# Properties

 Label 1950.2.y.k Level $1950$ Weight $2$ Character orbit 1950.y Analytic conductor $15.571$ Analytic rank $0$ Dimension $8$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1950.y (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$15.5708283941$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(\zeta_{6})$$ Coefficient field: 8.0.17284886784.1 Defining polynomial: $$x^{8} - 2 x^{7} + 2 x^{6} + 30 x^{5} + 185 x^{4} + 36 x^{3} + 8 x^{2} + 208 x + 2704$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 390) Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{7}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 1 - \beta_{6} ) q^{2} + ( -\beta_{2} - \beta_{5} ) q^{3} -\beta_{6} q^{4} -\beta_{5} q^{6} + ( -1 + \beta_{1} + \beta_{3} + \beta_{5} ) q^{7} - q^{8} + \beta_{6} q^{9} +O(q^{10})$$ $$q + ( 1 - \beta_{6} ) q^{2} + ( -\beta_{2} - \beta_{5} ) q^{3} -\beta_{6} q^{4} -\beta_{5} q^{6} + ( -1 + \beta_{1} + \beta_{3} + \beta_{5} ) q^{7} - q^{8} + \beta_{6} q^{9} + ( 2 - \beta_{1} - \beta_{3} - \beta_{5} - \beta_{7} ) q^{11} + \beta_{2} q^{12} + ( 1 - \beta_{1} - 2 \beta_{2} - \beta_{5} - 2 \beta_{6} - \beta_{7} ) q^{13} + ( -1 + \beta_{1} + \beta_{2} - \beta_{4} + \beta_{5} + \beta_{7} ) q^{14} + ( -1 + \beta_{6} ) q^{16} + 4 \beta_{5} q^{17} + q^{18} + ( 1 - \beta_{1} - 2 \beta_{2} + \beta_{3} + 2 \beta_{4} - \beta_{5} - 2 \beta_{7} ) q^{19} + ( \beta_{2} - \beta_{3} + \beta_{7} ) q^{21} + ( 1 - \beta_{2} + \beta_{4} - \beta_{7} ) q^{22} + ( 1 + \beta_{2} - \beta_{3} - \beta_{4} - \beta_{6} - \beta_{7} ) q^{23} + ( \beta_{2} + \beta_{5} ) q^{24} + ( -1 - 2 \beta_{2} - 2 \beta_{5} - \beta_{7} ) q^{26} -\beta_{2} q^{27} + ( \beta_{2} - \beta_{3} - \beta_{4} + \beta_{7} ) q^{28} + ( 2 + \beta_{1} + \beta_{2} - 2 \beta_{3} - \beta_{4} + \beta_{5} - 2 \beta_{6} + 2 \beta_{7} ) q^{29} + ( 4 - \beta_{1} - \beta_{2} - \beta_{4} - \beta_{5} - 6 \beta_{6} - \beta_{7} ) q^{31} + \beta_{6} q^{32} + ( 1 - \beta_{2} - \beta_{4} - \beta_{5} - \beta_{6} - \beta_{7} ) q^{33} -4 \beta_{2} q^{34} + ( 1 - \beta_{6} ) q^{36} + ( 2 + \beta_{1} - 2 \beta_{2} - \beta_{3} + 3 \beta_{5} - 2 \beta_{6} + \beta_{7} ) q^{37} + ( -1 + \beta_{1} - \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{5} - \beta_{7} ) q^{38} + ( -1 + 2 \beta_{2} - \beta_{4} + \beta_{6} ) q^{39} + ( 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{4} + 2 \beta_{5} ) q^{41} + ( -\beta_{1} + \beta_{4} ) q^{42} + ( 8 + \beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} - 3 \beta_{5} - 4 \beta_{6} + \beta_{7} ) q^{43} + ( -1 + \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} + \beta_{5} ) q^{44} + ( -1 + \beta_{1} - \beta_{3} + \beta_{5} + \beta_{6} ) q^{46} + ( 1 + 2 \beta_{1} - 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{7} ) q^{47} + \beta_{5} q^{48} + ( -3 + 5 \beta_{2} - \beta_{3} - \beta_{4} - 4 \beta_{5} + 3 \beta_{6} + \beta_{7} ) q^{49} -4 q^{51} + ( -2 + \beta_{1} - \beta_{5} + 2 \beta_{6} ) q^{52} + ( -1 - \beta_{1} + 3 \beta_{2} - 2 \beta_{3} - \beta_{4} - \beta_{5} + 4 \beta_{6} + \beta_{7} ) q^{53} + ( -\beta_{2} - \beta_{5} ) q^{54} + ( 1 - \beta_{1} - \beta_{3} - \beta_{5} ) q^{56} + ( 2 \beta_{1} + \beta_{2} - \beta_{3} - 2 \beta_{4} + \beta_{7} ) q^{57} + ( -\beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} - \beta_{5} - 2 \beta_{6} + \beta_{7} ) q^{58} + ( -4 - \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} + \beta_{5} + 2 \beta_{6} - \beta_{7} ) q^{59} + ( -4 \beta_{2} - 2 \beta_{5} - 4 \beta_{6} ) q^{61} + ( -1 - \beta_{2} - \beta_{3} - \beta_{4} - 2 \beta_{5} - 3 \beta_{6} - \beta_{7} ) q^{62} + ( -\beta_{2} + \beta_{3} + \beta_{4} - \beta_{7} ) q^{63} + q^{64} + ( \beta_{1} - \beta_{3} - \beta_{4} - \beta_{5} ) q^{66} + ( 4 - 2 \beta_{3} - 2 \beta_{4} + 2 \beta_{5} - 4 \beta_{6} + 2 \beta_{7} ) q^{67} + ( -4 \beta_{2} - 4 \beta_{5} ) q^{68} + ( 2 - \beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} - \beta_{5} - 2 \beta_{6} - \beta_{7} ) q^{69} + ( -2 + 2 \beta_{1} - 2 \beta_{3} - 4 \beta_{5} + 2 \beta_{6} ) q^{71} -\beta_{6} q^{72} + ( -4 + 2 \beta_{1} + 6 \beta_{2} - 2 \beta_{4} + 10 \beta_{5} + 2 \beta_{7} ) q^{73} + ( -1 - 5 \beta_{2} + \beta_{4} - 2 \beta_{5} - 2 \beta_{6} + \beta_{7} ) q^{74} + ( -2 + 2 \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{5} + \beta_{7} ) q^{76} + ( 5 + \beta_{1} - 3 \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{5} - 12 \beta_{6} - \beta_{7} ) q^{77} + ( 1 + 2 \beta_{2} - \beta_{3} - \beta_{4} + \beta_{5} + \beta_{6} ) q^{78} + ( 4 - 3 \beta_{1} - 3 \beta_{2} + 3 \beta_{4} - 3 \beta_{5} - 3 \beta_{7} ) q^{79} + ( -1 + \beta_{6} ) q^{81} + ( 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + 2 \beta_{5} + 2 \beta_{7} ) q^{82} + ( 2 + 2 \beta_{2} + 2 \beta_{3} + 4 \beta_{5} + 2 \beta_{7} ) q^{83} + ( -\beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} - \beta_{7} ) q^{84} + ( 4 + 4 \beta_{2} - \beta_{3} - 8 \beta_{6} + \beta_{7} ) q^{86} + ( -1 - \beta_{1} - 2 \beta_{2} + \beta_{3} + 2 \beta_{4} - 3 \beta_{5} + \beta_{6} - 2 \beta_{7} ) q^{87} + ( -2 + \beta_{1} + \beta_{3} + \beta_{5} + \beta_{7} ) q^{88} + ( -2 - \beta_{2} - \beta_{3} - \beta_{4} - 2 \beta_{5} - 4 \beta_{6} - \beta_{7} ) q^{89} + ( 2 + 2 \beta_{1} - \beta_{2} - 3 \beta_{3} - 3 \beta_{4} - 6 \beta_{5} - 6 \beta_{6} + 3 \beta_{7} ) q^{91} + ( -2 + \beta_{1} - \beta_{2} + \beta_{4} + \beta_{5} + 2 \beta_{6} + \beta_{7} ) q^{92} + ( -\beta_{1} + 3 \beta_{2} - \beta_{4} - 3 \beta_{5} ) q^{93} + ( 3 + 4 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} - 3 \beta_{6} + 2 \beta_{7} ) q^{94} -\beta_{2} q^{96} + ( -2 + 2 \beta_{1} + 4 \beta_{2} + 2 \beta_{3} + 4 \beta_{5} - 8 \beta_{6} ) q^{97} + ( 1 - \beta_{1} + 8 \beta_{2} - \beta_{3} + 3 \beta_{5} + 3 \beta_{6} ) q^{98} + ( 1 - \beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} - \beta_{5} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8q + 4q^{2} - 4q^{4} - 2q^{7} - 8q^{8} + 4q^{9} + O(q^{10})$$ $$8q + 4q^{2} - 4q^{4} - 2q^{7} - 8q^{8} + 4q^{9} + 6q^{11} - 6q^{13} - 4q^{14} - 4q^{16} + 8q^{18} + 6q^{19} + 6q^{22} - 6q^{23} - 12q^{26} - 2q^{28} + 8q^{29} + 4q^{32} - 2q^{33} + 4q^{36} + 10q^{37} - 6q^{39} + 48q^{43} - 6q^{46} + 16q^{47} - 14q^{49} - 32q^{51} - 6q^{52} + 2q^{56} - 8q^{58} - 24q^{59} - 16q^{61} - 30q^{62} + 2q^{63} + 8q^{64} - 4q^{66} + 12q^{67} - 4q^{69} - 12q^{71} - 4q^{72} - 24q^{73} - 10q^{74} - 6q^{76} + 6q^{78} + 20q^{79} - 4q^{81} + 32q^{83} - 6q^{87} - 6q^{88} - 42q^{89} - 10q^{91} - 4q^{93} + 8q^{94} - 36q^{97} + 14q^{98} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{8} - 2 x^{7} + 2 x^{6} + 30 x^{5} + 185 x^{4} + 36 x^{3} + 8 x^{2} + 208 x + 2704$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$($$$$-2225 \nu^{7} + 27304 \nu^{6} - 47714 \nu^{5} - 21770 \nu^{4} + 204731 \nu^{3} + 5488658 \nu^{2} + 258164 \nu - 320632$$$$)/20561424$$ $$\beta_{3}$$ $$=$$ $$($$$$-1777 \nu^{7} - 125666 \nu^{6} + 800522 \nu^{5} - 2370014 \nu^{4} - 784473 \nu^{3} - 5277648 \nu^{2} + 34618460 \nu - 62031216$$$$)/6853808$$ $$\beta_{4}$$ $$=$$ $$($$$$-299 \nu^{7} + 7801 \nu^{6} - 39200 \nu^{5} + 84154 \nu^{4} + 80915 \nu^{3} + 360425 \nu^{2} - 1640788 \nu + 2274116$$$$)/395412$$ $$\beta_{5}$$ $$=$$ $$($$$$43733 \nu^{7} - 71918 \nu^{6} - 318186 \nu^{5} + 3350390 \nu^{4} + 3714597 \nu^{3} - 2633192 \nu^{2} - 18392236 \nu + 94417440$$$$)/20561424$$ $$\beta_{6}$$ $$=$$ $$($$$$-151 \nu^{7} + 822 \nu^{6} - 2018 \nu^{5} - 2554 \nu^{4} - 7135 \nu^{3} + 37828 \nu^{2} - 46500 \nu - 3328$$$$)/51792$$ $$\beta_{7}$$ $$=$$ $$($$$$-123974 \nu^{7} + 362933 \nu^{6} - 209286 \nu^{5} - 5793110 \nu^{4} - 10547568 \nu^{3} + 7562729 \nu^{2} + 3493156 \nu - 117816036$$$$)/10280712$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{7} - 4 \beta_{6} + \beta_{5} + \beta_{4} + 9 \beta_{2} + \beta_{1} + 1$$ $$\nu^{3}$$ $$=$$ $$6 \beta_{7} - 10 \beta_{6} + 26 \beta_{5} + 10 \beta_{4} + 10 \beta_{3} + 18 \beta_{2} + 3 \beta_{1} - 18$$ $$\nu^{4}$$ $$=$$ $$23 \beta_{7} + 139 \beta_{5} + 5 \beta_{4} + 28 \beta_{3} + 67 \beta_{2} - 5 \beta_{1} - 149$$ $$\nu^{5}$$ $$=$$ $$250 \beta_{6} + 322 \beta_{5} - 72 \beta_{4} + 72 \beta_{3} - 76 \beta_{2} - 149 \beta_{1} - 398$$ $$\nu^{6}$$ $$=$$ $$-471 \beta_{7} + 1748 \beta_{6} - 619 \beta_{5} - 619 \beta_{4} - 148 \beta_{3} - 2095 \beta_{2} - 619 \beta_{1} - 255$$ $$\nu^{7}$$ $$=$$ $$-2986 \beta_{7} + 5302 \beta_{6} - 11002 \beta_{5} - 2714 \beta_{4} - 2714 \beta_{3} - 10118 \beta_{2} - 1493 \beta_{1} + 7530$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times$$.

