Properties

Label 1950.2.y.f.199.1
Level $1950$
Weight $2$
Character 1950.199
Analytic conductor $15.571$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1950,2,Mod(49,1950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1950, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1950.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.y (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,-2,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1950.199
Dual form 1950.2.y.f.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{6} +(-1.00000 - 1.73205i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(5.59808 + 3.23205i) q^{11} +1.00000i q^{12} +(-3.46410 - 1.00000i) q^{13} -2.00000 q^{14} +(-0.500000 + 0.866025i) q^{16} +(-3.46410 + 2.00000i) q^{17} +1.00000 q^{18} +(-6.46410 + 3.73205i) q^{19} +2.00000i q^{21} +(5.59808 - 3.23205i) q^{22} +(3.23205 + 1.86603i) q^{23} +(0.866025 + 0.500000i) q^{24} +(-2.59808 + 2.50000i) q^{26} -1.00000i q^{27} +(-1.00000 + 1.73205i) q^{28} +(0.133975 - 0.232051i) q^{29} -1.73205i q^{31} +(0.500000 + 0.866025i) q^{32} +(-3.23205 - 5.59808i) q^{33} +4.00000i q^{34} +(0.500000 - 0.866025i) q^{36} +(-4.59808 + 7.96410i) q^{37} +7.46410i q^{38} +(2.50000 + 2.59808i) q^{39} +(1.73205 + 1.00000i) q^{41} +(1.73205 + 1.00000i) q^{42} +(-10.3301 + 5.96410i) q^{43} -6.46410i q^{44} +(3.23205 - 1.86603i) q^{46} +3.53590 q^{47} +(0.866025 - 0.500000i) q^{48} +(1.50000 - 2.59808i) q^{49} +4.00000 q^{51} +(0.866025 + 3.50000i) q^{52} -0.928203i q^{53} +(-0.866025 - 0.500000i) q^{54} +(1.00000 + 1.73205i) q^{56} +7.46410 q^{57} +(-0.133975 - 0.232051i) q^{58} +(-7.33013 + 4.23205i) q^{59} +(5.19615 + 9.00000i) q^{61} +(-1.50000 - 0.866025i) q^{62} +(1.00000 - 1.73205i) q^{63} +1.00000 q^{64} -6.46410 q^{66} +(5.73205 - 9.92820i) q^{67} +(3.46410 + 2.00000i) q^{68} +(-1.86603 - 3.23205i) q^{69} +(-10.7321 + 6.19615i) q^{71} +(-0.500000 - 0.866025i) q^{72} +2.00000 q^{73} +(4.59808 + 7.96410i) q^{74} +(6.46410 + 3.73205i) q^{76} -12.9282i q^{77} +(3.50000 - 0.866025i) q^{78} +13.9282 q^{79} +(-0.500000 + 0.866025i) q^{81} +(1.73205 - 1.00000i) q^{82} +8.92820 q^{83} +(1.73205 - 1.00000i) q^{84} +11.9282i q^{86} +(-0.232051 + 0.133975i) q^{87} +(-5.59808 - 3.23205i) q^{88} +(0.464102 + 0.267949i) q^{89} +(1.73205 + 7.00000i) q^{91} -3.73205i q^{92} +(-0.866025 + 1.50000i) q^{93} +(1.76795 - 3.06218i) q^{94} -1.00000i q^{96} +(0.267949 + 0.464102i) q^{97} +(-1.50000 - 2.59808i) q^{98} +6.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 4 q^{7} - 4 q^{8} + 2 q^{9} + 12 q^{11} - 8 q^{14} - 2 q^{16} + 4 q^{18} - 12 q^{19} + 12 q^{22} + 6 q^{23} - 4 q^{28} + 4 q^{29} + 2 q^{32} - 6 q^{33} + 2 q^{36} - 8 q^{37} + 10 q^{39}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) −0.866025 + 0.500000i −0.353553 + 0.204124i
\(7\) −1.00000 1.73205i −0.377964 0.654654i 0.612801 0.790237i \(-0.290043\pi\)
−0.990766 + 0.135583i \(0.956709\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 5.59808 + 3.23205i 1.68788 + 0.974500i 0.956136 + 0.292925i \(0.0946285\pi\)
0.731748 + 0.681575i \(0.238705\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −3.46410 1.00000i −0.960769 0.277350i
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.46410 + 2.00000i −0.840168 + 0.485071i −0.857321 0.514782i \(-0.827873\pi\)
0.0171533 + 0.999853i \(0.494540\pi\)
\(18\) 1.00000 0.235702
\(19\) −6.46410 + 3.73205i −1.48297 + 0.856191i −0.999813 0.0193444i \(-0.993842\pi\)
−0.483154 + 0.875536i \(0.660509\pi\)
\(20\) 0 0
\(21\) 2.00000i 0.436436i
\(22\) 5.59808 3.23205i 1.19351 0.689076i
\(23\) 3.23205 + 1.86603i 0.673929 + 0.389093i 0.797564 0.603235i \(-0.206122\pi\)
−0.123635 + 0.992328i \(0.539455\pi\)
\(24\) 0.866025 + 0.500000i 0.176777 + 0.102062i
\(25\) 0 0
\(26\) −2.59808 + 2.50000i −0.509525 + 0.490290i
\(27\) 1.00000i 0.192450i
\(28\) −1.00000 + 1.73205i −0.188982 + 0.327327i
\(29\) 0.133975 0.232051i 0.0248785 0.0430908i −0.853318 0.521391i \(-0.825413\pi\)
0.878197 + 0.478300i \(0.158747\pi\)
\(30\) 0 0
\(31\) 1.73205i 0.311086i −0.987829 0.155543i \(-0.950287\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −3.23205 5.59808i −0.562628 0.974500i
\(34\) 4.00000i 0.685994i
\(35\) 0 0
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) −4.59808 + 7.96410i −0.755919 + 1.30929i 0.188997 + 0.981978i \(0.439476\pi\)
−0.944916 + 0.327313i \(0.893857\pi\)
\(38\) 7.46410i 1.21084i
\(39\) 2.50000 + 2.59808i 0.400320 + 0.416025i
\(40\) 0 0
\(41\) 1.73205 + 1.00000i 0.270501 + 0.156174i 0.629115 0.777312i \(-0.283417\pi\)
−0.358614 + 0.933486i \(0.616751\pi\)
\(42\) 1.73205 + 1.00000i 0.267261 + 0.154303i
\(43\) −10.3301 + 5.96410i −1.57533 + 0.909517i −0.579831 + 0.814736i \(0.696882\pi\)
−0.995498 + 0.0947805i \(0.969785\pi\)
\(44\) 6.46410i 0.974500i
\(45\) 0 0
\(46\) 3.23205 1.86603i 0.476540 0.275130i
\(47\) 3.53590 0.515764 0.257882 0.966176i \(-0.416975\pi\)
0.257882 + 0.966176i \(0.416975\pi\)
\(48\) 0.866025 0.500000i 0.125000 0.0721688i
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) 0 0
\(51\) 4.00000 0.560112
\(52\) 0.866025 + 3.50000i 0.120096 + 0.485363i
\(53\) 0.928203i 0.127499i −0.997966 0.0637493i \(-0.979694\pi\)
0.997966 0.0637493i \(-0.0203058\pi\)
\(54\) −0.866025 0.500000i −0.117851 0.0680414i
\(55\) 0 0
\(56\) 1.00000 + 1.73205i 0.133631 + 0.231455i
\(57\) 7.46410 0.988644
\(58\) −0.133975 0.232051i −0.0175917 0.0304698i
\(59\) −7.33013 + 4.23205i −0.954301 + 0.550966i −0.894414 0.447239i \(-0.852407\pi\)
−0.0598868 + 0.998205i \(0.519074\pi\)
\(60\) 0 0
\(61\) 5.19615 + 9.00000i 0.665299 + 1.15233i 0.979204 + 0.202878i \(0.0650293\pi\)
−0.313905 + 0.949454i \(0.601637\pi\)
\(62\) −1.50000 0.866025i −0.190500 0.109985i
\(63\) 1.00000 1.73205i 0.125988 0.218218i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −6.46410 −0.795676
\(67\) 5.73205 9.92820i 0.700281 1.21292i −0.268086 0.963395i \(-0.586391\pi\)
0.968368 0.249528i \(-0.0802755\pi\)
\(68\) 3.46410 + 2.00000i 0.420084 + 0.242536i
\(69\) −1.86603 3.23205i −0.224643 0.389093i
\(70\) 0 0
\(71\) −10.7321 + 6.19615i −1.27366 + 0.735348i −0.975675 0.219222i \(-0.929648\pi\)
−0.297985 + 0.954570i \(0.596315\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 4.59808 + 7.96410i 0.534516 + 0.925808i
\(75\) 0 0
\(76\) 6.46410 + 3.73205i 0.741483 + 0.428096i
\(77\) 12.9282i 1.47331i
\(78\) 3.50000 0.866025i 0.396297 0.0980581i
