0.371647 0.214571i
\(544\) 0 0
\(545\) 0 0
\(546\) −3.00000 10.3923i −0.128388 0.444750i
\(547\) 22.0000i 0.940652i −0.882493 0.470326i \(-0.844136\pi\)
0.882493 0.470326i \(-0.155864\pi\)
\(548\) −10.3923 6.00000i −0.443937 0.256307i
\(549\) −3.00000 + 5.19615i −0.128037 + 0.221766i
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 3.46410 2.00000i 0.147442 0.0851257i
\(553\) 15.5885 9.00000i 0.662889 0.382719i
\(554\) −31.0000 −1.31706
\(555\) 0 0
\(556\) 8.50000 14.7224i 0.360480 0.624370i
\(557\) −7.79423 4.50000i −0.330252 0.190671i 0.325701 0.945473i \(-0.394400\pi\)
−0.655953 + 0.754802i \(0.727733\pi\)
\(558\) 6.00000i 0.254000i
\(559\) 35.0000 + 8.66025i 1.48034 + 0.366290i
\(560\) 0 0
\(561\) 0 0
\(562\) 25.9808 + 15.0000i 1.09593 + 0.632737i
\(563\) 17.3205 10.0000i 0.729972 0.421450i −0.0884397 0.996082i \(-0.528188\pi\)
0.818412 + 0.574632i \(0.194855\pi\)
\(564\) −3.00000 −0.126323
\(565\) 0 0
\(566\) 3.00000 + 5.19615i 0.126099 + 0.218411i
\(567\) 3.00000i 0.125988i
\(568\) 12.1244 7.00000i 0.508727 0.293713i
\(569\) −19.5000 + 33.7750i −0.817483 + 1.41592i 0.0900490 + 0.995937i \(0.471298\pi\)
−0.907532 + 0.419984i \(0.862036\pi\)
\(570\) 0 0
\(571\) 23.0000 0.962520 0.481260 0.876578i \(-0.340179\pi\)
0.481260 + 0.876578i \(0.340179\pi\)
\(572\) −7.79423 7.50000i −0.325893 0.313591i
\(573\) 6.00000i 0.250654i
\(574\) 15.0000 25.9808i 0.626088 1.08442i
\(575\) 0 0
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 38.0000i 1.58196i 0.611842 + 0.790980i \(0.290429\pi\)
−0.611842 + 0.790980i \(0.709571\pi\)
\(578\) 14.7224 8.50000i 0.612372 0.353553i
\(579\) −4.00000 6.92820i −0.166234 0.287926i
\(580\) 0 0
\(581\) −24.0000 41.5692i −0.995688 1.72458i
\(582\) 6.92820 + 4.00000i 0.287183 + 0.165805i
\(583\) 23.3827 + 13.5000i 0.968412 + 0.559113i
\(584\) −8.00000 −0.331042
\(585\) 0 0
\(586\) 1.00000 0.0413096
\(587\) 15.5885 + 9.00000i 0.643404 + 0.371470i 0.785925 0.618322i \(-0.212187\pi\)
−0.142520 + 0.989792i \(0.545521\pi\)
\(588\) 1.73205 + 1.00000i 0.0714286 + 0.0412393i
\(589\) 9.00000 + 15.5885i 0.370839 + 0.642311i
\(590\) 0 0
\(591\) 5.50000 + 9.52628i 0.226240 + 0.391859i
\(592\) −7.79423 + 4.50000i −0.320341 + 0.184949i
\(593\) 36.0000i 1.47834i 0.673517 + 0.739171i \(0.264783\pi\)
−0.673517 + 0.739171i \(0.735217\pi\)
\(594\) −1.50000 2.59808i −0.0615457 0.106600i
\(595\) 0 0
\(596\) 1.00000 1.73205i 0.0409616 0.0709476i
\(597\) 10.0000i 0.409273i
\(598\) −3.46410 + 14.0000i −0.141658 + 0.572503i
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) −10.5000 + 18.1865i −0.428304 + 0.741844i −0.996723 0.0808953i \(-0.974222\pi\)
0.568419 + 0.822739i \(0.307555\pi\)