 $$n$$ $$301$$ $$1301$$ $$1327$$ $$\chi(n)$$ $$\beta_{6}$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
49.1
 −1.70006 + 1.70006i 1.33404 − 1.33404i 3.17270 + 3.17270i −1.80668 − 1.80668i −1.70006 − 1.70006i 1.33404 + 1.33404i 3.17270 − 3.17270i −1.80668 + 1.80668i
0.500000 + 0.866025i −0.866025 + 0.500000i −0.500000 + 0.866025i 0 −0.866025 0.500000i −2.32233 + 4.02239i −1.00000 0.500000 0.866025i 0
49.2 0.500000 + 0.866025i −0.866025 + 0.500000i −0.500000 + 0.866025i 0 −0.866025 0.500000i 1.82233 3.15637i −1.00000 0.500000 0.866025i 0
49.3 0.500000 + 0.866025i 0.866025 0.500000i −0.500000 + 0.866025i 0 0.866025 + 0.500000i −1.16129 + 2.01141i −1.00000 0.500000 0.866025i 0
49.4 0.500000 + 0.866025i 0.866025 0.500000i −0.500000 + 0.866025i 0 0.866025 + 0.500000i 0.661290 1.14539i −1.00000 0.500000 0.866025i 0
199.1 0.500000 0.866025i −0.866025 0.500000i −0.500000 0.866025i 0 −0.866025 + 0.500000i −2.32233 4.02239i −1.00000 0.500000 + 0.866025i 0
199.2 0.500000 0.866025i −0.866025 0.500000i −0.500000 0.866025i 0 −0.866025 + 0.500000i 1.82233 + 3.15637i −1.00000 0.500000 + 0.866025i 0
199.3 0.500000 0.866025i 0.866025 + 0.500000i −0.500000 0.866025i 0 0.866025 0.500000i −1.16129 2.01141i −1.00000 0.500000 + 0.866025i 0
199.4 0.500000 0.866025i 0.866025 + 0.500000i −0.500000 0.866025i 0 0.866025 0.500000i 0.661290 + 1.14539i −1.00000 0.500000 + 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 199.4 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.l even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.2.y.k 8
5.b even 2 1 1950.2.y.j 8
5.c odd 4 1 390.2.bb.c 8
5.c odd 4 1 1950.2.bc.g 8
13.e even 6 1 1950.2.y.j 8
15.e even 4 1 1170.2.bs.f 8
65.l even 6 1 inner 1950.2.y.k 8
65.o even 12 1 5070.2.a.bz 4
65.q odd 12 1 5070.2.b.ba 8
65.r odd 12 1 390.2.bb.c 8
65.r odd 12 1 1950.2.bc.g 8
65.r odd 12 1 5070.2.b.ba 8
65.t even 12 1 5070.2.a.ca 4
195.bf even 12 1 1170.2.bs.f 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.bb.c 8 5.c odd 4 1
390.2.bb.c 8 65.r odd 12 1
1170.2.bs.f 8 15.e even 4 1
1170.2.bs.f 8 195.bf even 12 1
1950.2.y.j 8 5.b even 2 1
1950.2.y.j 8 13.e even 6 1
1950.2.y.k 8 1.a even 1 1 trivial
1950.2.y.k 8 65.l even 6 1 inner
1950.2.bc.g 8 5.c odd 4 1
1950.2.bc.g 8 65.r odd 12 1
5070.2.a.bz 4 65.o even 12 1
