Properties

Label 1950.2.i.f.451.1
Level $1950$
Weight $2$
Character 1950.451
Analytic conductor $15.571$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1950,2,Mod(451,1950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1950.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1950, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,-1,-1,0,-1,3,2,-1,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1950.451
Dual form 1950.2.i.f.601.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{6} +(1.50000 + 2.59808i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(1.50000 - 2.59808i) q^{11} +1.00000 q^{12} +(2.50000 - 2.59808i) q^{13} -3.00000 q^{14} +(-0.500000 + 0.866025i) q^{16} +1.00000 q^{18} +(-1.50000 - 2.59808i) q^{19} -3.00000 q^{21} +(1.50000 + 2.59808i) q^{22} +(-2.00000 + 3.46410i) q^{23} +(-0.500000 + 0.866025i) q^{24} +(1.00000 + 3.46410i) q^{26} +1.00000 q^{27} +(1.50000 - 2.59808i) q^{28} +(2.00000 - 3.46410i) q^{29} +6.00000 q^{31} +(-0.500000 - 0.866025i) q^{32} +(1.50000 + 2.59808i) q^{33} +(-0.500000 + 0.866025i) q^{36} +(4.50000 - 7.79423i) q^{37} +3.00000 q^{38} +(1.00000 + 3.46410i) q^{39} +(5.00000 - 8.66025i) q^{41} +(1.50000 - 2.59808i) q^{42} +(-5.00000 - 8.66025i) q^{43} -3.00000 q^{44} +(-2.00000 - 3.46410i) q^{46} +3.00000 q^{47} +(-0.500000 - 0.866025i) q^{48} +(-1.00000 + 1.73205i) q^{49} +(-3.50000 - 0.866025i) q^{52} -9.00000 q^{53} +(-0.500000 + 0.866025i) q^{54} +(1.50000 + 2.59808i) q^{56} +3.00000 q^{57} +(2.00000 + 3.46410i) q^{58} +(-6.00000 - 10.3923i) q^{59} +(3.00000 + 5.19615i) q^{61} +(-3.00000 + 5.19615i) q^{62} +(1.50000 - 2.59808i) q^{63} +1.00000 q^{64} -3.00000 q^{66} +(-4.00000 + 6.92820i) q^{67} +(-2.00000 - 3.46410i) q^{69} +(7.00000 + 12.1244i) q^{71} +(-0.500000 - 0.866025i) q^{72} +8.00000 q^{73} +(4.50000 + 7.79423i) q^{74} +(-1.50000 + 2.59808i) q^{76} +9.00000 q^{77} +(-3.50000 - 0.866025i) q^{78} +6.00000 q^{79} +(-0.500000 + 0.866025i) q^{81} +(5.00000 + 8.66025i) q^{82} -16.0000 q^{83} +(1.50000 + 2.59808i) q^{84} +10.0000 q^{86} +(2.00000 + 3.46410i) q^{87} +(1.50000 - 2.59808i) q^{88} +(1.50000 - 2.59808i) q^{89} +(10.5000 + 2.59808i) q^{91} +4.00000 q^{92} +(-3.00000 + 5.19615i) q^{93} +(-1.50000 + 2.59808i) q^{94} +1.00000 q^{96} +(4.00000 + 6.92820i) q^{97} +(-1.00000 - 1.73205i) q^{98} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{3} - q^{4} - q^{6} + 3 q^{7} + 2 q^{8} - q^{9} + 3 q^{11} + 2 q^{12} + 5 q^{13} - 6 q^{14} - q^{16} + 2 q^{18} - 3 q^{19} - 6 q^{21} + 3 q^{22} - 4 q^{23} - q^{24} + 2 q^{26} + 2 q^{27}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) 1.50000 + 2.59808i 0.566947 + 0.981981i 0.996866 + 0.0791130i \(0.0252088\pi\)
−0.429919 + 0.902867i \(0.641458\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 1.00000 0.288675
\(13\) 2.50000 2.59808i 0.693375 0.720577i
\(14\) −3.00000 −0.801784
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 1.00000 0.235702
\(19\) −1.50000 2.59808i −0.344124 0.596040i 0.641071 0.767482i \(-0.278491\pi\)
−0.985194 + 0.171442i \(0.945157\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 1.50000 + 2.59808i 0.319801 + 0.553912i
\(23\) −2.00000 + 3.46410i −0.417029 + 0.722315i −0.995639 0.0932891i \(-0.970262\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) 0 0
\(26\) 1.00000 + 3.46410i 0.196116 + 0.679366i
\(27\) 1.00000 0.192450
\(28\) 1.50000 2.59808i 0.283473 0.490990i
\(29\) 2.00000 3.46410i 0.371391 0.643268i −0.618389 0.785872i \(-0.712214\pi\)
0.989780 + 0.142605i \(0.0455477\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 1.50000 + 2.59808i 0.261116 + 0.452267i
\(34\) 0 0
\(35\) 0 0
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 4.50000 7.79423i 0.739795 1.28136i −0.212792 0.977098i \(-0.568256\pi\)
0.952587 0.304266i \(-0.0984111\pi\)
\(38\) 3.00000 0.486664
\(39\) 1.00000 + 3.46410i 0.160128 + 0.554700i
\(40\) 0 0
\(41\) 5.00000 8.66025i 0.780869 1.35250i −0.150567 0.988600i \(-0.548110\pi\)
0.931436 0.363905i \(-0.118557\pi\)
\(42\) 1.50000 2.59808i 0.231455 0.400892i
\(43\) −5.00000 8.66025i −0.762493 1.32068i −0.941562 0.336840i \(-0.890642\pi\)
0.179069 0.983836i \(-0.442691\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) −2.00000 3.46410i −0.294884 0.510754i
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) −0.500000 0.866025i −0.0721688 0.125000i
\(49\) −1.00000 + 1.73205i −0.142857 + 0.247436i
\(50\) 0 0
\(51\) 0 0
\(52\) −3.50000 0.866025i −0.485363 0.120096i
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) 0 0
\(56\) 1.50000 + 2.59808i 0.200446 + 0.347183i
\(57\) 3.00000 0.397360
\(58\) 2.00000 + 3.46410i 0.262613 + 0.454859i
\(59\) −6.00000 10.3923i −0.781133 1.35296i −0.931282 0.364299i \(-0.881308\pi\)
0.150148 0.988663i \(-0.452025\pi\)
\(60\) 0 0
\(61\) 3.00000 + 5.19615i 0.384111 + 0.665299i 0.991645 0.128994i \(-0.0411748\pi\)
−0.607535 + 0.794293i \(0.707841\pi\)
\(62\) −3.00000 + 5.19615i −0.381000 + 0.659912i
\(63\) 1.50000 2.59808i 0.188982 0.327327i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.00000 −0.369274
\(67\) −4.00000 + 6.92820i −0.488678 + 0.846415i −0.999915 0.0130248i \(-0.995854\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(68\) 0 0
\(69\) −2.00000 3.46410i −0.240772 0.417029i
\(70\) 0 0
\(71\) 7.00000 + 12.1244i 0.830747 + 1.43890i 0.897447 + 0.441123i \(0.145420\pi\)
−0.0666994 + 0.997773i \(0.521247\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) 4.50000 + 7.79423i 0.523114 + 0.906061i
\(75\) 0 0