\(602\) −25.9808 + 15.0000i −1.05890 + 0.611354i
\(603\) 8.00000i 0.325785i
\(604\) 7.00000 + 12.1244i 0.284826 + 0.493333i
\(605\) 0 0
\(606\) 0 0
\(607\) −23.3827 + 13.5000i −0.949074 + 0.547948i −0.892793 0.450467i \(-0.851258\pi\)
−0.0562808 + 0.998415i \(0.517924\pi\)
\(608\) 2.59808 + 1.50000i 0.105366 + 0.0608330i
\(609\) 6.00000 10.3923i 0.243132 0.421117i
\(610\) 0 0
\(611\) 7.50000 7.79423i 0.303418 0.315321i
\(612\) 0 0
\(613\) 6.06218 + 3.50000i 0.244849 + 0.141364i 0.617403 0.786647i \(-0.288185\pi\)
−0.372554 + 0.928010i \(0.621518\pi\)
\(614\) −13.0000 + 22.5167i −0.524637 + 0.908698i
\(615\) 0 0
\(616\) 9.00000 0.362620
\(617\) 25.9808 15.0000i 1.04595 0.603877i 0.124434 0.992228i \(-0.460288\pi\)
0.921512 + 0.388351i \(0.126955\pi\)
\(618\) −12.9904 + 7.50000i −0.522550 + 0.301694i
\(619\) 23.0000 0.924448 0.462224 0.886763i \(-0.347052\pi\)
0.462224 + 0.886763i \(0.347052\pi\)
\(620\) 0 0
\(621\) −2.00000 + 3.46410i −0.0802572 + 0.139010i
\(622\) 3.46410 + 2.00000i 0.138898 + 0.0801927i
\(623\) 9.00000i 0.360577i
\(624\) 3.50000 + 0.866025i 0.140112 + 0.0346688i
\(625\) 0 0
\(626\) 13.0000 22.5167i 0.519584 0.899947i
\(627\) 7.79423 + 4.50000i 0.311272 + 0.179713i
\(628\) −14.7224 + 8.50000i −0.587489 + 0.339187i
\(629\) 0 0
\(630\) 0 0
\(631\) −6.00000 10.3923i −0.238856 0.413711i 0.721530 0.692383i \(-0.243439\pi\)
−0.960386 + 0.278672i \(0.910106\pi\)
\(632\) 6.00000i 0.238667i
\(633\) −7.79423 + 4.50000i −0.309793 + 0.178859i
\(634\) −8.50000 + 14.7224i −0.337578 + 0.584702i
\(635\) 0 0
\(636\) −9.00000 −0.356873
\(637\) −6.92820 + 2.00000i −0.274505 + 0.0792429i
\(638\) 12.0000i 0.475085i
\(639\) −7.00000 + 12.1244i −0.276916 + 0.479632i
\(640\) 0 0
\(641\) −17.5000 30.3109i −0.691208 1.19721i −0.971442 0.237276i \(-0.923745\pi\)
0.280234 0.959932i \(-0.409588\pi\)
\(642\) 2.00000i 0.0789337i
\(643\) 24.2487 14.0000i 0.956276 0.552106i 0.0612510 0.998122i \(-0.480491\pi\)
0.895025 + 0.446016i \(0.147158\pi\)
\(644\) −6.00000 10.3923i −0.236433 0.409514i
\(645\) 0 0
\(646\) 0 0
\(647\) −38.9711 22.5000i −1.53211 0.884566i −0.999264 0.0383563i \(-0.987788\pi\)
−0.532850 0.846210i \(-0.678879\pi\)
\(648\) 0.866025 + 0.500000i 0.0340207 + 0.0196419i
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) −18.0000 −0.705476
\(652\) 17.3205 + 10.0000i 0.678323 + 0.391630i
\(653\) −2.59808 1.50000i −0.101671 0.0586995i 0.448303 0.893882i \(-0.352029\pi\)
−0.549973 + 0.835182i \(0.685362\pi\)
\(654\) −1.00000 1.73205i −0.0391031 0.0677285i
\(655\) 0 0
\(656\) 5.00000 + 8.66025i 0.195217 + 0.338126i
\(657\) 6.92820 4.00000i 0.270295 0.156055i
\(658\) 9.00000i 0.350857i
\(659\) 2.00000 + 3.46410i 0.0779089 + 0.134942i 0.902348 0.431009i \(-0.141842\pi\)