5070.2.a.ca 4 65.t even 12 1
5070.2.b.ba 8 65.q odd 12 1
5070.2.b.ba 8 65.r odd 12 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{7}^{8} + \cdots$$ acting on $$S_{2}^{\mathrm{new}}(1950, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( 1 - T + T^{2} )^{4}$$
$3$ $$( 1 - T^{2} + T^{4} )^{2}$$
$5$ $$T^{8}$$
$7$ $$2704 - 1040 T + 1388 T^{2} + 172 T^{3} + 349 T^{4} + 2 T^{5} + 23 T^{6} + 2 T^{7} + T^{8}$$
$11$ $$32761 + 22806 T - 138 T^{2} - 3780 T^{3} + 467 T^{4} + 180 T^{5} - 18 T^{6} - 6 T^{7} + T^{8}$$
$13$ $$28561 + 13182 T + 7605 T^{2} + 2418 T^{3} + 848 T^{4} + 186 T^{5} + 45 T^{6} + 6 T^{7} + T^{8}$$
$17$ $$( 256 - 16 T^{2} + T^{4} )^{2}$$
$19$ $$219024 + 84240 T - 15876 T^{2} - 10260 T^{3} + 2421 T^{4} + 342 T^{5} - 45 T^{6} - 6 T^{7} + T^{8}$$
$23$ $$2704 + 624 T - 2292 T^{2} - 540 T^{3} + 1997 T^{4} - 270 T^{5} - 33 T^{6} + 6 T^{7} + T^{8}$$
$29$ $$141376 + 55648 T + 36568 T^{2} + 244 T^{3} + 2329 T^{4} + 16 T^{5} + 103 T^{6} - 8 T^{7} + T^{8}$$
$31$ $$913936 + 158088 T^{2} + 8777 T^{4} + 174 T^{6} + T^{8}$$
$37$ $$644809 - 345290 T + 157598 T^{2} - 30680 T^{3} + 6259 T^{4} - 520 T^{5} + 134 T^{6} - 10 T^{7} + T^{8}$$
$41$ $$692224 - 159744 T - 57600 T^{2} + 16128 T^{3} + 6224 T^{4} - 84 T^{6} + T^{8}$$
$43$ $$327184 + 604032 T + 232716 T^{2} - 256608 T^{3} + 76517 T^{4} - 11664 T^{5} + 1011 T^{6} - 48 T^{7} + T^{8}$$
$47$ $$( -1103 + 776 T - 82 T^{2} - 8 T^{3} + T^{4} )^{2}$$
$53$ $$2704 + 7816 T^{2} + 5793 T^{4} + 214 T^{6} + T^{8}$$
$59$ $$80656 + 23856 T - 10996 T^{2} - 3948 T^{3} + 1821 T^{4} + 1128 T^{5} + 239 T^{6} + 24 T^{7} + T^{8}$$
$61$ $$( 16 + 32 T + 60 T^{2} + 8 T^{3} + T^{4} )^{2}$$
$67$ $$123904 + 50688 T + 39040 T^{2} + 960 T^{3} + 4080 T^{4} + 336 T^{5} + 196 T^{6} - 12 T^{7} + T^{8}$$
$71$ $$25240576 + 19051008 T + 5817984 T^{2} + 773568 T^{3} + 31472 T^{4} - 2448 T^{5} - 156 T^{6} + 12 T^{7} + T^{8}$$
$73$ $$( -4544 - 1728 T - 124 T^{2} + 12 T^{3} + T^{4} )^{2}$$
$79$ $$( 3508 + 860 T - 147 T^{2} - 10 T^{3} + T^{4} )^{2}$$
$83$ $$( -5024 + 1936 T - 100 T^{2} - 16 T^{3} + T^{4} )^{2}$$
$89$ $$1008016 - 349392 T - 131316 T^{2} + 59508 T^{3} + 35117 T^{4} + 7182 T^{5} + 759 T^{6} + 42 T^{7} + T^{8}$$
$97$ $$29246464 - 3374592 T + 2444416 T^{2} + 626496 T^{3} + 127344 T^{4} + 12432 T^{5} + 916 T^{6} + 36 T^{7} + T^{8}$$