\(76\) −1.50000 + 2.59808i −0.172062 + 0.298020i
\(77\) 9.00000 1.02565
\(78\) −3.50000 0.866025i −0.396297 0.0980581i
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 5.00000 + 8.66025i 0.552158 + 0.956365i
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 1.50000 + 2.59808i 0.163663 + 0.283473i
\(85\) 0 0
\(86\) 10.0000 1.07833
\(87\) 2.00000 + 3.46410i 0.214423 + 0.371391i
\(88\) 1.50000 2.59808i 0.159901 0.276956i
\(89\) 1.50000 2.59808i 0.159000 0.275396i −0.775509 0.631337i \(-0.782506\pi\)
0.934508 + 0.355942i \(0.115840\pi\)
\(90\) 0 0
\(91\) 10.5000 + 2.59808i 1.10070 + 0.272352i
\(92\) 4.00000 0.417029
\(93\) −3.00000 + 5.19615i −0.311086 + 0.538816i
\(94\) −1.50000 + 2.59808i −0.154713 + 0.267971i
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) 4.00000 + 6.92820i 0.406138 + 0.703452i 0.994453 0.105180i \(-0.0335417\pi\)
−0.588315 + 0.808632i \(0.700208\pi\)
\(98\) −1.00000 1.73205i −0.101015 0.174964i
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 15.0000 1.47799 0.738997 0.673709i \(-0.235300\pi\)
0.738997 + 0.673709i \(0.235300\pi\)
\(104\) 2.50000 2.59808i 0.245145 0.254762i
\(105\) 0 0
\(106\) 4.50000 7.79423i 0.437079 0.757042i
\(107\) 1.00000 1.73205i 0.0966736 0.167444i −0.813632 0.581380i \(-0.802513\pi\)
0.910306 + 0.413936i \(0.135846\pi\)
\(108\) −0.500000 0.866025i −0.0481125 0.0833333i
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 4.50000 + 7.79423i 0.427121 + 0.739795i
\(112\) −3.00000 −0.283473
\(113\) −4.00000 6.92820i −0.376288 0.651751i 0.614231 0.789127i \(-0.289466\pi\)
−0.990519 + 0.137376i \(0.956133\pi\)
\(114\) −1.50000 + 2.59808i −0.140488 + 0.243332i
\(115\) 0 0
\(116\) −4.00000 −0.371391
\(117\) −3.50000 0.866025i −0.323575 0.0800641i
\(118\) 12.0000 1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) −6.00000 −0.543214
\(123\) 5.00000 + 8.66025i 0.450835 + 0.780869i
\(124\) −3.00000 5.19615i −0.269408 0.466628i
\(125\) 0 0
\(126\) 1.50000 + 2.59808i 0.133631 + 0.231455i
\(127\) 1.50000 2.59808i 0.133103 0.230542i −0.791768 0.610822i \(-0.790839\pi\)
0.924871 + 0.380280i \(0.124172\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 10.0000 0.880451
\(130\) 0 0
\(131\) −3.00000 −0.262111 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(132\) 1.50000 2.59808i 0.130558 0.226134i
\(133\) 4.50000 7.79423i 0.390199 0.675845i
\(134\) −4.00000 6.92820i −0.345547 0.598506i
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 + 10.3923i 0.512615 + 0.887875i 0.999893 + 0.0146279i \(0.00465636\pi\)
−0.487278 + 0.873247i \(0.662010\pi\)
\(138\) 4.00000 0.340503
\(139\) 8.50000 + 14.7224i 0.720961 + 1.24874i 0.960615 + 0.277882i \(0.0896325\pi\)
−0.239655 + 0.970858i \(0.577034\pi\)
\(140\) 0 0
\(141\) −1.50000 + 2.59808i −0.126323 + 0.218797i
\(142\) −14.0000 −1.17485
\(143\) −3.00000 10.3923i −0.250873 0.869048i
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −4.00000 + 6.92820i −0.331042 + 0.573382i
\(147\) −1.00000 1.73205i −0.0824786 0.142857i
\(148\) −9.00000 −0.739795
\(149\) 1.00000 + 1.73205i 0.0819232 + 0.141895i 0.904076 0.427372i \(-0.140560\pi\)
−0.822153 + 0.569267i \(0.807227\pi\)
\(150\) 0 0
\(151\) 14.0000 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(152\) −1.50000 2.59808i −0.121666 0.210732i
\(153\) 0 0
\(154\) −4.50000 + 7.79423i −0.362620 + 0.628077i
\(155\) 0 0
\(156\) 2.50000 2.59808i 0.200160 0.208013i
\(157\) 17.0000 1.35675 0.678374 0.734717i \(-0.262685\pi\)
0.678374 + 0.734717i \(0.262685\pi\)
\(158\) −3.00000 + 5.19615i −0.238667 + 0.413384i
\(159\) 4.50000 7.79423i 0.356873 0.618123i
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) −0.500000 0.866025i −0.0392837 0.0680414i
\(163\) 10.0000 + 17.3205i 0.783260 + 1.35665i 0.930033 + 0.367477i \(0.119778\pi\)
−0.146772 + 0.989170i \(0.546888\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) 8.00000 13.8564i 0.620920 1.07547i
\(167\) 4.50000 7.79423i 0.348220 0.603136i −0.637713 0.770274i \(-0.720119\pi\)
0.985933 + 0.167139i \(0.0534527\pi\)
\(168\) −3.00000 −0.231455
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 0 0
\(171\) −1.50000 + 2.59808i −0.114708 + 0.198680i
\(172\) −5.00000 + 8.66025i −0.381246 + 0.660338i
\(173\) 6.50000 + 11.2583i 0.494186 + 0.855955i 0.999978 0.00670064i \(-0.00213290\pi\)
−0.505792 + 0.862656i \(0.668800\pi\)
\(174\) −4.00000 −0.303239
\(175\) 0 0
\(176\) 1.50000 + 2.59808i 0.113067 + 0.195837i
\(177\) 12.0000 0.901975
\(178\) 1.50000 + 2.59808i 0.112430 + 0.194734i
\(179\) −2.00000 + 3.46410i −0.149487 + 0.258919i −0.931038 0.364922i \(-0.881096\pi\)
0.781551 + 0.623841i \(0.214429\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) −7.50000 + 7.79423i −0.555937 + 0.577747i
\(183\) −6.00000 −0.443533
\(184\) −2.00000 + 3.46410i −0.147442 + 0.255377i
\(185\) 0 0
\(186\) −3.00000 5.19615i −0.219971 0.381000i
\(187\) 0 0
\(188\) −1.50000 2.59808i −0.109399 0.189484i
\(189\) 1.50000 + 2.59808i 0.109109 + 0.188982i
\(190\) 0 0
\(191\) 3.00000 + 5.19615i 0.217072 + 0.375980i 0.953912 0.300088i \(-0.0970159\pi\)
−0.736839 + 0.676068i \(0.763683\pi\)
\(192\) −0.500000 + 0.866025i −0.0360844 + 0.0625000i
\(193\) 4.00000 6.92820i 0.287926 0.498703i −0.685388 0.728178i \(-0.740368\pi\)
0.973315 + 0.229475i \(0.0737008\pi\)
\(194\) −8.00000 −0.574367
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) 5.50000 9.52628i 0.391859 0.678719i −0.600836 0.799372i \(-0.705166\pi\)
0.992695 + 0.120653i \(0.0384988\pi\)
\(198\) 1.50000 2.59808i 0.106600 0.184637i