\(79\) 13.9282 1.56705 0.783523 0.621363i \(-0.213421\pi\)
0.783523 + 0.621363i \(0.213421\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 1.73205 1.00000i 0.191273 0.110432i
\(83\) 8.92820 0.979998 0.489999 0.871723i \(-0.336997\pi\)
0.489999 + 0.871723i \(0.336997\pi\)
\(84\) 1.73205 1.00000i 0.188982 0.109109i
\(85\) 0 0
\(86\) 11.9282i 1.28625i
\(87\) −0.232051 + 0.133975i −0.0248785 + 0.0143636i
\(88\) −5.59808 3.23205i −0.596757 0.344538i
\(89\) 0.464102 + 0.267949i 0.0491947 + 0.0284026i 0.524396 0.851475i \(-0.324291\pi\)
−0.475201 + 0.879877i \(0.657625\pi\)
\(90\) 0 0
\(91\) 1.73205 + 7.00000i 0.181568 + 0.733799i
\(92\) 3.73205i 0.389093i
\(93\) −0.866025 + 1.50000i −0.0898027 + 0.155543i
\(94\) 1.76795 3.06218i 0.182350 0.315840i
\(95\) 0 0
\(96\) 1.00000i 0.102062i
\(97\) 0.267949 + 0.464102i 0.0272061 + 0.0471224i 0.879308 0.476254i \(-0.158006\pi\)
−0.852102 + 0.523376i \(0.824672\pi\)
\(98\) −1.50000 2.59808i −0.151523 0.262445i
\(99\) 6.46410i 0.649667i
\(100\) 0 0
\(101\) −1.46410 + 2.53590i −0.145684 + 0.252331i −0.929628 0.368500i \(-0.879871\pi\)
0.783944 + 0.620831i \(0.213205\pi\)
\(102\) 2.00000 3.46410i 0.198030 0.342997i
\(103\) 11.8564i 1.16825i 0.811665 + 0.584123i \(0.198562\pi\)
−0.811665 + 0.584123i \(0.801438\pi\)
\(104\) 3.46410 + 1.00000i 0.339683 + 0.0980581i
\(105\) 0 0
\(106\) −0.803848 0.464102i −0.0780766 0.0450775i
\(107\) 6.80385 + 3.92820i 0.657753 + 0.379754i 0.791420 0.611273i \(-0.209342\pi\)
−0.133667 + 0.991026i \(0.542675\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) 15.8564i 1.51877i 0.650643 + 0.759384i \(0.274500\pi\)
−0.650643 + 0.759384i \(0.725500\pi\)
\(110\) 0 0
\(111\) 7.96410 4.59808i 0.755919 0.436430i
\(112\) 2.00000 0.188982
\(113\) −0.696152 + 0.401924i −0.0654885 + 0.0378098i −0.532387 0.846501i \(-0.678705\pi\)
0.466898 + 0.884311i \(0.345371\pi\)
\(114\) 3.73205 6.46410i 0.349539 0.605419i
\(115\) 0 0
\(116\) −0.267949 −0.0248785
\(117\) −0.866025 3.50000i −0.0800641 0.323575i
\(118\) 8.46410i 0.779184i
\(119\) 6.92820 + 4.00000i 0.635107 + 0.366679i
\(120\) 0 0
\(121\) 15.3923 + 26.6603i 1.39930 + 2.42366i
\(122\) 10.3923 0.940875
\(123\) −1.00000 1.73205i −0.0901670 0.156174i
\(124\) −1.50000 + 0.866025i −0.134704 + 0.0777714i
\(125\) 0 0
\(126\) −1.00000 1.73205i −0.0890871 0.154303i
\(127\) 4.26795 + 2.46410i 0.378719 + 0.218654i 0.677261 0.735743i \(-0.263167\pi\)
−0.298542 + 0.954397i \(0.596500\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 11.9282 1.05022
\(130\) 0 0
\(131\) −18.6603 −1.63035 −0.815177 0.579212i \(-0.803360\pi\)
−0.815177 + 0.579212i \(0.803360\pi\)
\(132\) −3.23205 + 5.59808i −0.281314 + 0.487250i
\(133\) 12.9282 + 7.46410i 1.12102 + 0.647220i
\(134\) −5.73205 9.92820i −0.495174 0.857666i
\(135\) 0 0
\(136\) 3.46410 2.00000i 0.297044 0.171499i
\(137\) −1.23205 2.13397i −0.105261 0.182318i 0.808584 0.588381i \(-0.200235\pi\)
−0.913845 + 0.406063i \(0.866901\pi\)
\(138\) −3.73205 −0.317693
\(139\) −6.46410 11.1962i −0.548278 0.949645i −0.998393 0.0566745i \(-0.981950\pi\)
0.450115 0.892971i \(-0.351383\pi\)
\(140\) 0 0
\(141\) −3.06218 1.76795i −0.257882 0.148888i
\(142\) 12.3923i 1.03994i
\(143\) −16.1603 16.7942i −1.35139 1.40440i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 1.00000 1.73205i 0.0827606 0.143346i
\(147\) −2.59808 + 1.50000i −0.214286 + 0.123718i
\(148\) 9.19615 0.755919
\(149\) 11.7224 6.76795i 0.960339 0.554452i 0.0640617 0.997946i \(-0.479595\pi\)
0.896277 + 0.443494i \(0.146261\pi\)
\(150\) 0 0
\(151\) 10.3923i 0.845714i −0.906196 0.422857i \(-0.861027\pi\)
0.906196 0.422857i \(-0.138973\pi\)
\(152\) 6.46410 3.73205i 0.524308 0.302709i
\(153\) −3.46410 2.00000i −0.280056 0.161690i
\(154\) −11.1962 6.46410i −0.902212 0.520892i
\(155\) 0 0
\(156\) 1.00000 3.46410i 0.0800641 0.277350i
\(157\) 5.00000i 0.399043i −0.979893 0.199522i \(-0.936061\pi\)
0.979893 0.199522i \(-0.0639388\pi\)
\(158\) 6.96410 12.0622i 0.554034 0.959615i
\(159\) −0.464102 + 0.803848i −0.0368057 + 0.0637493i
\(160\) 0 0
\(161\) 7.46410i 0.588254i
\(162\) 0.500000 + 0.866025i 0.0392837 + 0.0680414i
\(163\) −7.52628 13.0359i −0.589504 1.02105i −0.994297 0.106642i \(-0.965990\pi\)
0.404794 0.914408i \(-0.367343\pi\)
\(164\) 2.00000i 0.156174i
\(165\) 0 0
\(166\) 4.46410 7.73205i 0.346481 0.600124i
\(167\) −8.16025 + 14.1340i −0.631459 + 1.09372i 0.355794 + 0.934564i \(0.384210\pi\)
−0.987254 + 0.159155i \(0.949123\pi\)
\(168\) 2.00000i 0.154303i
\(169\) 11.0000 + 6.92820i 0.846154 + 0.532939i
\(170\) 0 0
\(171\) −6.46410 3.73205i −0.494322 0.285397i
\(172\) 10.3301 + 5.96410i 0.787665 + 0.454758i
\(173\) −9.46410 + 5.46410i −0.719542 + 0.415428i −0.814584 0.580045i \(-0.803035\pi\)
0.0950419 + 0.995473i \(0.469701\pi\)
\(174\) 0.267949i 0.0203132i
\(175\) 0 0
\(176\) −5.59808 + 3.23205i −0.421971 + 0.243625i
\(177\) 8.46410 0.636201
\(178\) 0.464102 0.267949i 0.0347859 0.0200836i
\(179\) −9.86603 + 17.0885i −0.737421 + 1.27725i 0.216231 + 0.976342i \(0.430623\pi\)
−0.953653 + 0.300909i \(0.902710\pi\)
\(180\) 0 0
\(181\) −2.92820 −0.217652 −0.108826 0.994061i \(-0.534709\pi\)
−0.108826 + 0.994061i \(0.534709\pi\)
\(182\) 6.92820 + 2.00000i 0.513553 + 0.148250i
\(183\) 10.3923i 0.768221i
\(184\) −3.23205 1.86603i −0.238270 0.137565i
\(185\) 0 0
\(186\) 0.866025 + 1.50000i 0.0635001 + 0.109985i
\(187\) −25.8564 −1.89081
\(188\) −1.76795 3.06218i −0.128941 0.223332i
\(189\) −1.73205 + 1.00000i −0.125988 + 0.0727393i
\(190\) 0 0
\(191\) −10.7321 18.5885i −0.776544 1.34501i −0.933923 0.357475i \(-0.883638\pi\)
0.157379 0.987538i \(-0.449696\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 5.66025 9.80385i 0.407434 0.705696i −0.587167 0.809466i \(-0.699757\pi\)
0.994601 + 0.103769i \(0.0330903\pi\)
\(194\) 0.535898 0.0384753
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −2.19615 + 3.80385i −0.156469 + 0.271013i −0.933593 0.358335i \(-0.883345\pi\)
0.777124 + 0.629348i \(0.216678\pi\)
\(198\) 5.59808 + 3.23205i 0.397838 + 0.229692i
\(199\) −2.53590 4.39230i −0.179765 0.311362i 0.762035 0.647536i \(-0.224200\pi\)
−0.941800 + 0.336174i \(0.890867\pi\)
\(200\) 0 0
\(201\) −9.92820 + 5.73205i −0.700281 + 0.404308i
\(202\) 1.46410 + 2.53590i 0.103014 + 0.178425i
\(203\) −0.535898 −0.0376127
\(204\) −2.00000 3.46410i −0.140028 0.242536i
\(205\) 0 0
\(206\) 10.2679 + 5.92820i 0.715402 + 0.413037i