−0.824439 + 0.565951i \(0.808509\pi\)
\(660\) 0 0
\(661\) −15.0000 + 25.9808i −0.583432 + 1.01053i 0.411636 + 0.911348i \(0.364957\pi\)
−0.995069 + 0.0991864i \(0.968376\pi\)
\(662\) 28.0000i 1.08825i
\(663\) 0 0
\(664\) 16.0000 0.620920
\(665\) 0 0
\(666\) 4.50000 7.79423i 0.174371 0.302020i
\(667\) −13.8564 + 8.00000i −0.536522 + 0.309761i
\(668\) 9.00000i 0.348220i
\(669\) 5.50000 + 9.52628i 0.212642 + 0.368307i
\(670\) 0 0
\(671\) 18.0000 0.694882
\(672\) −2.59808 + 1.50000i −0.100223 + 0.0578638i
\(673\) −41.5692 24.0000i −1.60238 0.925132i −0.991011 0.133783i \(-0.957287\pi\)
−0.611365 0.791349i \(-0.709379\pi\)
\(674\) −3.00000 + 5.19615i −0.115556 + 0.200148i
\(675\) 0 0
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) 6.00000i 0.230599i 0.993331 + 0.115299i \(0.0367827\pi\)
−0.993331 + 0.115299i \(0.963217\pi\)
\(678\) 6.92820 + 4.00000i 0.266076 + 0.153619i
\(679\) 12.0000 20.7846i 0.460518 0.797640i
\(680\) 0 0
\(681\) 16.0000 0.613121
\(682\) −15.5885 + 9.00000i −0.596913 + 0.344628i
\(683\) 25.9808 15.0000i 0.994126 0.573959i 0.0876211 0.996154i \(-0.472074\pi\)
0.906505 + 0.422195i \(0.138740\pi\)
\(684\) −3.00000 −0.114708
\(685\) 0 0
\(686\) −7.50000 + 12.9904i −0.286351 + 0.495975i
\(687\) 8.66025 + 5.00000i 0.330409 + 0.190762i
\(688\) 10.0000i 0.381246i
\(689\) 22.5000 23.3827i 0.857182 0.890809i
\(690\) 0 0
\(691\) 3.50000 6.06218i 0.133146 0.230616i −0.791742 0.610856i \(-0.790825\pi\)
0.924888 + 0.380240i \(0.124159\pi\)
\(692\) 11.2583 + 6.50000i 0.427977 + 0.247093i
\(693\) −7.79423 + 4.50000i −0.296078 + 0.170941i
\(694\) −24.0000 −0.911028
\(695\) 0 0
\(696\) 2.00000 + 3.46410i 0.0758098 + 0.131306i
\(697\) 0 0
\(698\) −13.8564 + 8.00000i −0.524473 + 0.302804i
\(699\) 3.00000 5.19615i 0.113470 0.196537i
\(700\) 0 0
\(701\) 24.0000 0.906467 0.453234 0.891392i \(-0.350270\pi\)
0.453234 + 0.891392i \(0.350270\pi\)
\(702\) −3.46410 + 1.00000i −0.130744 + 0.0377426i
\(703\) 27.0000i 1.01832i
\(704\) −1.50000 + 2.59808i −0.0565334 + 0.0979187i
\(705\) 0 0
\(706\) −4.00000 6.92820i −0.150542 0.260746i
\(707\) 0 0
\(708\) −10.3923 + 6.00000i −0.390567 + 0.225494i
\(709\) −20.0000 34.6410i −0.751116 1.30097i −0.947282 0.320400i \(-0.896183\pi\)
0.196167 0.980571i \(-0.437151\pi\)
\(710\) 0 0
\(711\) −3.00000 5.19615i −0.112509 0.194871i
\(712\) 2.59808 + 1.50000i 0.0973670 + 0.0562149i
\(713\) 20.7846 + 12.0000i 0.778390 + 0.449404i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 22.5167 + 13.0000i 0.840900 + 0.485494i
\(718\) 25.9808 + 15.0000i 0.969593 + 0.559795i
\(719\) −18.0000 31.1769i −0.671287 1.16270i −0.977539 0.210752i \(-0.932409\pi\)
0.306253 0.951950i \(-0.400925\pi\)