\(199\) 5.00000 + 8.66025i 0.354441 + 0.613909i 0.987022 0.160585i \(-0.0513380\pi\)
−0.632581 + 0.774494i \(0.718005\pi\)
\(200\) 0 0
\(201\) −4.00000 6.92820i −0.282138 0.488678i
\(202\) 0 0
\(203\) 12.0000 0.842235
\(204\) 0 0
\(205\) 0 0
\(206\) −7.50000 + 12.9904i −0.522550 + 0.905083i
\(207\) 4.00000 0.278019
\(208\) 1.00000 + 3.46410i 0.0693375 + 0.240192i
\(209\) −9.00000 −0.622543
\(210\) 0 0
\(211\) −4.50000 + 7.79423i −0.309793 + 0.536577i −0.978317 0.207114i \(-0.933593\pi\)
0.668524 + 0.743690i \(0.266926\pi\)
\(212\) 4.50000 + 7.79423i 0.309061 + 0.535310i
\(213\) −14.0000 −0.959264
\(214\) 1.00000 + 1.73205i 0.0683586 + 0.118401i
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 9.00000 + 15.5885i 0.610960 + 1.05821i
\(218\) 1.00000 1.73205i 0.0677285 0.117309i
\(219\) −4.00000 + 6.92820i −0.270295 + 0.468165i
\(220\) 0 0
\(221\) 0 0
\(222\) −9.00000 −0.604040
\(223\) −5.50000 + 9.52628i −0.368307 + 0.637927i −0.989301 0.145889i \(-0.953396\pi\)
0.620994 + 0.783815i \(0.286729\pi\)
\(224\) 1.50000 2.59808i 0.100223 0.173591i
\(225\) 0 0
\(226\) 8.00000 0.532152
\(227\) −8.00000 13.8564i −0.530979 0.919682i −0.999346 0.0361484i \(-0.988491\pi\)
0.468368 0.883534i \(-0.344842\pi\)
\(228\) −1.50000 2.59808i −0.0993399 0.172062i
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) −4.50000 + 7.79423i −0.296078 + 0.512823i
\(232\) 2.00000 3.46410i 0.131306 0.227429i
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 2.50000 2.59808i 0.163430 0.169842i
\(235\) 0 0
\(236\) −6.00000 + 10.3923i −0.390567 + 0.676481i
\(237\) −3.00000 + 5.19615i −0.194871 + 0.337526i
\(238\) 0 0
\(239\) −26.0000 −1.68180 −0.840900 0.541190i \(-0.817974\pi\)
−0.840900 + 0.541190i \(0.817974\pi\)
\(240\) 0 0
\(241\) −3.50000 6.06218i −0.225455 0.390499i 0.731001 0.682376i \(-0.239053\pi\)
−0.956456 + 0.291877i \(0.905720\pi\)
\(242\) −2.00000 −0.128565
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 3.00000 5.19615i 0.192055 0.332650i
\(245\) 0 0
\(246\) −10.0000 −0.637577
\(247\) −10.5000 2.59808i −0.668099 0.165312i
\(248\) 6.00000 0.381000
\(249\) 8.00000 13.8564i 0.506979 0.878114i
\(250\) 0 0
\(251\) 0.500000 + 0.866025i 0.0315597 + 0.0546630i 0.881374 0.472419i \(-0.156619\pi\)
−0.849814 + 0.527082i \(0.823286\pi\)
\(252\) −3.00000 −0.188982
\(253\) 6.00000 + 10.3923i 0.377217 + 0.653359i
\(254\) 1.50000 + 2.59808i 0.0941184 + 0.163018i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 6.00000 10.3923i 0.374270 0.648254i −0.615948 0.787787i \(-0.711227\pi\)
0.990217 + 0.139533i \(0.0445601\pi\)
\(258\) −5.00000 + 8.66025i −0.311286 + 0.539164i
\(259\) 27.0000 1.67770
\(260\) 0 0
\(261\) −4.00000 −0.247594
\(262\) 1.50000 2.59808i 0.0926703 0.160510i
\(263\) −15.5000 + 26.8468i −0.955771 + 1.65544i −0.223177 + 0.974778i \(0.571643\pi\)
−0.732594 + 0.680666i \(0.761691\pi\)
\(264\) 1.50000 + 2.59808i 0.0923186 + 0.159901i
\(265\) 0 0
\(266\) 4.50000 + 7.79423i 0.275913 + 0.477895i
\(267\) 1.50000 + 2.59808i 0.0917985 + 0.159000i
\(268\) 8.00000 0.488678
\(269\) 2.00000 + 3.46410i 0.121942 + 0.211210i 0.920534 0.390664i \(-0.127754\pi\)
−0.798591 + 0.601874i \(0.794421\pi\)
\(270\) 0 0
\(271\) 6.00000 10.3923i 0.364474 0.631288i −0.624218 0.781251i \(-0.714582\pi\)
0.988692 + 0.149963i \(0.0479155\pi\)
\(272\) 0 0
\(273\) −7.50000 + 7.79423i −0.453921 + 0.471728i
\(274\) −12.0000 −0.724947
\(275\) 0 0
\(276\) −2.00000 + 3.46410i −0.120386 + 0.208514i
\(277\) −15.5000 26.8468i −0.931305 1.61307i −0.781094 0.624413i \(-0.785338\pi\)
−0.150210 0.988654i \(-0.547995\pi\)
\(278\) −17.0000 −1.01959
\(279\) −3.00000 5.19615i −0.179605 0.311086i
\(280\) 0 0
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) −1.50000 2.59808i −0.0893237 0.154713i
\(283\) 3.00000 5.19615i 0.178331 0.308879i −0.762978 0.646425i \(-0.776263\pi\)
0.941309 + 0.337546i \(0.109597\pi\)
\(284\) 7.00000 12.1244i 0.415374 0.719448i
\(285\) 0 0
\(286\) 10.5000 + 2.59808i 0.620878 + 0.153627i
\(287\) 30.0000 1.77084
\(288\) −0.500000 + 0.866025i −0.0294628 + 0.0510310i
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) −8.00000 −0.468968
\(292\) −4.00000 6.92820i −0.234082 0.405442i
\(293\) −0.500000 0.866025i −0.0292103 0.0505937i 0.851051 0.525084i \(-0.175966\pi\)
−0.880261 + 0.474490i \(0.842633\pi\)
\(294\) 2.00000 0.116642
\(295\) 0 0
\(296\) 4.50000 7.79423i 0.261557 0.453030i
\(297\) 1.50000 2.59808i 0.0870388 0.150756i
\(298\) −2.00000 −0.115857
\(299\) 4.00000 + 13.8564i 0.231326 + 0.801337i
\(300\) 0 0
\(301\) 15.0000 25.9808i 0.864586 1.49751i
\(302\) −7.00000 + 12.1244i −0.402805 + 0.697678i
\(303\) 0 0
\(304\) 3.00000 0.172062
\(305\) 0 0
\(306\) 0 0
\(307\) −26.0000 −1.48390 −0.741949 0.670456i \(-0.766098\pi\)
−0.741949 + 0.670456i \(0.766098\pi\)
\(308\) −4.50000 7.79423i −0.256411 0.444117i
\(309\) −7.50000 + 12.9904i −0.426660 + 0.738997i
\(310\) 0 0
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) 1.00000 + 3.46410i 0.0566139 + 0.196116i
\(313\) −26.0000 −1.46961 −0.734803 0.678280i \(-0.762726\pi\)
−0.734803 + 0.678280i \(0.762726\pi\)
\(314\) −8.50000 + 14.7224i −0.479683 + 0.830835i
\(315\) 0 0
\(316\) −3.00000 5.19615i −0.168763 0.292306i
\(317\) −17.0000 −0.954815 −0.477408 0.878682i \(-0.658423\pi\)
−0.477408 + 0.878682i \(0.658423\pi\)
\(318\) 4.50000 + 7.79423i 0.252347 + 0.437079i
\(319\) −6.00000 10.3923i −0.335936 0.581857i
\(320\) 0 0
\(321\) 1.00000 + 1.73205i 0.0558146 + 0.0966736i
\(322\) 6.00000 10.3923i 0.334367 0.579141i
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −20.0000 −1.10770
