Newspace parameters
Level: | \( N \) | \(=\) | \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1950.y (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(15.5708283941\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 390) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).
\(n\) | \(301\) | \(1301\) | \(1327\) |
\(\chi(n)\) | \(1 - \zeta_{12}^{2}\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
−0.500000 | − | 0.866025i | −0.866025 | + | 0.500000i | −0.500000 | + | 0.866025i | 0 | 0.866025 | + | 0.500000i | 1.00000 | − | 1.73205i | 1.00000 | 0.500000 | − | 0.866025i | 0 | ||||||||||||||||||
49.2 | −0.500000 | − | 0.866025i | 0.866025 | − | 0.500000i | −0.500000 | + | 0.866025i | 0 | −0.866025 | − | 0.500000i | 1.00000 | − | 1.73205i | 1.00000 | 0.500000 | − | 0.866025i | 0 | |||||||||||||||||||
199.1 | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | −0.500000 | − | 0.866025i | 0 | 0.866025 | − | 0.500000i | 1.00000 | + | 1.73205i | 1.00000 | 0.500000 | + | 0.866025i | 0 | |||||||||||||||||||
199.2 | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | −0.500000 | − | 0.866025i | 0 | −0.866025 | + | 0.500000i | 1.00000 | + | 1.73205i | 1.00000 | 0.500000 | + | 0.866025i | 0 | |||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.l | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1950.2.y.c | 4 | |
5.b | even | 2 | 1 | 1950.2.y.f | 4 | ||
5.c | odd | 4 | 1 | 390.2.bb.b | ✓ | 4 | |
5.c | odd | 4 | 1 | 1950.2.bc.b | 4 | ||
13.e | even | 6 | 1 | 1950.2.y.f | 4 | ||
15.e | even | 4 | 1 | 1170.2.bs.e | 4 | ||
65.l | even | 6 | 1 | inner | 1950.2.y.c | 4 | |
65.o | even | 12 | 1 | 5070.2.a.bg | 2 | ||
65.q | odd | 12 | 1 | 5070.2.b.o | 4 | ||
65.r | odd | 12 | 1 | 390.2.bb.b | ✓ | 4 | |
65.r | odd | 12 | 1 | 1950.2.bc.b | 4 | ||
65.r | odd | 12 | 1 | 5070.2.b.o | 4 | ||
65.t | even | 12 | 1 | 5070.2.a.y | 2 | ||
195.bf | even | 12 | 1 | 1170.2.bs.e | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
390.2.bb.b | ✓ | 4 | 5.c | odd | 4 | 1 | |
390.2.bb.b | ✓ | 4 | 65.r | odd | 12 | 1 | |
1170.2.bs.e | 4 | 15.e | even | 4 | 1 | ||
1170.2.bs.e | 4 | 195.bf | even | 12 | 1 | ||
1950.2.y.c | 4 | 1.a | even | 1 | 1 | trivial | |
1950.2.y.c | 4 | 65.l | even | 6 | 1 | inner | |
1950.2.y.f | 4 | 5.b | even | 2 | 1 | ||
1950.2.y.f | 4 | 13.e | even | 6 | 1 | ||
1950.2.bc.b | 4 | 5.c | odd | 4 | 1 | ||
1950.2.bc.b | 4 | 65.r | odd | 12 | 1 | ||
5070.2.a.y | 2 | 65.t | even | 12 | 1 | ||
5070.2.a.bg | 2 | 65.o | even | 12 | 1 | ||
5070.2.b.o | 4 | 65.q | odd | 12 | 1 | ||
5070.2.b.o | 4 | 65.r | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{2} - 2T_{7} + 4 \)
acting on \(S_{2}^{\mathrm{new}}(1950, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + T + 1)^{2} \)
$3$
\( T^{4} - T^{2} + 1 \)
$5$
\( T^{4} \)
$7$
\( (T^{2} - 2 T + 4)^{2} \)
$11$
\( T^{4} - 12 T^{3} + 51 T^{2} - 36 T + 9 \)
$13$
\( T^{4} - 22T^{2} + 169 \)
$17$
\( T^{4} - 16T^{2} + 256 \)
$19$
\( T^{4} + 12 T^{3} + 44 T^{2} - 48 T + 16 \)
$23$
\( T^{4} + 6 T^{3} + 11 T^{2} - 6 T + 1 \)
$29$
\( T^{4} - 4 T^{3} + 15 T^{2} - 4 T + 1 \)
$31$
\( (T^{2} + 3)^{2} \)
$37$
\( T^{4} - 8 T^{3} + 75 T^{2} + 88 T + 121 \)
$41$
\( T^{4} - 4T^{2} + 16 \)
$43$
\( T^{4} - 24 T^{3} + 215 T^{2} + \cdots + 529 \)
$47$
\( (T^{2} + 14 T + 37)^{2} \)
$53$
\( T^{4} + 168T^{2} + 144 \)
$59$
\( T^{4} + 12 T^{3} + 35 T^{2} + \cdots + 169 \)
$61$
\( T^{4} + 108 T^{2} + 11664 \)
$67$
\( T^{4} + 16 T^{3} + 204 T^{2} + \cdots + 2704 \)
$71$
\( T^{4} + 36 T^{3} + 536 T^{2} + \cdots + 10816 \)
$73$
\( (T + 2)^{4} \)
$79$
\( (T^{2} - 14 T + 1)^{2} \)
$83$
\( (T^{2} + 4 T - 44)^{2} \)
$89$
\( T^{4} + 12 T^{3} + 44 T^{2} - 48 T + 16 \)
$97$
\( T^{4} + 8 T^{3} + 60 T^{2} + 32 T + 16 \)
show more
show less