\(720\) 0 0
\(721\) 22.5000 + 38.9711i 0.837944 + 1.45136i
\(722\) −8.66025 + 5.00000i −0.322301 + 0.186081i
\(723\) 7.00000i 0.260333i
\(724\) −5.00000 8.66025i −0.185824 0.321856i
\(725\) 0 0
\(726\) 1.00000 1.73205i 0.0371135 0.0642824i
\(727\) 3.00000i 0.111264i 0.998451 + 0.0556319i \(0.0177173\pi\)
−0.998451 + 0.0556319i \(0.982283\pi\)
\(728\) 2.59808 10.5000i 0.0962911 0.389156i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) −5.19615 + 3.00000i −0.192055 + 0.110883i
\(733\) 53.0000i 1.95760i 0.204819 + 0.978800i \(0.434339\pi\)
−0.204819 + 0.978800i \(0.565661\pi\)
\(734\) −4.00000 6.92820i −0.147643 0.255725i
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) −20.7846 + 12.0000i −0.765611 + 0.442026i
\(738\) −8.66025 5.00000i −0.318788 0.184053i
\(739\) 5.50000 9.52628i 0.202321 0.350430i −0.746955 0.664875i \(-0.768485\pi\)
0.949276 + 0.314445i \(0.101818\pi\)
\(740\) 0 0
\(741\) 7.50000 7.79423i 0.275519 0.286328i
\(742\) 27.0000i 0.991201i
\(743\) −41.5692 24.0000i −1.52503 0.880475i −0.999560 0.0296605i \(-0.990557\pi\)
−0.525467 0.850814i \(-0.676109\pi\)
\(744\) 3.00000 5.19615i 0.109985 0.190500i
\(745\) 0 0
\(746\) 26.0000 0.951928
\(747\) −13.8564 + 8.00000i −0.506979 + 0.292705i
\(748\) 0 0
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 12.0000 20.7846i 0.437886 0.758441i −0.559640 0.828736i \(-0.689061\pi\)
0.997526 + 0.0702946i \(0.0223939\pi\)
\(752\) −2.59808 1.50000i −0.0947421 0.0546994i
\(753\) 1.00000i 0.0364420i
\(754\) −14.0000 3.46410i −0.509850 0.126155i
\(755\) 0 0
\(756\) 1.50000 2.59808i 0.0545545 0.0944911i
\(757\) 14.7224 + 8.50000i 0.535096 + 0.308938i 0.743089 0.669193i \(-0.233360\pi\)
−0.207993 + 0.978130i \(0.566693\pi\)
\(758\) 28.5788 16.5000i 1.03803 0.599307i
\(759\) 12.0000 0.435572
\(760\) 0 0
\(761\) 15.5000 + 26.8468i 0.561875 + 0.973195i 0.997333 + 0.0729864i \(0.0232530\pi\)
−0.435458 + 0.900209i \(0.643414\pi\)
\(762\) 3.00000i 0.108679i
\(763\) −5.19615 + 3.00000i −0.188113 + 0.108607i
\(764\) −3.00000 + 5.19615i −0.108536 + 0.187990i
\(765\) 0 0
\(766\) −4.00000 −0.144526
\(767\) 10.3923 42.0000i 0.375244 1.51653i
\(768\) 1.00000i 0.0360844i
\(769\) 23.0000 39.8372i 0.829401 1.43657i −0.0691074 0.997609i \(-0.522015\pi\)
0.898509 0.438956i \(-0.144652\pi\)
\(770\) 0 0
\(771\) 6.00000 + 10.3923i 0.216085 + 0.374270i
\(772\) 8.00000i 0.287926i
\(773\) −6.06218 + 3.50000i −0.218041 + 0.125886i −0.605043 0.796193i \(-0.706844\pi\)
0.387002 + 0.922079i \(0.373511\pi\)
\(774\) 5.00000 + 8.66025i 0.179721 + 0.311286i
\(775\) 0 0
\(776\) 4.00000 + 6.92820i 0.143592 + 0.248708i
\(777\) −23.3827 13.5000i −0.838849 0.484310i
\(778\) 20.7846 + 12.0000i 0.745164 + 0.430221i