\(327\) 1.00000 1.73205i 0.0553001 0.0957826i
\(328\) 5.00000 8.66025i 0.276079 0.478183i
\(329\) 4.50000 + 7.79423i 0.248093 + 0.429710i
\(330\) 0 0
\(331\) 14.0000 + 24.2487i 0.769510 + 1.33283i 0.937829 + 0.347097i \(0.112833\pi\)
−0.168320 + 0.985732i \(0.553834\pi\)
\(332\) 8.00000 + 13.8564i 0.439057 + 0.760469i
\(333\) −9.00000 −0.493197
\(334\) 4.50000 + 7.79423i 0.246229 + 0.426481i
\(335\) 0 0
\(336\) 1.50000 2.59808i 0.0818317 0.141737i
\(337\) −6.00000 −0.326841 −0.163420 0.986557i \(-0.552253\pi\)
−0.163420 + 0.986557i \(0.552253\pi\)
\(338\) 11.5000 + 6.06218i 0.625518 + 0.329739i
\(339\) 8.00000 0.434500
\(340\) 0 0
\(341\) 9.00000 15.5885i 0.487377 0.844162i
\(342\) −1.50000 2.59808i −0.0811107 0.140488i
\(343\) 15.0000 0.809924
\(344\) −5.00000 8.66025i −0.269582 0.466930i
\(345\) 0 0
\(346\) −13.0000 −0.698884
\(347\) −12.0000 20.7846i −0.644194 1.11578i −0.984487 0.175457i \(-0.943860\pi\)
0.340293 0.940319i \(-0.389474\pi\)
\(348\) 2.00000 3.46410i 0.107211 0.185695i
\(349\) −8.00000 + 13.8564i −0.428230 + 0.741716i −0.996716 0.0809766i \(-0.974196\pi\)
0.568486 + 0.822693i \(0.307529\pi\)
\(350\) 0 0
\(351\) 2.50000 2.59808i 0.133440 0.138675i
\(352\) −3.00000 −0.159901
\(353\) −4.00000 + 6.92820i −0.212899 + 0.368751i −0.952620 0.304162i \(-0.901624\pi\)
0.739722 + 0.672913i \(0.234957\pi\)
\(354\) −6.00000 + 10.3923i −0.318896 + 0.552345i
\(355\) 0 0
\(356\) −3.00000 −0.159000
\(357\) 0 0
\(358\) −2.00000 3.46410i −0.105703 0.183083i
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 0 0
\(361\) 5.00000 8.66025i 0.263158 0.455803i
\(362\) 5.00000 8.66025i 0.262794 0.455173i
\(363\) −2.00000 −0.104973
\(364\) −3.00000 10.3923i −0.157243 0.544705i
\(365\) 0 0
\(366\) 3.00000 5.19615i 0.156813 0.271607i
\(367\) 4.00000 6.92820i 0.208798 0.361649i −0.742538 0.669804i \(-0.766378\pi\)
0.951336 + 0.308155i \(0.0997115\pi\)
\(368\) −2.00000 3.46410i −0.104257 0.180579i
\(369\) −10.0000 −0.520579
\(370\) 0 0
\(371\) −13.5000 23.3827i −0.700885 1.21397i
\(372\) 6.00000 0.311086
\(373\) −13.0000 22.5167i −0.673114 1.16587i −0.977016 0.213165i \(-0.931623\pi\)
0.303902 0.952703i \(-0.401711\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) −4.00000 13.8564i −0.206010 0.713641i
\(378\) −3.00000 −0.154303
\(379\) 16.5000 28.5788i 0.847548 1.46800i −0.0358418 0.999357i \(-0.511411\pi\)
0.883390 0.468639i \(-0.155255\pi\)
\(380\) 0 0
\(381\) 1.50000 + 2.59808i 0.0768473 + 0.133103i
\(382\) −6.00000 −0.306987
\(383\) 2.00000 + 3.46410i 0.102195 + 0.177007i 0.912589 0.408879i \(-0.134080\pi\)
−0.810394 + 0.585886i \(0.800747\pi\)
\(384\) −0.500000 0.866025i −0.0255155 0.0441942i
\(385\) 0 0
\(386\) 4.00000 + 6.92820i 0.203595 + 0.352636i
\(387\) −5.00000 + 8.66025i −0.254164 + 0.440225i
\(388\) 4.00000 6.92820i 0.203069 0.351726i
\(389\) 24.0000 1.21685 0.608424 0.793612i \(-0.291802\pi\)
0.608424 + 0.793612i \(0.291802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 + 1.73205i −0.0505076 + 0.0874818i
\(393\) 1.50000 2.59808i 0.0756650 0.131056i
\(394\) 5.50000 + 9.52628i 0.277086 + 0.479927i
\(395\) 0 0
\(396\) 1.50000 + 2.59808i 0.0753778 + 0.130558i
\(397\) −11.5000 19.9186i −0.577168 0.999685i −0.995802 0.0915300i \(-0.970824\pi\)
0.418634 0.908155i \(-0.362509\pi\)
\(398\) −10.0000 −0.501255
\(399\) 4.50000 + 7.79423i 0.225282 + 0.390199i
\(400\) 0 0
\(401\) 13.5000 23.3827i 0.674158 1.16768i −0.302556 0.953131i \(-0.597840\pi\)
0.976714 0.214544i \(-0.0688266\pi\)
\(402\) 8.00000 0.399004
\(403\) 15.0000 15.5885i 0.747203 0.776516i
\(404\) 0 0
\(405\) 0 0
\(406\) −6.00000 + 10.3923i −0.297775 + 0.515761i
\(407\) −13.5000 23.3827i −0.669170 1.15904i
\(408\) 0 0
\(409\) 3.50000 + 6.06218i 0.173064 + 0.299755i 0.939490 0.342578i \(-0.111300\pi\)
−0.766426 + 0.642333i \(0.777967\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) −7.50000 12.9904i −0.369498 0.639990i
\(413\) 18.0000 31.1769i 0.885722 1.53412i
\(414\) −2.00000 + 3.46410i −0.0982946 + 0.170251i
\(415\) 0 0
\(416\) −3.50000 0.866025i −0.171602 0.0424604i
\(417\) −17.0000 −0.832494
\(418\) 4.50000 7.79423i 0.220102 0.381228i
\(419\) 6.00000 10.3923i 0.293119 0.507697i −0.681426 0.731887i \(-0.738640\pi\)
0.974546 + 0.224189i \(0.0719734\pi\)
\(420\) 0 0
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) −4.50000 7.79423i −0.219057 0.379417i
\(423\) −1.50000 2.59808i −0.0729325 0.126323i
\(424\) −9.00000 −0.437079
\(425\) 0 0
\(426\) 7.00000 12.1244i 0.339151 0.587427i
\(427\) −9.00000 + 15.5885i −0.435541 + 0.754378i
\(428\) −2.00000 −0.0966736
\(429\) 10.5000 + 2.59808i 0.506945 + 0.125436i
\(430\) 0 0
\(431\) 6.00000 10.3923i 0.289010 0.500580i −0.684564 0.728953i \(-0.740007\pi\)
0.973574 + 0.228373i \(0.0733406\pi\)
\(432\) −0.500000 + 0.866025i −0.0240563 + 0.0416667i
\(433\) −8.00000 13.8564i −0.384455 0.665896i 0.607238 0.794520i \(-0.292277\pi\)
−0.991693 + 0.128624i \(0.958944\pi\)
\(434\) −18.0000 −0.864028
\(435\) 0 0
\(436\) 1.00000 + 1.73205i 0.0478913 + 0.0829502i
\(437\) 12.0000 0.574038
\(438\) −4.00000 6.92820i −0.191127 0.331042i
\(439\) 15.0000 25.9808i 0.715911 1.23999i −0.246696 0.969093i \(-0.579345\pi\)
0.962607 0.270901i \(-0.0873217\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) 10.0000 0.475114 0.237557 0.971374i \(-0.423653\pi\)
0.237557 + 0.971374i \(0.423653\pi\)
\(444\) 4.50000 7.79423i 0.213561 0.369898i
\(445\) 0 0
\(446\) −5.50000 9.52628i −0.260433 0.451082i
\(447\) −2.00000 −0.0945968