\(207\) 3.73205i 0.259395i
\(208\) 2.59808 2.50000i 0.180144 0.173344i
\(209\) −48.2487 −3.33743
\(210\) 0 0
\(211\) 5.66025 9.80385i 0.389668 0.674925i −0.602737 0.797940i \(-0.705923\pi\)
0.992405 + 0.123015i \(0.0392564\pi\)
\(212\) −0.803848 + 0.464102i −0.0552085 + 0.0318746i
\(213\) 12.3923 0.849107
\(214\) 6.80385 3.92820i 0.465101 0.268526i
\(215\) 0 0
\(216\) 1.00000i 0.0680414i
\(217\) −3.00000 + 1.73205i −0.203653 + 0.117579i
\(218\) 13.7321 + 7.92820i 0.930052 + 0.536966i
\(219\) −1.73205 1.00000i −0.117041 0.0675737i
\(220\) 0 0
\(221\) 14.0000 3.46410i 0.941742 0.233021i
\(222\) 9.19615i 0.617205i
\(223\) −10.2679 + 17.7846i −0.687593 + 1.19095i 0.285022 + 0.958521i \(0.407999\pi\)
−0.972614 + 0.232424i \(0.925334\pi\)
\(224\) 1.00000 1.73205i 0.0668153 0.115728i
\(225\) 0 0
\(226\) 0.803848i 0.0534711i
\(227\) −8.19615 14.1962i −0.543998 0.942232i −0.998669 0.0515725i \(-0.983577\pi\)
0.454672 0.890659i \(-0.349757\pi\)
\(228\) −3.73205 6.46410i −0.247161 0.428096i
\(229\) 7.85641i 0.519166i 0.965721 + 0.259583i \(0.0835851\pi\)
−0.965721 + 0.259583i \(0.916415\pi\)
\(230\) 0 0
\(231\) −6.46410 + 11.1962i −0.425307 + 0.736653i
\(232\) −0.133975 + 0.232051i −0.00879586 + 0.0152349i
\(233\) 6.12436i 0.401220i −0.979671 0.200610i \(-0.935708\pi\)
0.979671 0.200610i \(-0.0642924\pi\)
\(234\) −3.46410 1.00000i −0.226455 0.0653720i
\(235\) 0 0
\(236\) 7.33013 + 4.23205i 0.477151 + 0.275483i
\(237\) −12.0622 6.96410i −0.783523 0.452367i
\(238\) 6.92820 4.00000i 0.449089 0.259281i
\(239\) 16.3923i 1.06033i 0.847894 + 0.530165i \(0.177870\pi\)
−0.847894 + 0.530165i \(0.822130\pi\)
\(240\) 0 0
\(241\) 15.3564 8.86603i 0.989193 0.571111i 0.0841601 0.996452i \(-0.473179\pi\)
0.905033 + 0.425341i \(0.139846\pi\)
\(242\) 30.7846 1.97891
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 5.19615 9.00000i 0.332650 0.576166i
\(245\) 0 0
\(246\) −2.00000 −0.127515
\(247\) 26.1244 6.46410i 1.66225 0.411301i
\(248\) 1.73205i 0.109985i
\(249\) −7.73205 4.46410i −0.489999 0.282901i
\(250\) 0 0
\(251\) −7.86603 13.6244i −0.496499 0.859962i 0.503493 0.863999i \(-0.332048\pi\)
−0.999992 + 0.00403776i \(0.998715\pi\)
\(252\) −2.00000 −0.125988
\(253\) 12.0622 + 20.8923i 0.758343 + 1.31349i
\(254\) 4.26795 2.46410i 0.267795 0.154611i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 4.62436 + 2.66987i 0.288459 + 0.166542i 0.637247 0.770660i \(-0.280073\pi\)
−0.348787 + 0.937202i \(0.613407\pi\)
\(258\) 5.96410 10.3301i 0.371309 0.643126i
\(259\) 18.3923 1.14284
\(260\) 0 0
\(261\) 0.267949 0.0165856
\(262\) −9.33013 + 16.1603i −0.576417 + 0.998384i
\(263\) 5.30385 + 3.06218i 0.327049 + 0.188822i 0.654530 0.756036i \(-0.272866\pi\)
−0.327481 + 0.944858i \(0.606200\pi\)
\(264\) 3.23205 + 5.59808i 0.198919 + 0.344538i
\(265\) 0 0
\(266\) 12.9282 7.46410i 0.792679 0.457653i
\(267\) −0.267949 0.464102i −0.0163982 0.0284026i
\(268\) −11.4641 −0.700281
\(269\) 6.00000 + 10.3923i 0.365826 + 0.633630i 0.988908 0.148527i \(-0.0474530\pi\)
−0.623082 + 0.782157i \(0.714120\pi\)
\(270\) 0 0
\(271\) 1.03590 + 0.598076i 0.0629263 + 0.0363305i 0.531133 0.847288i \(-0.321766\pi\)
−0.468207 + 0.883619i \(0.655100\pi\)
\(272\) 4.00000i 0.242536i
\(273\) 2.00000 6.92820i 0.121046 0.419314i
\(274\) −2.46410 −0.148862
\(275\) 0 0
\(276\) −1.86603 + 3.23205i −0.112322 + 0.194547i
\(277\) −3.40192 + 1.96410i −0.204402 + 0.118011i −0.598707 0.800968i \(-0.704319\pi\)
0.394305 + 0.918980i \(0.370985\pi\)
\(278\) −12.9282 −0.775382
\(279\) 1.50000 0.866025i 0.0898027 0.0518476i
\(280\) 0 0
\(281\) 8.92820i 0.532612i −0.963889 0.266306i \(-0.914197\pi\)
0.963889 0.266306i \(-0.0858032\pi\)
\(282\) −3.06218 + 1.76795i −0.182350 + 0.105280i
\(283\) −8.59808 4.96410i −0.511103 0.295085i 0.222184 0.975005i \(-0.428681\pi\)
−0.733287 + 0.679920i \(0.762015\pi\)
\(284\) 10.7321 + 6.19615i 0.636830 + 0.367674i
\(285\) 0 0
\(286\) −22.6244 + 5.59808i −1.33781 + 0.331021i
\(287\) 4.00000i 0.236113i
\(288\) −0.500000 + 0.866025i −0.0294628 + 0.0510310i
\(289\) −0.500000 + 0.866025i −0.0294118 + 0.0509427i
\(290\) 0 0
\(291\) 0.535898i 0.0314149i
\(292\) −1.00000 1.73205i −0.0585206 0.101361i
\(293\) 15.9282 + 27.5885i 0.930536 + 1.61173i 0.782408 + 0.622767i \(0.213991\pi\)
0.148128 + 0.988968i \(0.452675\pi\)
\(294\) 3.00000i 0.174964i
\(295\) 0 0
\(296\) 4.59808 7.96410i 0.267258 0.462904i
\(297\) 3.23205 5.59808i 0.187543 0.324833i
\(298\) 13.5359i 0.784114i
\(299\) −9.33013 9.69615i −0.539575 0.560743i
\(300\) 0 0
\(301\) 20.6603 + 11.9282i 1.19084 + 0.687530i
\(302\) −9.00000 5.19615i −0.517892 0.299005i
\(303\) 2.53590 1.46410i 0.145684 0.0841104i
\(304\) 7.46410i 0.428096i
\(305\) 0 0
\(306\) −3.46410 + 2.00000i −0.198030 + 0.114332i
\(307\) −19.4641 −1.11087 −0.555437 0.831558i \(-0.687449\pi\)
−0.555437 + 0.831558i \(0.687449\pi\)
\(308\) −11.1962 + 6.46410i −0.637960 + 0.368326i
\(309\) 5.92820 10.2679i 0.337244 0.584123i
\(310\) 0 0
\(311\) −28.3923 −1.60998 −0.804990 0.593288i \(-0.797829\pi\)
−0.804990 + 0.593288i \(0.797829\pi\)
\(312\) −2.50000 2.59808i −0.141535 0.147087i
\(313\) 28.0000i 1.58265i 0.611393 + 0.791327i \(0.290609\pi\)
−0.611393 + 0.791327i \(0.709391\pi\)
\(314\) −4.33013 2.50000i −0.244363 0.141083i
\(315\) 0 0
\(316\) −6.96410 12.0622i −0.391761 0.678551i
\(317\) −14.5359 −0.816417 −0.408209 0.912889i \(-0.633846\pi\)
−0.408209 + 0.912889i \(0.633846\pi\)
\(318\) 0.464102 + 0.803848i 0.0260255 + 0.0450775i
\(319\) 1.50000 0.866025i 0.0839839 0.0484881i
\(320\) 0 0
\(321\) −3.92820 6.80385i −0.219251 0.379754i
\(322\) −6.46410 3.73205i −0.360230 0.207979i
\(323\) 14.9282 25.8564i 0.830627 1.43869i
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −15.0526 −0.833684
\(327\) 7.92820 13.7321i 0.438431 0.759384i
\(328\) −1.73205 1.00000i −0.0956365 0.0552158i
\(329\) −3.53590 6.12436i −0.194940 0.337647i
\(330\) 0 0
\(331\) −14.5359 + 8.39230i −0.798965 + 0.461283i −0.843109 0.537742i \(-0.819277\pi\)
0.0441440 + 0.999025i \(0.485944\pi\)
\(332\) −4.46410 7.73205i −0.244999 0.424351i
\(333\) −9.19615 −0.503946
\(334\) 8.16025 + 14.1340i 0.446509 + 0.773377i
\(335\) 0 0
\(336\) −1.73205 1.00000i −0.0944911 0.0545545i
\(337\) 9.32051i 0.507720i 0.967241 + 0.253860i \(0.0817003\pi\)
−0.967241 + 0.253860i \(0.918300\pi\)
\(338\) 11.5000 6.06218i 0.625518 0.329739i
\(339\) 0.803848 0.0436590
\(340\) 0 0