\(779\) 30.0000 1.07486
\(780\) 0 0
\(781\) 42.0000 1.50288
\(782\) 0 0
\(783\) −3.46410 2.00000i −0.123797 0.0714742i
\(784\) 1.00000 + 1.73205i 0.0357143 + 0.0618590i
\(785\) 0 0
\(786\) 1.50000 + 2.59808i 0.0535032 + 0.0926703i
\(787\) 31.1769 18.0000i 1.11134 0.641631i 0.172162 0.985069i \(-0.444925\pi\)
0.939175 + 0.343438i \(0.111592\pi\)
\(788\) 11.0000i 0.391859i
\(789\) 15.5000 + 26.8468i 0.551815 + 0.955771i
\(790\) 0 0
\(791\) 12.0000 20.7846i 0.426671 0.739016i
\(792\) 3.00000i 0.106600i
\(793\) 5.19615 21.0000i 0.184521 0.745732i
\(794\) −23.0000 −0.816239
\(795\) 0 0
\(796\) 5.00000 8.66025i 0.177220 0.306955i
\(797\) 36.3731 21.0000i 1.28840 0.743858i 0.310031 0.950726i \(-0.399660\pi\)
0.978369 + 0.206868i \(0.0663271\pi\)
\(798\) 9.00000i 0.318597i
\(799\) 0 0
\(800\) 0 0
\(801\) −3.00000 −0.106000
\(802\) −23.3827 + 13.5000i −0.825671 + 0.476702i
\(803\) −20.7846 12.0000i −0.733473 0.423471i
\(804\) 4.00000 6.92820i 0.141069 0.244339i
\(805\) 0 0
\(806\) 6.00000 + 20.7846i 0.211341 + 0.732107i
\(807\) 4.00000i 0.140807i
\(808\) 0 0
\(809\) −5.00000 + 8.66025i −0.175791 + 0.304478i −0.940435 0.339975i \(-0.889582\pi\)
0.764644 + 0.644453i \(0.222915\pi\)
\(810\) 0 0
\(811\) −31.0000 −1.08856 −0.544279 0.838905i \(-0.683197\pi\)
−0.544279 + 0.838905i \(0.683197\pi\)
\(812\) 10.3923 6.00000i 0.364698 0.210559i
\(813\) 10.3923 6.00000i 0.364474 0.210429i
\(814\) −27.0000 −0.946350
\(815\) 0 0
\(816\) 0 0
\(817\) −25.9808 15.0000i −0.908952 0.524784i
\(818\) 7.00000i 0.244749i
\(819\) 3.00000 + 10.3923i 0.104828 + 0.363137i
\(820\) 0 0
\(821\) −25.0000 + 43.3013i −0.872506 + 1.51122i −0.0131101 + 0.999914i \(0.504173\pi\)
−0.859396 + 0.511311i \(0.829160\pi\)
\(822\) 10.3923 + 6.00000i 0.362473 + 0.209274i
\(823\) −9.52628 + 5.50000i −0.332065 + 0.191718i −0.656758 0.754102i \(-0.728073\pi\)
0.324692 + 0.945820i \(0.394739\pi\)
\(824\) −15.0000 −0.522550
\(825\) 0 0
\(826\) 18.0000 + 31.1769i 0.626300 + 1.08478i
\(827\) 18.0000i 0.625921i 0.949766 + 0.312961i \(0.101321\pi\)
−0.949766 + 0.312961i \(0.898679\pi\)
\(828\) −3.46410 + 2.00000i −0.120386 + 0.0695048i
\(829\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(830\) 0 0
\(831\) 31.0000 1.07538
\(832\) 2.59808 + 2.50000i 0.0900721 + 0.0866719i
\(833\) 0 0
\(834\) −8.50000 + 14.7224i −0.294331 + 0.509796i
\(835\) 0 0
\(836\) 4.50000 + 7.79423i 0.155636 + 0.269569i
\(837\) 6.00000i 0.207390i
\(838\) 10.3923 6.00000i 0.358996 0.207267i
\(839\) −3.00000 5.19615i −0.103572 0.179391i 0.809582 0.587007i \(-0.199694\pi\)
−0.913154 + 0.407615i \(0.866360\pi\)
\(840\) 0 0
\(841\) 6.50000 + 11.2583i 0.224138 + 0.388218i