\(448\) 1.50000 + 2.59808i 0.0708683 + 0.122748i
\(449\) 17.5000 + 30.3109i 0.825876 + 1.43046i 0.901248 + 0.433304i \(0.142652\pi\)
−0.0753719 + 0.997155i \(0.524014\pi\)
\(450\) 0 0
\(451\) −15.0000 25.9808i −0.706322 1.22339i
\(452\) −4.00000 + 6.92820i −0.188144 + 0.325875i
\(453\) −7.00000 + 12.1244i −0.328889 + 0.569652i
\(454\) 16.0000 0.750917
\(455\) 0 0
\(456\) 3.00000 0.140488
\(457\) −21.0000 + 36.3731i −0.982339 + 1.70146i −0.329125 + 0.944286i \(0.606754\pi\)
−0.653213 + 0.757174i \(0.726579\pi\)
\(458\) 5.00000 8.66025i 0.233635 0.404667i
\(459\) 0 0
\(460\) 0 0
\(461\) 16.0000 + 27.7128i 0.745194 + 1.29071i 0.950104 + 0.311933i \(0.100977\pi\)
−0.204910 + 0.978781i \(0.565690\pi\)
\(462\) −4.50000 7.79423i −0.209359 0.362620i
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 2.00000 + 3.46410i 0.0928477 + 0.160817i
\(465\) 0 0
\(466\) −3.00000 + 5.19615i −0.138972 + 0.240707i
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 1.00000 + 3.46410i 0.0462250 + 0.160128i
\(469\) −24.0000 −1.10822
\(470\) 0 0
\(471\) −8.50000 + 14.7224i −0.391659 + 0.678374i
\(472\) −6.00000 10.3923i −0.276172 0.478345i
\(473\) −30.0000 −1.37940
\(474\) −3.00000 5.19615i −0.137795 0.238667i
\(475\) 0 0
\(476\) 0 0
\(477\) 4.50000 + 7.79423i 0.206041 + 0.356873i
\(478\) 13.0000 22.5167i 0.594606 1.02989i
\(479\) −6.00000 + 10.3923i −0.274147 + 0.474837i −0.969920 0.243426i \(-0.921729\pi\)
0.695773 + 0.718262i \(0.255062\pi\)
\(480\) 0 0
\(481\) −9.00000 31.1769i −0.410365 1.42154i
\(482\) 7.00000 0.318841
\(483\) 6.00000 10.3923i 0.273009 0.472866i
\(484\) 1.00000 1.73205i 0.0454545 0.0787296i
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) 14.5000 + 25.1147i 0.657058 + 1.13806i 0.981374 + 0.192109i \(0.0615326\pi\)
−0.324316 + 0.945949i \(0.605134\pi\)
\(488\) 3.00000 + 5.19615i 0.135804 + 0.235219i
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) −2.50000 + 4.33013i −0.112823 + 0.195416i −0.916908 0.399100i \(-0.869323\pi\)
0.804084 + 0.594515i \(0.202656\pi\)
\(492\) 5.00000 8.66025i 0.225417 0.390434i
\(493\) 0 0
\(494\) 7.50000 7.79423i 0.337441 0.350679i
\(495\) 0 0
\(496\) −3.00000 + 5.19615i −0.134704 + 0.233314i
\(497\) −21.0000 + 36.3731i −0.941979 + 1.63156i
\(498\) 8.00000 + 13.8564i 0.358489 + 0.620920i
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 4.50000 + 7.79423i 0.201045 + 0.348220i
\(502\) −1.00000 −0.0446322
\(503\) 10.5000 + 18.1865i 0.468172 + 0.810897i 0.999338 0.0363700i \(-0.0115795\pi\)
−0.531167 + 0.847267i \(0.678246\pi\)
\(504\) 1.50000 2.59808i 0.0668153 0.115728i
\(505\) 0 0
\(506\) −12.0000 −0.533465
\(507\) 11.5000 + 6.06218i 0.510733 + 0.269231i
\(508\) −3.00000 −0.133103
\(509\) −5.00000 + 8.66025i −0.221621 + 0.383859i −0.955300 0.295637i \(-0.904468\pi\)
0.733679 + 0.679496i \(0.237801\pi\)
\(510\) 0 0
\(511\) 12.0000 + 20.7846i 0.530849 + 0.919457i
\(512\) 1.00000 0.0441942
\(513\) −1.50000 2.59808i −0.0662266 0.114708i
\(514\) 6.00000 + 10.3923i 0.264649 + 0.458385i
\(515\) 0 0
\(516\) −5.00000 8.66025i −0.220113 0.381246i
\(517\) 4.50000 7.79423i 0.197910 0.342790i
\(518\) −13.5000 + 23.3827i −0.593156 + 1.02738i
\(519\) −13.0000 −0.570637
\(520\) 0 0
\(521\) −35.0000 −1.53338 −0.766689 0.642019i \(-0.778097\pi\)
−0.766689 + 0.642019i \(0.778097\pi\)
\(522\) 2.00000 3.46410i 0.0875376 0.151620i
\(523\) 11.0000 19.0526i 0.480996 0.833110i −0.518766 0.854916i \(-0.673608\pi\)
0.999762 + 0.0218062i \(0.00694167\pi\)
\(524\) 1.50000 + 2.59808i 0.0655278 + 0.113497i
\(525\) 0 0
\(526\) −15.5000 26.8468i −0.675832 1.17058i
\(527\) 0 0
\(528\) −3.00000 −0.130558
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) −6.00000 + 10.3923i −0.260378 + 0.450988i
\(532\) −9.00000 −0.390199
\(533\) −10.0000 34.6410i −0.433148 1.50047i
\(534\) −3.00000 −0.129823
\(535\) 0 0
\(536\) −4.00000 + 6.92820i −0.172774 + 0.299253i
\(537\) −2.00000 3.46410i −0.0863064 0.149487i
\(538\) −4.00000 −0.172452
\(539\) 3.00000 + 5.19615i 0.129219 + 0.223814i
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 6.00000 + 10.3923i 0.257722 + 0.446388i
\(543\) 5.00000 8.66025i 0.214571 0.371647i
\(544\) 0 0
\(545\) 0 0
\(546\) −3.00000 10.3923i −0.128388 0.444750i
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) 6.00000 10.3923i 0.256307 0.443937i
\(549\) 3.00000 5.19615i 0.128037 0.221766i
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) −2.00000 3.46410i −0.0851257 0.147442i
\(553\) 9.00000 + 15.5885i 0.382719 + 0.662889i
\(554\) 31.0000 1.31706
\(555\) 0 0
\(556\) 8.50000 14.7224i 0.360480 0.624370i
\(557\) −4.50000 + 7.79423i −0.190671 + 0.330252i −0.945473 0.325701i \(-0.894400\pi\)
0.754802 + 0.655953i \(0.227733\pi\)
\(558\) 6.00000 0.254000
\(559\) −35.0000 8.66025i −1.48034 0.366290i
\(560\) 0 0
\(561\) 0 0
\(562\) 15.0000 25.9808i 0.632737 1.09593i
\(563\) 10.0000 + 17.3205i 0.421450 + 0.729972i 0.996082 0.0884397i \(-0.0281881\pi\)
−0.574632 + 0.818412i \(0.694855\pi\)
\(564\) 3.00000 0.126323
\(565\) 0 0
\(566\) 3.00000 + 5.19615i 0.126099 + 0.218411i
\(567\) −3.00000 −0.125988
\(568\) 7.00000 + 12.1244i 0.293713 + 0.508727i
\(569\) 19.5000 33.7750i 0.817483 1.41592i −0.0900490 0.995937i \(-0.528702\pi\)
0.907532 0.419984i \(-0.137964\pi\)
\(570\) 0 0
\(571\) 23.0000 0.962520 0.481260 0.876578i \(-0.340179\pi\)
0.481260 + 0.876578i \(0.340179\pi\)
\(572\) −7.50000 + 7.79423i −0.313591 + 0.325893i
\(573\) −6.00000 −0.250654
\(574\) −15.0000 + 25.9808i −0.626088 + 1.08442i
\(575\) 0 0
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 8.50000 + 14.7224i 0.353553 + 0.612372i