\(341\) 5.59808 9.69615i 0.303153 0.525076i
\(342\) −6.46410 + 3.73205i −0.349539 + 0.201806i
\(343\) −20.0000 −1.07990
\(344\) 10.3301 5.96410i 0.556963 0.321563i
\(345\) 0 0
\(346\) 10.9282i 0.587504i
\(347\) 1.39230 0.803848i 0.0747428 0.0431528i −0.462163 0.886795i \(-0.652926\pi\)
0.536906 + 0.843642i \(0.319593\pi\)
\(348\) 0.232051 + 0.133975i 0.0124392 + 0.00718179i
\(349\) −18.5885 10.7321i −0.995017 0.574474i −0.0882471 0.996099i \(-0.528127\pi\)
−0.906770 + 0.421625i \(0.861460\pi\)
\(350\) 0 0
\(351\) −1.00000 + 3.46410i −0.0533761 + 0.184900i
\(352\) 6.46410i 0.344538i
\(353\) 1.00000 1.73205i 0.0532246 0.0921878i −0.838186 0.545385i \(-0.816383\pi\)
0.891410 + 0.453197i \(0.149717\pi\)
\(354\) 4.23205 7.33013i 0.224931 0.389592i
\(355\) 0 0
\(356\) 0.535898i 0.0284026i
\(357\) −4.00000 6.92820i −0.211702 0.366679i
\(358\) 9.86603 + 17.0885i 0.521436 + 0.903153i
\(359\) 5.07180i 0.267679i −0.991003 0.133840i \(-0.957269\pi\)
0.991003 0.133840i \(-0.0427307\pi\)
\(360\) 0 0
\(361\) 18.3564 31.7942i 0.966127 1.67338i
\(362\) −1.46410 + 2.53590i −0.0769515 + 0.133284i
\(363\) 30.7846i 1.61577i
\(364\) 5.19615 5.00000i 0.272352 0.262071i
\(365\) 0 0
\(366\) −9.00000 5.19615i −0.470438 0.271607i
\(367\) −13.5167 7.80385i −0.705564 0.407358i 0.103852 0.994593i \(-0.466883\pi\)
−0.809416 + 0.587235i \(0.800216\pi\)
\(368\) −3.23205 + 1.86603i −0.168482 + 0.0972733i
\(369\) 2.00000i 0.104116i
\(370\) 0 0
\(371\) −1.60770 + 0.928203i −0.0834674 + 0.0481899i
\(372\) 1.73205 0.0898027
\(373\) 13.6699 7.89230i 0.707799 0.408648i −0.102446 0.994739i \(-0.532667\pi\)
0.810246 + 0.586090i \(0.199334\pi\)
\(374\) −12.9282 + 22.3923i −0.668501 + 1.15788i
\(375\) 0 0
\(376\) −3.53590 −0.182350
\(377\) −0.696152 + 0.669873i −0.0358537 + 0.0345002i
\(378\) 2.00000i 0.102869i
\(379\) −24.1244 13.9282i −1.23918 0.715444i −0.270257 0.962788i \(-0.587109\pi\)
−0.968928 + 0.247344i \(0.920442\pi\)
\(380\) 0 0
\(381\) −2.46410 4.26795i −0.126240 0.218654i
\(382\) −21.4641 −1.09820
\(383\) −12.6962 21.9904i −0.648743 1.12366i −0.983423 0.181324i \(-0.941962\pi\)
0.334680 0.942332i \(-0.391372\pi\)
\(384\) −0.866025 + 0.500000i −0.0441942 + 0.0255155i
\(385\) 0 0
\(386\) −5.66025 9.80385i −0.288099 0.499003i
\(387\) −10.3301 5.96410i −0.525110 0.303172i
\(388\) 0.267949 0.464102i 0.0136031 0.0235612i
\(389\) 23.7321 1.20326 0.601631 0.798774i \(-0.294518\pi\)
0.601631 + 0.798774i \(0.294518\pi\)
\(390\) 0 0
\(391\) −14.9282 −0.754952
\(392\) −1.50000 + 2.59808i −0.0757614 + 0.131223i
\(393\) 16.1603 + 9.33013i 0.815177 + 0.470643i
\(394\) 2.19615 + 3.80385i 0.110641 + 0.191635i
\(395\) 0 0
\(396\) 5.59808 3.23205i 0.281314 0.162417i
\(397\) 6.06218 + 10.5000i 0.304252 + 0.526980i 0.977095 0.212806i \(-0.0682602\pi\)
−0.672843 + 0.739786i \(0.734927\pi\)
\(398\) −5.07180 −0.254226
\(399\) −7.46410 12.9282i −0.373672 0.647220i
\(400\) 0 0
\(401\) −27.7128 16.0000i −1.38391 0.799002i −0.391292 0.920267i \(-0.627972\pi\)
−0.992620 + 0.121265i \(0.961305\pi\)
\(402\) 11.4641i 0.571777i
\(403\) −1.73205 + 6.00000i −0.0862796 + 0.298881i
\(404\) 2.92820 0.145684
\(405\) 0 0
\(406\) −0.267949 + 0.464102i −0.0132981 + 0.0230330i
\(407\) −51.4808 + 29.7224i −2.55181 + 1.47329i
\(408\) −4.00000 −0.198030
\(409\) −3.46410 + 2.00000i −0.171289 + 0.0988936i −0.583193 0.812333i \(-0.698197\pi\)
0.411905 + 0.911227i \(0.364864\pi\)
\(410\) 0 0
\(411\) 2.46410i 0.121545i
\(412\) 10.2679 5.92820i 0.505866 0.292062i
\(413\) 14.6603 + 8.46410i 0.721384 + 0.416491i
\(414\) 3.23205 + 1.86603i 0.158847 + 0.0917101i
\(415\) 0 0
\(416\) −0.866025 3.50000i −0.0424604 0.171602i
\(417\) 12.9282i 0.633097i
\(418\) −24.1244 + 41.7846i −1.17996 + 2.04375i
\(419\) 11.1962 19.3923i 0.546968 0.947376i −0.451512 0.892265i \(-0.649115\pi\)
0.998480 0.0551112i \(-0.0175513\pi\)
\(420\) 0 0
\(421\) 4.39230i 0.214068i 0.994255 + 0.107034i \(0.0341353\pi\)
−0.994255 + 0.107034i \(0.965865\pi\)
\(422\) −5.66025 9.80385i −0.275537 0.477244i
\(423\) 1.76795 + 3.06218i 0.0859606 + 0.148888i
\(424\) 0.928203i 0.0450775i
\(425\) 0 0
\(426\) 6.19615 10.7321i 0.300205 0.519970i
\(427\) 10.3923 18.0000i 0.502919 0.871081i
\(428\) 7.85641i 0.379754i
\(429\) 5.59808 + 22.6244i 0.270278 + 1.09231i
\(430\) 0 0
\(431\) 24.5885 + 14.1962i 1.18438 + 0.683805i 0.957025 0.290006i \(-0.0936574\pi\)
0.227360 + 0.973811i \(0.426991\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) −16.7321 + 9.66025i −0.804091 + 0.464242i −0.844900 0.534925i \(-0.820340\pi\)
0.0408086 + 0.999167i \(0.487007\pi\)
\(434\) 3.46410i 0.166282i
\(435\) 0 0
\(436\) 13.7321 7.92820i 0.657646 0.379692i
\(437\) −27.8564 −1.33255
\(438\) −1.73205 + 1.00000i −0.0827606 + 0.0477818i
\(439\) −8.92820 + 15.4641i −0.426120 + 0.738061i −0.996524 0.0833027i \(-0.973453\pi\)
0.570404 + 0.821364i \(0.306786\pi\)
\(440\) 0 0
\(441\) 3.00000 0.142857
\(442\) 4.00000 13.8564i 0.190261 0.659082i
\(443\) 16.3923i 0.778822i −0.921064 0.389411i \(-0.872679\pi\)
0.921064 0.389411i \(-0.127321\pi\)
\(444\) −7.96410 4.59808i −0.377960 0.218215i
\(445\) 0 0
\(446\) 10.2679 + 17.7846i 0.486201 + 0.842126i
\(447\) −13.5359 −0.640226
\(448\) −1.00000 1.73205i −0.0472456 0.0818317i
\(449\) 13.6077 7.85641i 0.642187 0.370767i −0.143270 0.989684i \(-0.545762\pi\)
0.785456 + 0.618917i \(0.212428\pi\)
\(450\) 0 0
\(451\) 6.46410 + 11.1962i 0.304383 + 0.527206i
\(452\) 0.696152 + 0.401924i 0.0327443 + 0.0189049i
\(453\) −5.19615 + 9.00000i −0.244137 + 0.422857i
\(454\) −16.3923 −0.769329
\(455\) 0 0
\(456\) −7.46410 −0.349539
\(457\) −12.2679 + 21.2487i −0.573870 + 0.993973i 0.422293 + 0.906459i \(0.361225\pi\)
−0.996163 + 0.0875134i \(0.972108\pi\)
\(458\) 6.80385 + 3.92820i 0.317923 + 0.183553i
\(459\) 2.00000 + 3.46410i 0.0933520 + 0.161690i
\(460\) 0 0
\(461\) 0.401924 0.232051i 0.0187195 0.0108077i −0.490611 0.871379i \(-0.663226\pi\)
0.509331 + 0.860571i \(0.329893\pi\)
\(462\) 6.46410 + 11.1962i 0.300737 + 0.520892i
\(463\) 7.07180 0.328654 0.164327 0.986406i \(-0.447455\pi\)
0.164327 + 0.986406i \(0.447455\pi\)
\(464\) 0.133975 + 0.232051i 0.00621961 + 0.0107727i
\(465\) 0 0
\(466\) −5.30385 3.06218i −0.245696 0.141853i
\(467\) 15.8564i 0.733747i −0.930271 0.366873i \(-0.880428\pi\)
0.930271 0.366873i \(-0.119572\pi\)
\(468\) −2.59808 + 2.50000i −0.120096 + 0.115563i
\(469\) −22.9282 −1.05873
\(470\) 0 0
\(471\) −2.50000 + 4.33013i −0.115194 + 0.199522i