\(842\) 24.2487 + 14.0000i 0.835666 + 0.482472i
\(843\) −25.9808 15.0000i −0.894825 0.516627i
\(844\) −9.00000 −0.309793
\(845\) 0 0
\(846\) 3.00000 0.103142
\(847\) −5.19615 3.00000i −0.178542 0.103081i
\(848\) −7.79423 4.50000i −0.267655 0.154531i
\(849\) −3.00000 5.19615i −0.102960 0.178331i
\(850\) 0 0
\(851\) 18.0000 + 31.1769i 0.617032 + 1.06873i
\(852\) −12.1244 + 7.00000i −0.415374 + 0.239816i
\(853\) 26.0000i 0.890223i −0.895475 0.445112i \(-0.853164\pi\)
0.895475 0.445112i \(-0.146836\pi\)
\(854\) 9.00000 + 15.5885i 0.307974 + 0.533426i
\(855\) 0 0
\(856\) 1.00000 1.73205i 0.0341793 0.0592003i
\(857\) 50.0000i 1.70797i 0.520300 + 0.853984i \(0.325820\pi\)
−0.520300 + 0.853984i \(0.674180\pi\)
\(858\) 7.79423 + 7.50000i 0.266091 + 0.256046i
\(859\) 5.00000 0.170598 0.0852989 0.996355i \(-0.472815\pi\)
0.0852989 + 0.996355i \(0.472815\pi\)
\(860\) 0 0
\(861\) −15.0000 + 25.9808i −0.511199 + 0.885422i
\(862\) −10.3923 + 6.00000i −0.353963 + 0.204361i
\(863\) 24.0000i 0.816970i −0.912765 0.408485i \(-0.866057\pi\)
0.912765 0.408485i \(-0.133943\pi\)
\(864\) 0.500000 + 0.866025i 0.0170103 + 0.0294628i
\(865\) 0 0
\(866\) 16.0000 0.543702
\(867\) −14.7224 + 8.50000i −0.500000 + 0.288675i
\(868\) −15.5885 9.00000i −0.529107 0.305480i
\(869\) −9.00000 + 15.5885i −0.305304 + 0.528802i
\(870\) 0 0
\(871\) 8.00000 + 27.7128i 0.271070 + 0.939013i
\(872\) 2.00000i 0.0677285i
\(873\) −6.92820 4.00000i −0.234484 0.135379i
\(874\) 6.00000 10.3923i 0.202953 0.351525i
\(875\) 0 0
\(876\) 8.00000 0.270295
\(877\) 32.9090 19.0000i 1.11126 0.641584i 0.172102 0.985079i \(-0.444944\pi\)
0.939155 + 0.343495i \(0.111611\pi\)
\(878\) 25.9808 15.0000i 0.876808 0.506225i
\(879\) −1.00000 −0.0337292
\(880\) 0 0
\(881\) 11.5000 19.9186i 0.387445 0.671074i −0.604660 0.796484i \(-0.706691\pi\)
0.992105 + 0.125409i \(0.0400244\pi\)
\(882\) −1.73205 1.00000i −0.0583212 0.0336718i
\(883\) 22.0000i 0.740359i 0.928960 + 0.370179i \(0.120704\pi\)
−0.928960 + 0.370179i \(0.879296\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −5.00000 + 8.66025i −0.167978 + 0.290947i
\(887\) 7.79423 + 4.50000i 0.261705 + 0.151095i 0.625112 0.780535i \(-0.285053\pi\)
−0.363407 + 0.931630i \(0.618387\pi\)
\(888\) 7.79423 4.50000i 0.261557 0.151010i
\(889\) −9.00000 −0.301850
\(890\) 0 0
\(891\) 1.50000 + 2.59808i 0.0502519 + 0.0870388i
\(892\) 11.0000i 0.368307i
\(893\) −7.79423 + 4.50000i −0.260824 + 0.150587i
\(894\) −1.00000 + 1.73205i −0.0334450 + 0.0579284i
\(895\) 0 0
\(896\) −3.00000 −0.100223
\(897\) 3.46410 14.0000i 0.115663 0.467446i
\(898\) 35.0000i 1.16797i
\(899\) −12.0000 + 20.7846i −0.400222 + 0.693206i
\(900\) 0 0
\(901\) 0 0
\(902\) 30.0000i 0.998891i