\(579\) 4.00000 + 6.92820i 0.166234 + 0.287926i
\(580\) 0 0
\(581\) −24.0000 41.5692i −0.995688 1.72458i
\(582\) 4.00000 6.92820i 0.165805 0.287183i
\(583\) −13.5000 + 23.3827i −0.559113 + 0.968412i
\(584\) 8.00000 0.331042
\(585\) 0 0
\(586\) 1.00000 0.0413096
\(587\) 9.00000 15.5885i 0.371470 0.643404i −0.618322 0.785925i \(-0.712187\pi\)
0.989792 + 0.142520i \(0.0455206\pi\)
\(588\) −1.00000 + 1.73205i −0.0412393 + 0.0714286i
\(589\) −9.00000 15.5885i −0.370839 0.642311i
\(590\) 0 0
\(591\) 5.50000 + 9.52628i 0.226240 + 0.391859i
\(592\) 4.50000 + 7.79423i 0.184949 + 0.320341i
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 1.50000 + 2.59808i 0.0615457 + 0.106600i
\(595\) 0 0
\(596\) 1.00000 1.73205i 0.0409616 0.0709476i
\(597\) −10.0000 −0.409273
\(598\) −14.0000 3.46410i −0.572503 0.141658i
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) −10.5000 + 18.1865i −0.428304 + 0.741844i −0.996723 0.0808953i \(-0.974222\pi\)
0.568419 + 0.822739i \(0.307555\pi\)
\(602\) 15.0000 + 25.9808i 0.611354 + 1.05890i
\(603\) 8.00000 0.325785
\(604\) −7.00000 12.1244i −0.284826 0.493333i
\(605\) 0 0
\(606\) 0 0
\(607\) 13.5000 + 23.3827i 0.547948 + 0.949074i 0.998415 + 0.0562808i \(0.0179242\pi\)
−0.450467 + 0.892793i \(0.648742\pi\)
\(608\) −1.50000 + 2.59808i −0.0608330 + 0.105366i
\(609\) −6.00000 + 10.3923i −0.243132 + 0.421117i
\(610\) 0 0
\(611\) 7.50000 7.79423i 0.303418 0.315321i
\(612\) 0 0
\(613\) −3.50000 + 6.06218i −0.141364 + 0.244849i −0.928010 0.372554i \(-0.878482\pi\)
0.786647 + 0.617403i \(0.211815\pi\)
\(614\) 13.0000 22.5167i 0.524637 0.908698i
\(615\) 0 0
\(616\) 9.00000 0.362620
\(617\) −15.0000 25.9808i −0.603877 1.04595i −0.992228 0.124434i \(-0.960288\pi\)
0.388351 0.921512i \(-0.373045\pi\)
\(618\) −7.50000 12.9904i −0.301694 0.522550i
\(619\) −23.0000 −0.924448 −0.462224 0.886763i \(-0.652948\pi\)
−0.462224 + 0.886763i \(0.652948\pi\)
\(620\) 0 0
\(621\) −2.00000 + 3.46410i −0.0802572 + 0.139010i
\(622\) 2.00000 3.46410i 0.0801927 0.138898i
\(623\) 9.00000 0.360577
\(624\) −3.50000 0.866025i −0.140112 0.0346688i
\(625\) 0 0
\(626\) 13.0000 22.5167i 0.519584 0.899947i
\(627\) 4.50000 7.79423i 0.179713 0.311272i
\(628\) −8.50000 14.7224i −0.339187 0.587489i
\(629\) 0 0
\(630\) 0 0
\(631\) −6.00000 10.3923i −0.238856 0.413711i 0.721530 0.692383i \(-0.243439\pi\)
−0.960386 + 0.278672i \(0.910106\pi\)
\(632\) 6.00000 0.238667
\(633\) −4.50000 7.79423i −0.178859 0.309793i
\(634\) 8.50000 14.7224i 0.337578 0.584702i
\(635\) 0 0
\(636\) −9.00000 −0.356873
\(637\) 2.00000 + 6.92820i 0.0792429 + 0.274505i
\(638\) 12.0000 0.475085
\(639\) 7.00000 12.1244i 0.276916 0.479632i
\(640\) 0 0
\(641\) −17.5000 30.3109i −0.691208 1.19721i −0.971442 0.237276i \(-0.923745\pi\)
0.280234 0.959932i \(-0.409588\pi\)
\(642\) −2.00000 −0.0789337
\(643\) 14.0000 + 24.2487i 0.552106 + 0.956276i 0.998122 + 0.0612510i \(0.0195090\pi\)
−0.446016 + 0.895025i \(0.647158\pi\)
\(644\) 6.00000 + 10.3923i 0.236433 + 0.409514i
\(645\) 0 0
\(646\) 0 0
\(647\) −22.5000 + 38.9711i −0.884566 + 1.53211i −0.0383563 + 0.999264i \(0.512212\pi\)
−0.846210 + 0.532850i \(0.821121\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) −36.0000 −1.41312
\(650\) 0 0
\(651\) −18.0000 −0.705476
\(652\) 10.0000 17.3205i 0.391630 0.678323i
\(653\) 1.50000 2.59808i 0.0586995 0.101671i −0.835182 0.549973i \(-0.814638\pi\)
0.893882 + 0.448303i \(0.147971\pi\)
\(654\) 1.00000 + 1.73205i 0.0391031 + 0.0677285i
\(655\) 0 0
\(656\) 5.00000 + 8.66025i 0.195217 + 0.338126i
\(657\) −4.00000 6.92820i −0.156055 0.270295i
\(658\) −9.00000 −0.350857
\(659\) −2.00000 3.46410i −0.0779089 0.134942i 0.824439 0.565951i \(-0.191491\pi\)
−0.902348 + 0.431009i \(0.858158\pi\)
\(660\) 0 0
\(661\) −15.0000 + 25.9808i −0.583432 + 1.01053i 0.411636 + 0.911348i \(0.364957\pi\)
−0.995069 + 0.0991864i \(0.968376\pi\)
\(662\) −28.0000 −1.08825
\(663\) 0 0
\(664\) −16.0000 −0.620920
\(665\) 0 0
\(666\) 4.50000 7.79423i 0.174371 0.302020i
\(667\) 8.00000 + 13.8564i 0.309761 + 0.536522i
\(668\) −9.00000 −0.348220
\(669\) −5.50000 9.52628i −0.212642 0.368307i
\(670\) 0 0
\(671\) 18.0000 0.694882
\(672\) 1.50000 + 2.59808i 0.0578638 + 0.100223i
\(673\) 24.0000 41.5692i 0.925132 1.60238i 0.133783 0.991011i \(-0.457287\pi\)
0.791349 0.611365i \(-0.209379\pi\)
\(674\) 3.00000 5.19615i 0.115556 0.200148i
\(675\) 0 0
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) −4.00000 + 6.92820i −0.153619 + 0.266076i
\(679\) −12.0000 + 20.7846i −0.460518 + 0.797640i
\(680\) 0 0
\(681\) 16.0000 0.613121
\(682\) 9.00000 + 15.5885i 0.344628 + 0.596913i
\(683\) 15.0000 + 25.9808i 0.573959 + 0.994126i 0.996154 + 0.0876211i \(0.0279265\pi\)
−0.422195 + 0.906505i \(0.638740\pi\)
\(684\) 3.00000 0.114708
\(685\) 0 0
\(686\) −7.50000 + 12.9904i −0.286351 + 0.495975i
\(687\) 5.00000 8.66025i 0.190762 0.330409i
\(688\) 10.0000 0.381246
\(689\) −22.5000 + 23.3827i −0.857182 + 0.890809i
\(690\) 0 0
\(691\) 3.50000 6.06218i 0.133146 0.230616i −0.791742 0.610856i \(-0.790825\pi\)
0.924888 + 0.380240i \(0.124159\pi\)
\(692\) 6.50000 11.2583i 0.247093 0.427977i
\(693\) −4.50000 7.79423i −0.170941 0.296078i
\(694\) 24.0000 0.911028
\(695\) 0 0
\(696\) 2.00000 + 3.46410i 0.0758098 + 0.131306i
\(697\) 0 0
\(698\) −8.00000 13.8564i −0.302804 0.524473i
\(699\) −3.00000 + 5.19615i −0.113470 + 0.196537i
\(700\) 0 0
\(701\) 24.0000 0.906467 0.453234 0.891392i \(-0.350270\pi\)
0.453234 + 0.891392i \(0.350270\pi\)