\(472\) 7.33013 4.23205i 0.337396 0.194796i
\(473\) −77.1051 −3.54530
\(474\) −12.0622 + 6.96410i −0.554034 + 0.319872i
\(475\) 0 0
\(476\) 8.00000i 0.366679i
\(477\) 0.803848 0.464102i 0.0368057 0.0212498i
\(478\) 14.1962 + 8.19615i 0.649317 + 0.374883i
\(479\) −4.73205 2.73205i −0.216213 0.124831i 0.387983 0.921667i \(-0.373172\pi\)
−0.604195 + 0.796836i \(0.706505\pi\)
\(480\) 0 0
\(481\) 23.8923 22.9904i 1.08940 1.04827i
\(482\) 17.7321i 0.807673i
\(483\) −3.73205 + 6.46410i −0.169814 + 0.294127i
\(484\) 15.3923 26.6603i 0.699650 1.21183i
\(485\) 0 0
\(486\) 1.00000i 0.0453609i
\(487\) 11.5885 + 20.0718i 0.525123 + 0.909540i 0.999572 + 0.0292568i \(0.00931407\pi\)
−0.474449 + 0.880283i \(0.657353\pi\)
\(488\) −5.19615 9.00000i −0.235219 0.407411i
\(489\) 15.0526i 0.680700i
\(490\) 0 0
\(491\) 8.66025 15.0000i 0.390832 0.676941i −0.601728 0.798701i \(-0.705521\pi\)
0.992559 + 0.121761i \(0.0388541\pi\)
\(492\) −1.00000 + 1.73205i −0.0450835 + 0.0780869i
\(493\) 1.07180i 0.0482713i
\(494\) 7.46410 25.8564i 0.335826 1.16333i
\(495\) 0 0
\(496\) 1.50000 + 0.866025i 0.0673520 + 0.0388857i
\(497\) 21.4641 + 12.3923i 0.962797 + 0.555871i
\(498\) −7.73205 + 4.46410i −0.346481 + 0.200041i
\(499\) 6.53590i 0.292587i −0.989241 0.146293i \(-0.953266\pi\)
0.989241 0.146293i \(-0.0467344\pi\)
\(500\) 0 0
\(501\) 14.1340 8.16025i 0.631459 0.364573i
\(502\) −15.7321 −0.702156
\(503\) 27.0000 15.5885i 1.20387 0.695055i 0.242457 0.970162i \(-0.422047\pi\)
0.961414 + 0.275107i \(0.0887134\pi\)
\(504\) −1.00000 + 1.73205i −0.0445435 + 0.0771517i
\(505\) 0 0
\(506\) 24.1244 1.07246
\(507\) −6.06218 11.5000i −0.269231 0.510733i
\(508\) 4.92820i 0.218654i
\(509\) −1.20577 0.696152i −0.0534449 0.0308564i 0.473039 0.881041i \(-0.343157\pi\)
−0.526484 + 0.850185i \(0.676490\pi\)
\(510\) 0 0
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) −1.00000 −0.0441942
\(513\) 3.73205 + 6.46410i 0.164774 + 0.285397i
\(514\) 4.62436 2.66987i 0.203972 0.117763i
\(515\) 0 0
\(516\) −5.96410 10.3301i −0.262555 0.454758i
\(517\) 19.7942 + 11.4282i 0.870549 + 0.502612i
\(518\) 9.19615 15.9282i 0.404056 0.699845i
\(519\) 10.9282 0.479695
\(520\) 0 0
\(521\) −17.3205 −0.758825 −0.379413 0.925228i \(-0.623874\pi\)
−0.379413 + 0.925228i \(0.623874\pi\)
\(522\) 0.133975 0.232051i 0.00586391 0.0101566i
\(523\) 10.2058 + 5.89230i 0.446267 + 0.257653i 0.706252 0.707960i \(-0.250384\pi\)
−0.259985 + 0.965613i \(0.583718\pi\)
\(524\) 9.33013 + 16.1603i 0.407588 + 0.705964i
\(525\) 0 0
\(526\) 5.30385 3.06218i 0.231259 0.133517i
\(527\) 3.46410 + 6.00000i 0.150899 + 0.261364i
\(528\) 6.46410 0.281314
\(529\) −4.53590 7.85641i −0.197213 0.341583i
\(530\) 0 0
\(531\) −7.33013 4.23205i −0.318100 0.183655i
\(532\) 14.9282i 0.647220i
\(533\) −5.00000 5.19615i −0.216574 0.225070i
\(534\) −0.535898 −0.0231906
\(535\) 0 0
\(536\) −5.73205 + 9.92820i −0.247587 + 0.428833i
\(537\) 17.0885 9.86603i 0.737421 0.425750i
\(538\) 12.0000 0.517357
\(539\) 16.7942 9.69615i 0.723379 0.417643i
\(540\) 0 0
\(541\) 26.9282i 1.15773i 0.815422 + 0.578867i \(0.196505\pi\)
−0.815422 + 0.578867i \(0.803495\pi\)
\(542\) 1.03590 0.598076i 0.0444956 0.0256896i
\(543\) 2.53590 + 1.46410i 0.108826 + 0.0628306i
\(544\) −3.46410 2.00000i −0.148522 0.0857493i
\(545\) 0 0
\(546\) −5.00000 5.19615i −0.213980 0.222375i
\(547\) 22.9282i 0.980339i 0.871627 + 0.490170i \(0.163065\pi\)
−0.871627 + 0.490170i \(0.836935\pi\)
\(548\) −1.23205 + 2.13397i −0.0526306 + 0.0911589i
\(549\) −5.19615 + 9.00000i −0.221766 + 0.384111i
\(550\) 0 0
\(551\) 2.00000i 0.0852029i
\(552\) 1.86603 + 3.23205i 0.0794233 + 0.137565i
\(553\) −13.9282 24.1244i −0.592287 1.02587i
\(554\) 3.92820i 0.166893i
\(555\) 0 0
\(556\) −6.46410 + 11.1962i −0.274139 + 0.474823i
\(557\) −8.85641 + 15.3397i −0.375258 + 0.649966i −0.990366 0.138477i \(-0.955779\pi\)
0.615108 + 0.788443i \(0.289113\pi\)
\(558\) 1.73205i 0.0733236i
\(559\) 41.7487 10.3301i 1.76578 0.436918i
\(560\) 0 0
\(561\) 22.3923 + 12.9282i 0.945404 + 0.545829i
\(562\) −7.73205 4.46410i −0.326157 0.188307i
\(563\) 4.05256 2.33975i 0.170795 0.0986085i −0.412166 0.911109i \(-0.635228\pi\)
0.582961 + 0.812500i \(0.301894\pi\)
\(564\) 3.53590i 0.148888i
\(565\) 0 0
\(566\) −8.59808 + 4.96410i −0.361404 + 0.208657i
\(567\) 2.00000 0.0839921
\(568\) 10.7321 6.19615i 0.450307 0.259985i
\(569\) 14.6603 25.3923i 0.614590 1.06450i −0.375867 0.926674i \(-0.622655\pi\)
0.990456 0.137827i \(-0.0440118\pi\)
\(570\) 0 0
\(571\) −17.1769 −0.718832 −0.359416 0.933178i \(-0.617024\pi\)
−0.359416 + 0.933178i \(0.617024\pi\)
\(572\) −6.46410 + 22.3923i −0.270278 + 0.936269i
\(573\) 21.4641i 0.896676i
\(574\) −3.46410 2.00000i −0.144589 0.0834784i
\(575\) 0 0
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) 0.500000 + 0.866025i 0.0207973 + 0.0360219i
\(579\) −9.80385 + 5.66025i −0.407434 + 0.235232i
\(580\) 0 0
\(581\) −8.92820 15.4641i −0.370404 0.641559i
\(582\) −0.464102 0.267949i −0.0192376 0.0111069i
\(583\) 3.00000 5.19615i 0.124247 0.215203i
\(584\) −2.00000 −0.0827606
\(585\) 0 0
\(586\) 31.8564 1.31598
\(587\) 1.19615 2.07180i 0.0493705 0.0855122i −0.840284 0.542146i \(-0.817612\pi\)
0.889655 + 0.456634i \(0.150945\pi\)
\(588\) 2.59808 + 1.50000i 0.107143 + 0.0618590i
\(589\) 6.46410 + 11.1962i 0.266349 + 0.461329i
\(590\) 0 0
\(591\) 3.80385 2.19615i 0.156469 0.0903376i
\(592\) −4.59808 7.96410i −0.188980 0.327323i
\(593\) 45.1051 1.85225 0.926123 0.377223i \(-0.123121\pi\)
0.926123 + 0.377223i \(0.123121\pi\)
\(594\) −3.23205 5.59808i −0.132613 0.229692i
\(595\) 0 0
\(596\) −11.7224 6.76795i −0.480170 0.277226i
\(597\) 5.07180i 0.207575i
\(598\) −13.0622 + 3.23205i −0.534152 + 0.132168i
\(599\) 10.3923 0.424618 0.212309 0.977203i \(-0.431902\pi\)
0.212309 + 0.977203i \(0.431902\pi\)
\(600\) 0 0
\(601\) 9.89230 17.1340i 0.403516 0.698909i −0.590632 0.806941i \(-0.701121\pi\)
0.994147 + 0.108032i \(0.0344548\pi\)
\(602\) 20.6603 11.9282i 0.842049 0.486157i
\(603\) 11.4641 0.466854
\(604\) −9.00000 + 5.19615i −0.366205 + 0.211428i
\(605\) 0 0
\(606\) 2.92820i 0.118950i
\(607\) −16.6077 + 9.58846i −0.674086 + 0.389183i −0.797623 0.603156i \(-0.793909\pi\)
0.123537 + 0.992340i \(0.460576\pi\)
\(608\) −6.46410 3.73205i −0.262154 0.151355i
\(609\) 0.464102 + 0.267949i 0.0188063 + 0.0108578i
\(610\) 0 0
\(611\) −12.2487 3.53590i −0.495530 0.143047i
