Properties

Label 1950.2.i.w
Level $1950$
Weight $2$
Character orbit 1950.i
Analytic conductor $15.571$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1950,2,Mod(451,1950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1950, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1950.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{2} + ( - \zeta_{6} + 1) q^{3} - \zeta_{6} q^{4} - \zeta_{6} q^{6} + 2 \zeta_{6} q^{7} - q^{8} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{6} + 1) q^{2} + ( - \zeta_{6} + 1) q^{3} - \zeta_{6} q^{4} - \zeta_{6} q^{6} + 2 \zeta_{6} q^{7} - q^{8} - \zeta_{6} q^{9} + ( - 3 \zeta_{6} + 3) q^{11} - q^{12} + (3 \zeta_{6} - 4) q^{13} + 2 q^{14} + (\zeta_{6} - 1) q^{16} - q^{18} - 8 \zeta_{6} q^{19} + 2 q^{21} - 3 \zeta_{6} q^{22} + ( - 9 \zeta_{6} + 9) q^{23} + (\zeta_{6} - 1) q^{24} + (4 \zeta_{6} - 1) q^{26} - q^{27} + ( - 2 \zeta_{6} + 2) q^{28} + (6 \zeta_{6} - 6) q^{29} - 4 q^{31} + \zeta_{6} q^{32} - 3 \zeta_{6} q^{33} + (\zeta_{6} - 1) q^{36} + ( - 11 \zeta_{6} + 11) q^{37} - 8 q^{38} + (4 \zeta_{6} - 1) q^{39} + ( - 2 \zeta_{6} + 2) q^{42} - 10 \zeta_{6} q^{43} - 3 q^{44} - 9 \zeta_{6} q^{46} + 12 q^{47} + \zeta_{6} q^{48} + ( - 3 \zeta_{6} + 3) q^{49} + (\zeta_{6} + 3) q^{52} - 6 q^{53} + (\zeta_{6} - 1) q^{54} - 2 \zeta_{6} q^{56} - 8 q^{57} + 6 \zeta_{6} q^{58} - 12 \zeta_{6} q^{59} + \zeta_{6} q^{61} + (4 \zeta_{6} - 4) q^{62} + ( - 2 \zeta_{6} + 2) q^{63} + q^{64} - 3 q^{66} + ( - 8 \zeta_{6} + 8) q^{67} - 9 \zeta_{6} q^{69} + 9 \zeta_{6} q^{71} + \zeta_{6} q^{72} + 7 q^{73} - 11 \zeta_{6} q^{74} + (8 \zeta_{6} - 8) q^{76} + 6 q^{77} + (\zeta_{6} + 3) q^{78} - 4 q^{79} + (\zeta_{6} - 1) q^{81} - 9 q^{83} - 2 \zeta_{6} q^{84} - 10 q^{86} + 6 \zeta_{6} q^{87} + (3 \zeta_{6} - 3) q^{88} + (12 \zeta_{6} - 12) q^{89} + ( - 2 \zeta_{6} - 6) q^{91} - 9 q^{92} + (4 \zeta_{6} - 4) q^{93} + ( - 12 \zeta_{6} + 12) q^{94} + q^{96} + 17 \zeta_{6} q^{97} - 3 \zeta_{6} q^{98} - 3 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{3} - q^{4} - q^{6} + 2 q^{7} - 2 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} + q^{3} - q^{4} - q^{6} + 2 q^{7} - 2 q^{8} - q^{9} + 3 q^{11} - 2 q^{12} - 5 q^{13} + 4 q^{14} - q^{16} - 2 q^{18} - 8 q^{19} + 4 q^{21} - 3 q^{22} + 9 q^{23} - q^{24} + 2 q^{26} - 2 q^{27} + 2 q^{28} - 6 q^{29} - 8 q^{31} + q^{32} - 3 q^{33} - q^{36} + 11 q^{37} - 16 q^{38} + 2 q^{39} + 2 q^{42} - 10 q^{43} - 6 q^{44} - 9 q^{46} + 24 q^{47} + q^{48} + 3 q^{49} + 7 q^{52} - 12 q^{53} - q^{54} - 2 q^{56} - 16 q^{57} + 6 q^{58} - 12 q^{59} + q^{61} - 4 q^{62} + 2 q^{63} + 2 q^{64} - 6 q^{66} + 8 q^{67} - 9 q^{69} + 9 q^{71} + q^{72} + 14 q^{73} - 11 q^{74} - 8 q^{76} + 12 q^{77} + 7 q^{78} - 8 q^{79} - q^{81} - 18 q^{83} - 2 q^{84} - 20 q^{86} + 6 q^{87} - 3 q^{88} - 12 q^{89} - 14 q^{91} - 18 q^{92} - 4 q^{93} + 12 q^{94} + 2 q^{96} + 17 q^{97} - 3 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
451.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0 −0.500000 0.866025i 1.00000 + 1.73205i −1.00000 −0.500000 0.866025i 0
601.1 0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i 0 −0.500000 + 0.866025i 1.00000 1.73205i −1.00000 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.2.i.w yes 2
5.b even 2 1 1950.2.i.c 2
5.c odd 4 2 1950.2.z.c 4
13.c even 3 1 inner 1950.2.i.w yes 2
65.n even 6 1 1950.2.i.c 2
65.q odd 12 2 1950.2.z.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1950.2.i.c 2 5.b even 2 1
1950.2.i.c 2 65.n even 6 1
1950.2.i.w yes 2 1.a even 1 1 trivial
1950.2.i.w yes 2 13.c even 3 1 inner
1950.2.z.c 4 5.c odd 4 2
1950.2.z.c 4 65.q odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1950, [\chi])\):

\( T_{7}^{2} - 2T_{7} + 4 \) Copy content Toggle raw display
\( T_{11}^{2} - 3T_{11} + 9 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{19}^{2} + 8T_{19} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$11$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$13$ \( T^{2} + 5T + 13 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$23$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$29$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$47$ \( (T - 12)^{2} \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$61$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$71$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$73$ \( (T - 7)^{2} \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( (T + 9)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$97$ \( T^{2} - 17T + 289 \) Copy content Toggle raw display
show more
show less