\(903\) 25.9808 15.0000i 0.864586 0.499169i
\(904\) 4.00000 + 6.92820i 0.133038 + 0.230429i
\(905\) 0 0
\(906\) −7.00000 12.1244i −0.232559 0.402805i
\(907\) −12.1244 7.00000i −0.402583 0.232431i 0.285015 0.958523i \(-0.408001\pi\)
−0.687598 + 0.726092i \(0.741335\pi\)
\(908\) 13.8564 + 8.00000i 0.459841 + 0.265489i
\(909\) 0 0
\(910\) 0 0
\(911\) 28.0000 0.927681 0.463841 0.885919i \(-0.346471\pi\)
0.463841 + 0.885919i \(0.346471\pi\)
\(912\) −2.59808 1.50000i −0.0860309 0.0496700i
\(913\) 41.5692 + 24.0000i 1.37574 + 0.794284i
\(914\) 21.0000 + 36.3731i 0.694618 + 1.20311i
\(915\) 0 0
\(916\) 5.00000 + 8.66025i 0.165205 + 0.286143i
\(917\) 7.79423 4.50000i 0.257388 0.148603i
\(918\) 0 0
\(919\) 7.00000 + 12.1244i 0.230909 + 0.399946i 0.958076 0.286515i \(-0.0924968\pi\)
−0.727167 + 0.686461i \(0.759163\pi\)
\(920\) 0 0
\(921\) 13.0000 22.5167i 0.428365 0.741949i
\(922\) 32.0000i 1.05386i
\(923\) 12.1244 49.0000i 0.399078 1.61285i
\(924\) −9.00000 −0.296078
\(925\) 0 0
\(926\) −12.0000 + 20.7846i −0.394344 + 0.683025i
\(927\) 12.9904 7.50000i 0.426660 0.246332i
\(928\) 4.00000i 0.131306i
\(929\) 1.00000 + 1.73205i 0.0328089 + 0.0568267i 0.881964 0.471317i \(-0.156221\pi\)
−0.849155 + 0.528144i \(0.822888\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 5.19615 3.00000i 0.170206 0.0982683i
\(933\) −3.46410 2.00000i −0.113410 0.0654771i
\(934\) −4.00000 + 6.92820i −0.130884 + 0.226698i
\(935\) 0 0
\(936\) −3.50000 0.866025i −0.114401 0.0283069i
\(937\) 14.0000i 0.457360i −0.973502 0.228680i \(-0.926559\pi\)
0.973502 0.228680i \(-0.0734410\pi\)
\(938\) −20.7846 12.0000i −0.678642 0.391814i
\(939\) −13.0000 + 22.5167i −0.424239 + 0.734803i
\(940\) 0 0
\(941\) −32.0000 −1.04317 −0.521585 0.853199i \(-0.674659\pi\)
−0.521585 + 0.853199i \(0.674659\pi\)
\(942\) 14.7224 8.50000i 0.479683 0.276945i
\(943\) 34.6410 20.0000i 1.12807 0.651290i
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 15.0000 25.9808i 0.487692 0.844707i
\(947\) 15.5885 + 9.00000i 0.506557 + 0.292461i 0.731417 0.681930i \(-0.238859\pi\)
−0.224860 + 0.974391i \(0.572193\pi\)
\(948\) 6.00000i 0.194871i
\(949\) −20.0000 + 20.7846i −0.649227 + 0.674697i
\(950\) 0 0
\(951\) 8.50000 14.7224i 0.275631 0.477408i
\(952\) 0 0
\(953\) 29.4449 17.0000i 0.953813 0.550684i 0.0595495 0.998225i \(-0.481034\pi\)
0.894263 + 0.447541i \(0.147700\pi\)
\(954\) 9.00000 0.291386
\(955\) 0 0
\(956\) 13.0000 + 22.5167i 0.420450 + 0.728241i
\(957\) 12.0000i 0.387905i
\(958\) −10.3923 + 6.00000i −0.335760 + 0.193851i
\(959\) 18.0000 31.1769i 0.581250 1.00676i
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) −7.79423 + 31.5000i −0.251296 + 1.01560i
\(963\) 2.00000i 0.0644491i