\(612\) 4.00000i 0.161690i
\(613\) −19.5263 + 33.8205i −0.788659 + 1.36600i 0.138130 + 0.990414i \(0.455891\pi\)
−0.926789 + 0.375583i \(0.877442\pi\)
\(614\) −9.73205 + 16.8564i −0.392754 + 0.680269i
\(615\) 0 0
\(616\) 12.9282i 0.520892i
\(617\) −11.2321 19.4545i −0.452185 0.783208i 0.546336 0.837566i \(-0.316022\pi\)
−0.998522 + 0.0543580i \(0.982689\pi\)
\(618\) −5.92820 10.2679i −0.238467 0.413037i
\(619\) 24.2487i 0.974638i 0.873224 + 0.487319i \(0.162025\pi\)
−0.873224 + 0.487319i \(0.837975\pi\)
\(620\) 0 0
\(621\) 1.86603 3.23205i 0.0748810 0.129698i
\(622\) −14.1962 + 24.5885i −0.569214 + 0.985907i
\(623\) 1.07180i 0.0429406i
\(624\) −3.50000 + 0.866025i −0.140112 + 0.0346688i
\(625\) 0 0
\(626\) 24.2487 + 14.0000i 0.969173 + 0.559553i
\(627\) 41.7846 + 24.1244i 1.66872 + 0.963434i
\(628\) −4.33013 + 2.50000i −0.172791 + 0.0997609i
\(629\) 36.7846i 1.46670i
\(630\) 0 0
\(631\) 27.2487 15.7321i 1.08475 0.626283i 0.152579 0.988291i \(-0.451242\pi\)
0.932175 + 0.362008i \(0.117909\pi\)
\(632\) −13.9282 −0.554034
\(633\) −9.80385 + 5.66025i −0.389668 + 0.224975i
\(634\) −7.26795 + 12.5885i −0.288647 + 0.499952i
\(635\) 0 0
\(636\) 0.928203 0.0368057
\(637\) −7.79423 + 7.50000i −0.308819 + 0.297161i
\(638\) 1.73205i 0.0685725i
\(639\) −10.7321 6.19615i −0.424553 0.245116i
\(640\) 0 0
\(641\) −0.0717968 0.124356i −0.00283580 0.00491175i 0.864604 0.502454i \(-0.167569\pi\)
−0.867440 + 0.497542i \(0.834236\pi\)
\(642\) −7.85641 −0.310068
\(643\) 10.2679 + 17.7846i 0.404928 + 0.701357i 0.994313 0.106496i \(-0.0339631\pi\)
−0.589385 + 0.807852i \(0.700630\pi\)
\(644\) −6.46410 + 3.73205i −0.254721 + 0.147063i
\(645\) 0 0
\(646\) −14.9282 25.8564i −0.587342 1.01731i
\(647\) 11.5359 + 6.66025i 0.453523 + 0.261842i 0.709317 0.704890i \(-0.249004\pi\)
−0.255794 + 0.966731i \(0.582337\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) −54.7128 −2.14767
\(650\) 0 0
\(651\) 3.46410 0.135769
\(652\) −7.52628 + 13.0359i −0.294752 + 0.510525i
\(653\) 3.67949 + 2.12436i 0.143990 + 0.0831325i 0.570264 0.821461i \(-0.306841\pi\)
−0.426274 + 0.904594i \(0.640174\pi\)
\(654\) −7.92820 13.7321i −0.310017 0.536966i
\(655\) 0 0
\(656\) −1.73205 + 1.00000i −0.0676252 + 0.0390434i
\(657\) 1.00000 + 1.73205i 0.0390137 + 0.0675737i
\(658\) −7.07180 −0.275687
\(659\) −0.133975 0.232051i −0.00521891 0.00903942i 0.863404 0.504513i \(-0.168328\pi\)
−0.868623 + 0.495473i \(0.834995\pi\)
\(660\) 0 0
\(661\) −7.51666 4.33975i −0.292364 0.168797i 0.346643 0.937997i \(-0.387321\pi\)
−0.639008 + 0.769200i \(0.720655\pi\)
\(662\) 16.7846i 0.652352i
\(663\) −13.8564 4.00000i −0.538138 0.155347i
\(664\) −8.92820 −0.346481
\(665\) 0 0
\(666\) −4.59808 + 7.96410i −0.178172 + 0.308603i
\(667\) 0.866025 0.500000i 0.0335326 0.0193601i
\(668\) 16.3205 0.631459
\(669\) 17.7846 10.2679i 0.687593 0.396982i
\(670\) 0 0
\(671\) 67.1769i 2.59334i
\(672\) −1.73205 + 1.00000i −0.0668153 + 0.0385758i
\(673\) 27.7128 + 16.0000i 1.06825 + 0.616755i 0.927703 0.373319i \(-0.121780\pi\)
0.140548 + 0.990074i \(0.455114\pi\)
\(674\) 8.07180 + 4.66025i 0.310914 + 0.179506i
\(675\) 0 0
\(676\) 0.500000 12.9904i 0.0192308 0.499630i
\(677\) 32.3923i 1.24494i 0.782645 + 0.622469i \(0.213870\pi\)
−0.782645 + 0.622469i \(0.786130\pi\)
\(678\) 0.401924 0.696152i 0.0154358 0.0267356i
\(679\) 0.535898 0.928203i 0.0205659 0.0356212i
\(680\) 0 0
\(681\) 16.3923i 0.628154i
\(682\) −5.59808 9.69615i −0.214361 0.371285i
\(683\) 20.3923 + 35.3205i 0.780290 + 1.35150i 0.931773 + 0.363042i \(0.118262\pi\)
−0.151483 + 0.988460i \(0.548405\pi\)
\(684\) 7.46410i 0.285397i
\(685\) 0 0
\(686\) −10.0000 + 17.3205i −0.381802 + 0.661300i
\(687\) 3.92820 6.80385i 0.149870 0.259583i
\(688\) 11.9282i 0.454758i
\(689\) −0.928203 + 3.21539i −0.0353617 + 0.122497i
\(690\) 0 0
\(691\) −23.5359 13.5885i −0.895348 0.516929i −0.0196598 0.999807i \(-0.506258\pi\)
−0.875688 + 0.482877i \(0.839592\pi\)
\(692\) 9.46410 + 5.46410i 0.359771 + 0.207714i
\(693\) 11.1962 6.46410i 0.425307 0.245551i
\(694\) 1.60770i 0.0610273i
\(695\) 0 0
\(696\) 0.232051 0.133975i 0.00879586 0.00507829i
\(697\) −8.00000 −0.303022
\(698\) −18.5885 + 10.7321i −0.703583 + 0.406214i
\(699\) −3.06218 + 5.30385i −0.115822 + 0.200610i
\(700\) 0 0
\(701\) −0.267949 −0.0101203 −0.00506015 0.999987i \(-0.501611\pi\)
−0.00506015 + 0.999987i \(0.501611\pi\)
\(702\) 2.50000 + 2.59808i 0.0943564 + 0.0980581i
\(703\) 68.6410i 2.58884i
\(704\) 5.59808 + 3.23205i 0.210985 + 0.121812i
\(705\) 0 0
\(706\) −1.00000 1.73205i −0.0376355 0.0651866i
\(707\) 5.85641 0.220253
\(708\) −4.23205 7.33013i −0.159050 0.275483i
\(709\) 19.8564 11.4641i 0.745723 0.430543i −0.0784234 0.996920i \(-0.524989\pi\)
0.824146 + 0.566377i \(0.191655\pi\)
\(710\) 0 0
\(711\) 6.96410 + 12.0622i 0.261174 + 0.452367i
\(712\) −0.464102 0.267949i −0.0173929 0.0100418i
\(713\) 3.23205 5.59808i 0.121041 0.209650i
\(714\) −8.00000 −0.299392
\(715\) 0 0
\(716\) 19.7321 0.737421
\(717\) 8.19615 14.1962i 0.306091 0.530165i
\(718\) −4.39230 2.53590i −0.163919 0.0946389i
\(719\) −17.3205 30.0000i −0.645946 1.11881i −0.984082 0.177714i \(-0.943130\pi\)
0.338136 0.941097i \(-0.390204\pi\)
\(720\) 0 0
\(721\) 20.5359 11.8564i 0.764797 0.441556i
\(722\) −18.3564 31.7942i −0.683155 1.18326i
\(723\) −17.7321 −0.659462
\(724\) 1.46410 + 2.53590i 0.0544129 + 0.0942459i
\(725\) 0 0
\(726\) −26.6603 15.3923i −0.989455 0.571262i
\(727\) 31.7128i 1.17616i −0.808802 0.588082i \(-0.799883\pi\)
0.808802 0.588082i \(-0.200117\pi\)
\(728\) −1.73205 7.00000i −0.0641941 0.259437i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 23.8564 41.3205i 0.882361 1.52829i
\(732\) −9.00000 + 5.19615i −0.332650 + 0.192055i
\(733\) −50.9282 −1.88108 −0.940538 0.339688i \(-0.889678\pi\)
−0.940538 + 0.339688i \(0.889678\pi\)
\(734\) −13.5167 + 7.80385i −0.498909 + 0.288045i
\(735\) 0 0
\(736\) 3.73205i 0.137565i
\(737\) 64.1769 37.0526i 2.36399 1.36485i
\(738\) 1.73205 + 1.00000i 0.0637577 + 0.0368105i
\(739\) 16.7321 + 9.66025i 0.615498 + 0.355358i 0.775114 0.631821i \(-0.217692\pi\)
−0.159616 + 0.987179i \(0.551026\pi\)
\(740\) 0 0
\(741\) −25.8564 7.46410i −0.949859 0.274201i
\(742\) 1.85641i 0.0681508i
\(743\) −20.2321 + 35.0429i −0.742242 + 1.28560i 0.209230 + 0.977866i \(0.432904\pi\)
−0.951472 + 0.307734i \(0.900429\pi\)
\(744\) 0.866025 1.50000i 0.0317500 0.0549927i
\(745\) 0 0
\(746\) 15.7846i 0.577916i