\(702\) 1.00000 + 3.46410i 0.0377426 + 0.130744i
\(703\) −27.0000 −1.01832
\(704\) 1.50000 2.59808i 0.0565334 0.0979187i
\(705\) 0 0
\(706\) −4.00000 6.92820i −0.150542 0.260746i
\(707\) 0 0
\(708\) −6.00000 10.3923i −0.225494 0.390567i
\(709\) 20.0000 + 34.6410i 0.751116 + 1.30097i 0.947282 + 0.320400i \(0.103817\pi\)
−0.196167 + 0.980571i \(0.562849\pi\)
\(710\) 0 0
\(711\) −3.00000 5.19615i −0.112509 0.194871i
\(712\) 1.50000 2.59808i 0.0562149 0.0973670i
\(713\) −12.0000 + 20.7846i −0.449404 + 0.778390i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 13.0000 22.5167i 0.485494 0.840900i
\(718\) −15.0000 + 25.9808i −0.559795 + 0.969593i
\(719\) 18.0000 + 31.1769i 0.671287 + 1.16270i 0.977539 + 0.210752i \(0.0675914\pi\)
−0.306253 + 0.951950i \(0.599075\pi\)
\(720\) 0 0
\(721\) 22.5000 + 38.9711i 0.837944 + 1.45136i
\(722\) 5.00000 + 8.66025i 0.186081 + 0.322301i
\(723\) 7.00000 0.260333
\(724\) 5.00000 + 8.66025i 0.185824 + 0.321856i
\(725\) 0 0
\(726\) 1.00000 1.73205i 0.0371135 0.0642824i
\(727\) 3.00000 0.111264 0.0556319 0.998451i \(-0.482283\pi\)
0.0556319 + 0.998451i \(0.482283\pi\)
\(728\) 10.5000 + 2.59808i 0.389156 + 0.0962911i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 3.00000 + 5.19615i 0.110883 + 0.192055i
\(733\) −53.0000 −1.95760 −0.978800 0.204819i \(-0.934339\pi\)
−0.978800 + 0.204819i \(0.934339\pi\)
\(734\) 4.00000 + 6.92820i 0.147643 + 0.255725i
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 12.0000 + 20.7846i 0.442026 + 0.765611i
\(738\) 5.00000 8.66025i 0.184053 0.318788i
\(739\) −5.50000 + 9.52628i −0.202321 + 0.350430i −0.949276 0.314445i \(-0.898182\pi\)
0.746955 + 0.664875i \(0.231515\pi\)
\(740\) 0 0
\(741\) 7.50000 7.79423i 0.275519 0.286328i
\(742\) 27.0000 0.991201
\(743\) 24.0000 41.5692i 0.880475 1.52503i 0.0296605 0.999560i \(-0.490557\pi\)
0.850814 0.525467i \(-0.176109\pi\)
\(744\) −3.00000 + 5.19615i −0.109985 + 0.190500i
\(745\) 0 0
\(746\) 26.0000 0.951928
\(747\) 8.00000 + 13.8564i 0.292705 + 0.506979i
\(748\) 0 0
\(749\) 6.00000 0.219235
\(750\) 0 0
\(751\) 12.0000 20.7846i 0.437886 0.758441i −0.559640 0.828736i \(-0.689061\pi\)
0.997526 + 0.0702946i \(0.0223939\pi\)
\(752\) −1.50000 + 2.59808i −0.0546994 + 0.0947421i
\(753\) −1.00000 −0.0364420
\(754\) 14.0000 + 3.46410i 0.509850 + 0.126155i
\(755\) 0 0
\(756\) 1.50000 2.59808i 0.0545545 0.0944911i
\(757\) 8.50000 14.7224i 0.308938 0.535096i −0.669193 0.743089i \(-0.733360\pi\)
0.978130 + 0.207993i \(0.0666932\pi\)
\(758\) 16.5000 + 28.5788i 0.599307 + 1.03803i
\(759\) −12.0000 −0.435572
\(760\) 0 0
\(761\) 15.5000 + 26.8468i 0.561875 + 0.973195i 0.997333 + 0.0729864i \(0.0232530\pi\)
−0.435458 + 0.900209i \(0.643414\pi\)
\(762\) −3.00000 −0.108679
\(763\) −3.00000 5.19615i −0.108607 0.188113i
\(764\) 3.00000 5.19615i 0.108536 0.187990i
\(765\) 0 0
\(766\) −4.00000 −0.144526
\(767\) −42.0000 10.3923i −1.51653 0.375244i
\(768\) 1.00000 0.0360844
\(769\) −23.0000 + 39.8372i −0.829401 + 1.43657i 0.0691074 + 0.997609i \(0.477985\pi\)
−0.898509 + 0.438956i \(0.855348\pi\)
\(770\) 0 0
\(771\) 6.00000 + 10.3923i 0.216085 + 0.374270i
\(772\) −8.00000 −0.287926
\(773\) −3.50000 6.06218i −0.125886 0.218041i 0.796193 0.605043i \(-0.206844\pi\)
−0.922079 + 0.387002i \(0.873511\pi\)
\(774\) −5.00000 8.66025i −0.179721 0.311286i
\(775\) 0 0
\(776\) 4.00000 + 6.92820i 0.143592 + 0.248708i
\(777\) −13.5000 + 23.3827i −0.484310 + 0.838849i
\(778\) −12.0000 + 20.7846i −0.430221 + 0.745164i
\(779\) −30.0000 −1.07486
\(780\) 0 0
\(781\) 42.0000 1.50288
\(782\) 0 0
\(783\) 2.00000 3.46410i 0.0714742 0.123797i
\(784\) −1.00000 1.73205i −0.0357143 0.0618590i
\(785\) 0 0
\(786\) 1.50000 + 2.59808i 0.0535032 + 0.0926703i
\(787\) −18.0000 31.1769i −0.641631 1.11134i −0.985069 0.172162i \(-0.944925\pi\)
0.343438 0.939175i \(-0.388408\pi\)
\(788\) −11.0000 −0.391859
\(789\) −15.5000 26.8468i −0.551815 0.955771i
\(790\) 0 0
\(791\) 12.0000 20.7846i 0.426671 0.739016i
\(792\) −3.00000 −0.106600
\(793\) 21.0000 + 5.19615i 0.745732 + 0.184521i
\(794\) 23.0000 0.816239
\(795\) 0 0
\(796\) 5.00000 8.66025i 0.177220 0.306955i
\(797\) −21.0000 36.3731i −0.743858 1.28840i −0.950726 0.310031i \(-0.899660\pi\)
0.206868 0.978369i \(-0.433673\pi\)
\(798\) −9.00000 −0.318597
\(799\) 0 0
\(800\) 0 0
\(801\) −3.00000 −0.106000
\(802\) 13.5000 + 23.3827i 0.476702 + 0.825671i
\(803\) 12.0000 20.7846i 0.423471 0.733473i
\(804\) −4.00000 + 6.92820i −0.141069 + 0.244339i
\(805\) 0 0
\(806\) 6.00000 + 20.7846i 0.211341 + 0.732107i
\(807\) −4.00000 −0.140807
\(808\) 0 0
\(809\) 5.00000 8.66025i 0.175791 0.304478i −0.764644 0.644453i \(-0.777085\pi\)
0.940435 + 0.339975i \(0.110418\pi\)
\(810\) 0 0
\(811\) −31.0000 −1.08856 −0.544279 0.838905i \(-0.683197\pi\)
−0.544279 + 0.838905i \(0.683197\pi\)
\(812\) −6.00000 10.3923i −0.210559 0.364698i
\(813\) 6.00000 + 10.3923i 0.210429 + 0.364474i
\(814\) 27.0000 0.946350
\(815\) 0 0
\(816\) 0 0
\(817\) −15.0000 + 25.9808i −0.524784 + 0.908952i
\(818\) −7.00000 −0.244749
\(819\) −3.00000 10.3923i −0.104828 0.363137i
\(820\) 0 0
\(821\) −25.0000 + 43.3013i −0.872506 + 1.51122i −0.0131101 + 0.999914i \(0.504173\pi\)
−0.859396 + 0.511311i \(0.829160\pi\)
\(822\) 6.00000 10.3923i 0.209274 0.362473i
\(823\) −5.50000 9.52628i −0.191718 0.332065i 0.754102 0.656758i \(-0.228073\pi\)
−0.945820 + 0.324692i \(0.894739\pi\)
\(824\) 15.0000 0.522550
\(825\) 0 0
\(826\) 18.0000 + 31.1769i 0.626300 + 1.08478i
\(827\) 18.0000 0.625921 0.312961 0.949766i \(-0.398679\pi\)