\(964\) 3.50000 6.06218i 0.112727 0.195250i
\(965\) 0 0
\(966\) 6.00000 + 10.3923i 0.193047 + 0.334367i
\(967\) 25.0000i 0.803946i −0.915652 0.401973i \(-0.868325\pi\)
0.915652 0.401973i \(-0.131675\pi\)
\(968\) 1.73205 1.00000i 0.0556702 0.0321412i
\(969\) 0 0
\(970\) 0 0
\(971\) −7.50000 12.9904i −0.240686 0.416881i 0.720224 0.693742i \(-0.244039\pi\)
−0.960910 + 0.276861i \(0.910706\pi\)
\(972\) −0.866025 0.500000i −0.0277778 0.0160375i
\(973\) 44.1673 + 25.5000i 1.41594 + 0.817492i
\(974\) 29.0000 0.929220
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) −38.1051 22.0000i −1.21909 0.703842i −0.254367 0.967108i \(-0.581867\pi\)
−0.964723 + 0.263265i \(0.915201\pi\)
\(978\) −17.3205 10.0000i −0.553849 0.319765i
\(979\) 4.50000 + 7.79423i 0.143821 + 0.249105i
\(980\) 0 0
\(981\) 1.00000 + 1.73205i 0.0319275 + 0.0553001i
\(982\) 4.33013 2.50000i 0.138180 0.0797782i
\(983\) 55.0000i 1.75423i 0.480283 + 0.877114i \(0.340534\pi\)
−0.480283 + 0.877114i \(0.659466\pi\)
\(984\) −5.00000 8.66025i −0.159394 0.276079i
\(985\) 0 0
\(986\) 0 0
\(987\) 9.00000i 0.286473i
\(988\) 10.3923 3.00000i 0.330623 0.0954427i
\(989\) −40.0000 −1.27193
\(990\) 0 0
\(991\) −29.0000 + 50.2295i −0.921215 + 1.59559i −0.123678 + 0.992322i \(0.539469\pi\)
−0.797537 + 0.603269i \(0.793864\pi\)
\(992\) 5.19615 3.00000i 0.164978 0.0952501i
\(993\) 28.0000i 0.888553i
\(994\) 21.0000 + 36.3731i 0.666080 + 1.15368i
\(995\) 0 0
\(996\) −16.0000 −0.506979
\(997\) −40.7032 + 23.5000i −1.28908 + 0.744252i −0.978491 0.206291i \(-0.933861\pi\)
−0.310592 + 0.950543i \(0.600527\pi\)
\(998\) 17.3205 + 10.0000i 0.548271 + 0.316544i
\(999\) −4.50000 + 7.79423i −0.142374 + 0.246598i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1950.2.z.d.1699.1 4
5.2 odd 4 390.2.i.e.61.1 2
5.3 odd 4 1950.2.i.f.451.1 2
5.4 even 2 inner 1950.2.z.d.1699.2 4
13.3 even 3 inner 1950.2.z.d.1849.2 4
15.2 even 4 1170.2.i.c.451.1 2
65.3 odd 12 1950.2.i.f.601.1 2
65.7 even 12 5070.2.b.b.1351.1 2
65.17 odd 12 5070.2.a.r.1.1 1
65.22 odd 12 5070.2.a.b.1.1 1
65.29 even 6 inner 1950.2.z.d.1849.1 4
65.32 even 12 5070.2.b.b.1351.2 2
65.42 odd 12 390.2.i.e.211.1 yes 2
195.107 even 12 1170.2.i.c.991.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.i.e.61.1 2 5.2 odd 4
390.2.i.e.211.1 yes 2 65.42 odd 12
1170.2.i.c.451.1 2 15.2 even 4
1170.2.i.c.991.1 2 195.107 even 12
1950.2.i.f.451.1 2 5.3 odd 4
1950.2.i.f.601.1 2 65.3 odd 12
1950.2.z.d.1699.1 4 1.1 even 1 trivial
1950.2.z.d.1699.2 4 5.4 even 2 inner
1950.2.z.d.1849.1 4 65.29 even 6 inner
1950.2.z.d.1849.2 4 13.3 even 3 inner
5070.2.a.b.1.1 1 65.22 odd 12
5070.2.a.r.1.1 1 65.17 odd 12
5070.2.b.b.1351.1 2 65.7 even 12
5070.2.b.b.1351.2 2 65.32 even 12