\(747\) 4.46410 + 7.73205i 0.163333 + 0.282901i
\(748\) 12.9282 + 22.3923i 0.472702 + 0.818744i
\(749\) 15.7128i 0.574134i
\(750\) 0 0
\(751\) −7.03590 + 12.1865i −0.256744 + 0.444693i −0.965368 0.260893i \(-0.915983\pi\)
0.708624 + 0.705586i \(0.249316\pi\)
\(752\) −1.76795 + 3.06218i −0.0644705 + 0.111666i
\(753\) 15.7321i 0.573308i
\(754\) 0.232051 + 0.937822i 0.00845079 + 0.0341535i
\(755\) 0 0
\(756\) 1.73205 + 1.00000i 0.0629941 + 0.0363696i
\(757\) 15.5885 + 9.00000i 0.566572 + 0.327111i 0.755779 0.654827i \(-0.227258\pi\)
−0.189207 + 0.981937i \(0.560592\pi\)
\(758\) −24.1244 + 13.9282i −0.876236 + 0.505895i
\(759\) 24.1244i 0.875659i
\(760\) 0 0
\(761\) 4.39230 2.53590i 0.159221 0.0919262i −0.418272 0.908322i \(-0.637364\pi\)
0.577493 + 0.816395i \(0.304031\pi\)
\(762\) −4.92820 −0.178530
\(763\) 27.4641 15.8564i 0.994267 0.574040i
\(764\) −10.7321 + 18.5885i −0.388272 + 0.672507i
\(765\) 0 0
\(766\) −25.3923 −0.917461
\(767\) 29.6244 7.33013i 1.06967 0.264676i
\(768\) 1.00000i 0.0360844i
\(769\) 10.0359 + 5.79423i 0.361904 + 0.208945i 0.669916 0.742437i \(-0.266330\pi\)
−0.308012 + 0.951383i \(0.599664\pi\)
\(770\) 0 0
\(771\) −2.66987 4.62436i −0.0961531 0.166542i
\(772\) −11.3205 −0.407434
\(773\) −13.8564 24.0000i −0.498380 0.863220i 0.501618 0.865089i \(-0.332738\pi\)
−0.999998 + 0.00186926i \(0.999405\pi\)
\(774\) −10.3301 + 5.96410i −0.371309 + 0.214375i
\(775\) 0 0
\(776\) −0.267949 0.464102i −0.00961882 0.0166603i
\(777\) −15.9282 9.19615i −0.571421 0.329910i
\(778\) 11.8660 20.5526i 0.425418 0.736845i
\(779\) −14.9282 −0.534858
\(780\) 0 0
\(781\) −80.1051 −2.86639
\(782\) −7.46410 + 12.9282i −0.266916 + 0.462312i
\(783\) −0.232051 0.133975i −0.00829282 0.00478786i
\(784\) 1.50000 + 2.59808i 0.0535714 + 0.0927884i
\(785\) 0 0
\(786\) 16.1603 9.33013i 0.576417 0.332795i
\(787\) 0.866025 + 1.50000i 0.0308705 + 0.0534692i 0.881048 0.473027i \(-0.156839\pi\)
−0.850177 + 0.526496i \(0.823505\pi\)
\(788\) 4.39230 0.156469
\(789\) −3.06218 5.30385i −0.109016 0.188822i
\(790\) 0 0
\(791\) 1.39230 + 0.803848i 0.0495047 + 0.0285815i
\(792\) 6.46410i 0.229692i
\(793\) −9.00000 36.3731i −0.319599 1.29165i
\(794\) 12.1244 0.430277
\(795\) 0 0
\(796\) −2.53590 + 4.39230i −0.0898825 + 0.155681i
\(797\) −8.78461 + 5.07180i −0.311167 + 0.179652i −0.647449 0.762109i \(-0.724164\pi\)
0.336282 + 0.941761i \(0.390831\pi\)
\(798\) −14.9282 −0.528453
\(799\) −12.2487 + 7.07180i −0.433328 + 0.250182i
\(800\) 0 0
\(801\) 0.535898i 0.0189350i
\(802\) −27.7128 + 16.0000i −0.978573 + 0.564980i
\(803\) 11.1962 + 6.46410i 0.395104 + 0.228113i
\(804\) 9.92820 + 5.73205i 0.350141 + 0.202154i
\(805\) 0 0
\(806\) 4.33013 + 4.50000i 0.152522 + 0.158506i
\(807\) 12.0000i 0.422420i
\(808\) 1.46410 2.53590i 0.0515069 0.0892126i
\(809\) −21.3923 + 37.0526i −0.752113 + 1.30270i 0.194683 + 0.980866i \(0.437632\pi\)
−0.946797 + 0.321832i \(0.895701\pi\)
\(810\) 0 0
\(811\) 40.7846i 1.43214i 0.698028 + 0.716071i \(0.254061\pi\)
−0.698028 + 0.716071i \(0.745939\pi\)
\(812\) 0.267949 + 0.464102i 0.00940317 + 0.0162868i
\(813\) −0.598076 1.03590i −0.0209754 0.0363305i
\(814\) 59.4449i 2.08354i
\(815\) 0 0
\(816\) −2.00000 + 3.46410i −0.0700140 + 0.121268i
\(817\) 44.5167 77.1051i 1.55744 2.69757i
\(818\) 4.00000i 0.139857i
\(819\) −5.19615 + 5.00000i −0.181568 + 0.174714i
\(820\) 0 0
\(821\) 12.6506 + 7.30385i 0.441510 + 0.254906i 0.704238 0.709964i \(-0.251289\pi\)
−0.262728 + 0.964870i \(0.584622\pi\)
\(822\) 2.13397 + 1.23205i 0.0744309 + 0.0429727i
\(823\) −33.9282 + 19.5885i −1.18266 + 0.682811i −0.956629 0.291309i \(-0.905909\pi\)
−0.226034 + 0.974119i \(0.572576\pi\)
\(824\) 11.8564i 0.413037i
\(825\) 0 0
\(826\) 14.6603 8.46410i 0.510095 0.294504i
\(827\) −17.3205 −0.602293 −0.301147 0.953578i \(-0.597369\pi\)
−0.301147 + 0.953578i \(0.597369\pi\)
\(828\) 3.23205 1.86603i 0.112322 0.0648489i
\(829\) 8.26795 14.3205i 0.287158 0.497372i −0.685972 0.727628i \(-0.740623\pi\)
0.973130 + 0.230256i \(0.0739563\pi\)
\(830\) 0 0
\(831\) 3.92820 0.136268
\(832\) −3.46410 1.00000i −0.120096 0.0346688i
\(833\) 12.0000i 0.415775i
\(834\) 11.1962 + 6.46410i 0.387691 + 0.223834i
\(835\) 0 0
\(836\) 24.1244 + 41.7846i 0.834358 + 1.44515i
\(837\) −1.73205 −0.0598684
\(838\) −11.1962 19.3923i −0.386765 0.669896i
\(839\) 37.7321 21.7846i 1.30266 0.752088i 0.321796 0.946809i \(-0.395713\pi\)
0.980859 + 0.194721i \(0.0623800\pi\)
\(840\) 0 0
\(841\) 14.4641 + 25.0526i 0.498762 + 0.863881i
\(842\) 3.80385 + 2.19615i 0.131089 + 0.0756844i
\(843\) −4.46410 + 7.73205i −0.153752 + 0.266306i
\(844\) −11.3205 −0.389668
\(845\) 0 0
\(846\) 3.53590 0.121567
\(847\) 30.7846 53.3205i 1.05777 1.83211i
\(848\) 0.803848 + 0.464102i 0.0276042 + 0.0159373i
\(849\) 4.96410 + 8.59808i 0.170368 + 0.295085i
\(850\) 0 0
\(851\) −29.7224 + 17.1603i −1.01887 + 0.588246i
\(852\) −6.19615 10.7321i −0.212277 0.367674i
\(853\) 43.8372 1.50096 0.750478 0.660895i \(-0.229823\pi\)
0.750478 + 0.660895i \(0.229823\pi\)
\(854\) −10.3923 18.0000i −0.355617 0.615947i
\(855\) 0 0
\(856\) −6.80385 3.92820i −0.232551 0.134263i
\(857\) 24.5167i 0.837473i 0.908108 + 0.418737i \(0.137527\pi\)
−0.908108 + 0.418737i \(0.862473\pi\)
\(858\) 22.3923 + 6.46410i 0.764461 + 0.220681i
\(859\) 35.1769 1.20022 0.600110 0.799917i \(-0.295123\pi\)
0.600110 + 0.799917i \(0.295123\pi\)
\(860\) 0 0
\(861\) −2.00000 + 3.46410i −0.0681598 + 0.118056i
\(862\) 24.5885 14.1962i 0.837486 0.483523i
\(863\) 35.5359 1.20966 0.604828 0.796356i \(-0.293242\pi\)
0.604828 + 0.796356i \(0.293242\pi\)
\(864\) 0.866025 0.500000i 0.0294628 0.0170103i
\(865\) 0 0
\(866\) 19.3205i 0.656538i
\(867\) 0.866025 0.500000i 0.0294118 0.0169809i
\(868\) 3.00000 + 1.73205i 0.101827 + 0.0587896i
\(869\) 77.9711 + 45.0167i 2.64499 + 1.52709i
\(870\) 0 0
\(871\) −29.7846 + 28.6603i −1.00921 + 0.971116i
\(872\) 15.8564i 0.536966i
\(873\) −0.267949 + 0.464102i −0.00906871 + 0.0157075i
\(874\) −13.9282 + 24.1244i −0.471129 + 0.816019i
\(875\) 0 0
\(876\) 2.00000i 0.0675737i
\(877\) −1.93782 3.35641i −0.0654356 0.113338i 0.831452 0.555597i \(-0.187510\pi\)
−0.896887 + 0.442260i \(0.854177\pi\)
\(878\) 8.92820 + 15.4641i 0.301312 + 0.521888i
\(879\) 31.8564i 1.07449i
\(880\) 0 0
\(881\) 7.00000 12.1244i 0.235836 0.408480i −0.723679 0.690136i \(-0.757551\pi\)
0.959515 + 0.281656i \(0.0908839\pi\)
\(882\) 1.50000 2.59808i 0.0505076 0.0874818i
\(883\) 29.9282i 1.00716i −0.863947 0.503582i \(-0.832015\pi\)
0.863947 0.503582i \(-0.167985\pi\)
\(884\) −10.0000 10.3923i −0.336336 0.349531i
\(885\) 0 0
\(886\) −14.1962 8.19615i −0.476929 0.275355i
\(887\) −12.2321 7.06218i −0.410712 0.237125i 0.280384 0.959888i \(-0.409538\pi\)
−0.691096 + 0.722763i \(0.742872\pi\)
\(888\) −7.96410 + 4.59808i −0.267258 + 0.154301i
\(889\) 9.85641i 0.330573i
\(890\) 0 0
\(891\) −5.59808 + 3.23205i −0.187543 + 0.108278i
\(892\) 20.5359 0.687593
\(893\) −22.8564 + 13.1962i −0.764860 + 0.441592i
\(894\) −6.76795 + 11.7224i −0.226354 + 0.392057i
\(895\) 0 0
\(896\) −2.00000 −0.0668153
\(897\) 3.23205 + 13.0622i 0.107915 + 0.436133i
\(898\) 15.7128i 0.524343i
\(899\) −0.401924 0.232051i −0.0134049 0.00773933i
\(900\) 0 0
\(901\) 1.85641 + 3.21539i 0.0618459 + 0.107120i
\(902\) 12.9282 0.430462
\(903\) −11.9282 20.6603i −0.396946 0.687530i
\(904\) 0.696152 0.401924i 0.0231537 0.0133678i
\(905\) 0 0
\(906\) 5.19615 + 9.00000i 0.172631 + 0.299005i
\(907\) 18.0622 + 10.4282i 0.599745 + 0.346263i 0.768941 0.639320i \(-0.220784\pi\)
−0.169196 + 0.985582i \(0.554117\pi\)
\(908\) −8.19615 + 14.1962i −0.271999 + 0.471116i
\(909\) −2.92820 −0.0971224
\(910\) 0 0
\(911\) 24.2487 0.803396 0.401698 0.915772i \(-0.368420\pi\)
0.401698 + 0.915772i \(0.368420\pi\)
\(912\) −3.73205 + 6.46410i −0.123581 + 0.214048i
\(913\) 49.9808 + 28.8564i 1.65412 + 0.955008i
\(914\) 12.2679 + 21.2487i 0.405788 + 0.702845i
\(915\) 0 0
\(916\) 6.80385 3.92820i 0.224805 0.129791i
\(917\) 18.6603 + 32.3205i 0.616216 + 1.06732i
\(918\) 4.00000 0.132020
\(919\) 7.32051 + 12.6795i 0.241481 + 0.418258i 0.961136 0.276074i \(-0.0890334\pi\)
−0.719655 + 0.694332i \(0.755700\pi\)
\(920\) 0 0
\(921\) 16.8564 + 9.73205i 0.555437 + 0.320682i
\(922\) 0.464102i 0.0152844i
\(923\) 43.3731 10.7321i 1.42764 0.353250i
\(924\) 12.9282 0.425307
\(925\) 0 0
\(926\) 3.53590 6.12436i 0.116197 0.201259i
\(927\) −10.2679 + 5.92820i −0.337244 + 0.194708i
\(928\) 0.267949 0.00879586
\(929\) 5.32051 3.07180i 0.174560 0.100782i −0.410174 0.912007i \(-0.634532\pi\)
0.584734 + 0.811225i \(0.301199\pi\)
\(930\) 0 0
\(931\) 22.3923i 0.733878i
\(932\) −5.30385 + 3.06218i −0.173733 + 0.100305i
\(933\) 24.5885 + 14.1962i 0.804990 + 0.464761i
\(934\) −13.7321 7.92820i −0.449326 0.259419i
\(935\) 0 0
\(936\) 0.866025 + 3.50000i 0.0283069 + 0.114401i
\(937\) 24.6410i 0.804987i −0.915423 0.402493i \(-0.868144\pi\)
0.915423 0.402493i \(-0.131856\pi\)
\(938\) −11.4641 + 19.8564i −0.374316 + 0.648335i
\(939\) 14.0000 24.2487i 0.456873 0.791327i
\(940\) 0 0
\(941\) 14.7846i 0.481965i −0.970530 0.240982i \(-0.922530\pi\)
0.970530 0.240982i \(-0.0774696\pi\)
\(942\) 2.50000 + 4.33013i 0.0814544 + 0.141083i
\(943\) 3.73205 + 6.46410i 0.121532 + 0.210500i
\(944\) 8.46410i 0.275483i
\(945\) 0 0
\(946\) −38.5526 + 66.7750i −1.25345 + 2.17104i
\(947\) −4.73205 + 8.19615i −0.153771 + 0.266339i −0.932611 0.360884i \(-0.882475\pi\)
0.778840 + 0.627223i \(0.215808\pi\)
\(948\) 13.9282i 0.452367i
\(949\) −6.92820 2.00000i −0.224899 0.0649227i
\(950\) 0 0
\(951\) 12.5885 + 7.26795i 0.408209 + 0.235679i
\(952\) −6.92820 4.00000i −0.224544 0.129641i
\(953\) 10.6244 6.13397i 0.344157 0.198699i −0.317952 0.948107i \(-0.602995\pi\)
0.662109 + 0.749408i \(0.269662\pi\)
\(954\) 0.928203i 0.0300517i
\(955\) 0 0
\(956\) 14.1962 8.19615i 0.459136 0.265083i
\(957\) −1.73205 −0.0559893
\(958\) −4.73205 + 2.73205i −0.152886 + 0.0882686i
\(959\) −2.46410 + 4.26795i −0.0795700 + 0.137819i
\(960\) 0 0
\(961\) 28.0000 0.903226
\(962\) −7.96410 32.1865i −0.256773 1.03774i
\(963\) 7.85641i 0.253169i
\(964\) −15.3564 8.86603i −0.494597 0.285555i
\(965\) 0 0
\(966\) 3.73205 + 6.46410i 0.120077 + 0.207979i
\(967\) 41.4641 1.33340 0.666698 0.745328i \(-0.267707\pi\)
0.666698 + 0.745328i \(0.267707\pi\)
\(968\) −15.3923 26.6603i −0.494727 0.856893i
\(969\) −25.8564 + 14.9282i −0.830627 + 0.479563i
\(970\) 0 0
\(971\) −2.26795 3.92820i −0.0727820 0.126062i 0.827338 0.561705i \(-0.189854\pi\)
−0.900120 + 0.435643i \(0.856521\pi\)
\(972\) −0.866025 0.500000i −0.0277778 0.0160375i
\(973\) −12.9282 + 22.3923i −0.414459 + 0.717864i
\(974\) 23.1769 0.742636
\(975\) 0 0
\(976\) −10.3923 −0.332650
\(977\) −6.30385 + 10.9186i −0.201678 + 0.349316i −0.949069 0.315068i \(-0.897973\pi\)
0.747391 + 0.664384i \(0.231306\pi\)
\(978\) 13.0359 + 7.52628i 0.416842 + 0.240664i
\(979\) 1.73205 + 3.00000i 0.0553566 + 0.0958804i
\(980\) 0 0
\(981\) −13.7321 + 7.92820i −0.438431 + 0.253128i
\(982\) −8.66025 15.0000i −0.276360 0.478669i
\(983\) −36.6077 −1.16760 −0.583802 0.811896i \(-0.698436\pi\)
−0.583802 + 0.811896i \(0.698436\pi\)
\(984\) 1.00000 + 1.73205i 0.0318788 + 0.0552158i
\(985\) 0 0
\(986\) 0.928203 + 0.535898i 0.0295600 + 0.0170665i
\(987\) 7.07180i 0.225098i
\(988\) −18.6603 19.3923i −0.593662 0.616951i
\(989\) −44.5167 −1.41555
\(990\) 0 0
\(991\) 26.4282 45.7750i 0.839520 1.45409i −0.0507774 0.998710i \(-0.516170\pi\)
0.890297 0.455381i \(-0.150497\pi\)
\(992\) 1.50000 0.866025i 0.0476250 0.0274963i
\(993\) 16.7846 0.532643
\(994\) 21.4641 12.3923i 0.680800 0.393060i
\(995\) 0 0
\(996\) 8.92820i 0.282901i
\(997\) 30.8038 17.7846i 0.975568 0.563244i 0.0746386 0.997211i \(-0.476220\pi\)
0.900929 + 0.433966i \(0.142886\pi\)
\(998\) −5.66025 3.26795i −0.179172 0.103445i
\(999\) 7.96410 + 4.59808i 0.251973 + 0.145477i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1950.2.y.f.199.1 4
5.2 odd 4 1950.2.bc.b.901.2 4
5.3 odd 4 390.2.bb.b.121.1 4
5.4 even 2 1950.2.y.c.199.2 4
13.10 even 6 1950.2.y.c.49.2 4
15.8 even 4 1170.2.bs.e.901.2 4
65.23 odd 12 390.2.bb.b.361.1 yes 4
65.33 even 12 5070.2.a.y.1.1 2
65.43 odd 12 5070.2.b.o.1351.2 4
65.48 odd 12 5070.2.b.o.1351.3 4
65.49 even 6 inner 1950.2.y.f.49.1 4
65.58 even 12 5070.2.a.bg.1.2 2
65.62 odd 12 1950.2.bc.b.751.2 4
195.23 even 12 1170.2.bs.e.361.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.bb.b.121.1 4 5.3 odd 4
390.2.bb.b.361.1 yes 4 65.23 odd 12
1170.2.bs.e.361.2 4 195.23 even 12
1170.2.bs.e.901.2 4 15.8 even 4
1950.2.y.c.49.2 4 13.10 even 6
1950.2.y.c.199.2 4 5.4 even 2
1950.2.y.f.49.1 4 65.49 even 6 inner
1950.2.y.f.199.1 4 1.1 even 1 trivial
1950.2.bc.b.751.2 4 65.62 odd 12
1950.2.bc.b.901.2 4 5.2 odd 4
5070.2.a.y.1.1 2 65.33 even 12
5070.2.a.bg.1.2 2 65.58 even 12
5070.2.b.o.1351.2 4 65.43 odd 12
5070.2.b.o.1351.3 4 65.48 odd 12