0.312961 + 0.949766i \(0.398679\pi\)
\(828\) −2.00000 3.46410i −0.0695048 0.120386i
\(829\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(830\) 0 0
\(831\) 31.0000 1.07538
\(832\) 2.50000 2.59808i 0.0866719 0.0900721i
\(833\) 0 0
\(834\) 8.50000 14.7224i 0.294331 0.509796i
\(835\) 0 0
\(836\) 4.50000 + 7.79423i 0.155636 + 0.269569i
\(837\) 6.00000 0.207390
\(838\) 6.00000 + 10.3923i 0.207267 + 0.358996i
\(839\) 3.00000 + 5.19615i 0.103572 + 0.179391i 0.913154 0.407615i \(-0.133640\pi\)
−0.809582 + 0.587007i \(0.800306\pi\)
\(840\) 0 0
\(841\) 6.50000 + 11.2583i 0.224138 + 0.388218i
\(842\) 14.0000 24.2487i 0.482472 0.835666i
\(843\) 15.0000 25.9808i 0.516627 0.894825i
\(844\) 9.00000 0.309793
\(845\) 0 0
\(846\) 3.00000 0.103142
\(847\) −3.00000 + 5.19615i −0.103081 + 0.178542i
\(848\) 4.50000 7.79423i 0.154531 0.267655i
\(849\) 3.00000 + 5.19615i 0.102960 + 0.178331i
\(850\) 0 0
\(851\) 18.0000 + 31.1769i 0.617032 + 1.06873i
\(852\) 7.00000 + 12.1244i 0.239816 + 0.415374i
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) −9.00000 15.5885i −0.307974 0.533426i
\(855\) 0 0
\(856\) 1.00000 1.73205i 0.0341793 0.0592003i
\(857\) 50.0000 1.70797 0.853984 0.520300i \(-0.174180\pi\)
0.853984 + 0.520300i \(0.174180\pi\)
\(858\) −7.50000 + 7.79423i −0.256046 + 0.266091i
\(859\) −5.00000 −0.170598 −0.0852989 0.996355i \(-0.527185\pi\)
−0.0852989 + 0.996355i \(0.527185\pi\)
\(860\) 0 0
\(861\) −15.0000 + 25.9808i −0.511199 + 0.885422i
\(862\) 6.00000 + 10.3923i 0.204361 + 0.353963i
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) −0.500000 0.866025i −0.0170103 0.0294628i
\(865\) 0 0
\(866\) 16.0000 0.543702
\(867\) 8.50000 + 14.7224i 0.288675 + 0.500000i
\(868\) 9.00000 15.5885i 0.305480 0.529107i
\(869\) 9.00000 15.5885i 0.305304 0.528802i
\(870\) 0 0
\(871\) 8.00000 + 27.7128i 0.271070 + 0.939013i
\(872\) −2.00000 −0.0677285
\(873\) 4.00000 6.92820i 0.135379 0.234484i
\(874\) −6.00000 + 10.3923i −0.202953 + 0.351525i
\(875\) 0 0
\(876\) 8.00000 0.270295
\(877\) −19.0000 32.9090i −0.641584 1.11126i −0.985079 0.172102i \(-0.944944\pi\)
0.343495 0.939155i \(-0.388389\pi\)
\(878\) 15.0000 + 25.9808i 0.506225 + 0.876808i
\(879\) 1.00000 0.0337292
\(880\) 0 0
\(881\) 11.5000 19.9186i 0.387445 0.671074i −0.604660 0.796484i \(-0.706691\pi\)
0.992105 + 0.125409i \(0.0400244\pi\)
\(882\) −1.00000 + 1.73205i −0.0336718 + 0.0583212i
\(883\) −22.0000 −0.740359 −0.370179 0.928960i \(-0.620704\pi\)
−0.370179 + 0.928960i \(0.620704\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −5.00000 + 8.66025i −0.167978 + 0.290947i
\(887\) 4.50000 7.79423i 0.151095 0.261705i −0.780535 0.625112i \(-0.785053\pi\)
0.931630 + 0.363407i \(0.118387\pi\)
\(888\) 4.50000 + 7.79423i 0.151010 + 0.261557i
\(889\) 9.00000 0.301850
\(890\) 0 0
\(891\) 1.50000 + 2.59808i 0.0502519 + 0.0870388i
\(892\) 11.0000 0.368307
\(893\) −4.50000 7.79423i −0.150587 0.260824i
\(894\) 1.00000 1.73205i 0.0334450 0.0579284i
\(895\) 0 0
\(896\) −3.00000 −0.100223
\(897\) −14.0000 3.46410i −0.467446 0.115663i
\(898\) −35.0000 −1.16797
\(899\) 12.0000 20.7846i 0.400222 0.693206i
\(900\) 0 0
\(901\) 0 0
\(902\) 30.0000 0.998891
\(903\) 15.0000 + 25.9808i 0.499169 + 0.864586i
\(904\) −4.00000 6.92820i −0.133038 0.230429i
\(905\) 0 0
\(906\) −7.00000 12.1244i −0.232559 0.402805i
\(907\) −7.00000 + 12.1244i −0.232431 + 0.402583i −0.958523 0.285015i \(-0.908001\pi\)
0.726092 + 0.687598i \(0.241335\pi\)
\(908\) −8.00000 + 13.8564i −0.265489 + 0.459841i
\(909\) 0 0
\(910\) 0 0
\(911\) 28.0000 0.927681 0.463841 0.885919i \(-0.346471\pi\)
0.463841 + 0.885919i \(0.346471\pi\)
\(912\) −1.50000 + 2.59808i −0.0496700 + 0.0860309i
\(913\) −24.0000 + 41.5692i −0.794284 + 1.37574i
\(914\) −21.0000 36.3731i −0.694618 1.20311i
\(915\) 0 0
\(916\) 5.00000 + 8.66025i 0.165205 + 0.286143i
\(917\) −4.50000 7.79423i −0.148603 0.257388i
\(918\) 0 0
\(919\) −7.00000 12.1244i −0.230909 0.399946i 0.727167 0.686461i \(-0.240837\pi\)
−0.958076 + 0.286515i \(0.907503\pi\)
\(920\) 0 0
\(921\) 13.0000 22.5167i 0.428365 0.741949i
\(922\) −32.0000 −1.05386
\(923\) 49.0000 + 12.1244i 1.61285 + 0.399078i
\(924\) 9.00000 0.296078
\(925\) 0 0
\(926\) −12.0000 + 20.7846i −0.394344 + 0.683025i
\(927\) −7.50000 12.9904i −0.246332 0.426660i
\(928\) −4.00000 −0.131306
\(929\) −1.00000 1.73205i −0.0328089 0.0568267i 0.849155 0.528144i \(-0.177112\pi\)
−0.881964 + 0.471317i \(0.843779\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) −3.00000 5.19615i −0.0982683 0.170206i
\(933\) 2.00000 3.46410i 0.0654771 0.113410i
\(934\) 4.00000 6.92820i 0.130884 0.226698i
\(935\) 0 0
\(936\) −3.50000 0.866025i −0.114401 0.0283069i
\(937\) −14.0000 −0.457360 −0.228680 0.973502i \(-0.573441\pi\)
−0.228680 + 0.973502i \(0.573441\pi\)
\(938\) 12.0000 20.7846i 0.391814 0.678642i
\(939\) 13.0000 22.5167i 0.424239 0.734803i
\(940\) 0 0
\(941\) −32.0000 −1.04317 −0.521585 0.853199i \(-0.674659\pi\)
−0.521585 + 0.853199i \(0.674659\pi\)
\(942\) −8.50000 14.7224i −0.276945 0.479683i
\(943\) 20.0000 + 34.6410i 0.651290 + 1.12807i
\(944\) 12.0000 0.390567
\(945\) 0 0
\(946\) 15.0000 25.9808i 0.487692 0.844707i
\(947\) 9.00000 15.5885i 0.292461 0.506557i −0.681930 0.731417i \(-0.738859\pi\)
0.974391 + 0.224860i \(0.0721926\pi\)
\(948\) 6.00000 0.194871
\(949\) 20.0000 20.7846i 0.649227 0.674697i
\(950\) 0 0
\(951\) 8.50000 14.7224i 0.275631 0.477408i
\(952\) 0 0
\(953\) 17.0000 + 29.4449i 0.550684 + 0.953813i 0.998225 + 0.0595495i \(0.0189664\pi\)
−0.447541 + 0.894263i \(0.647700\pi\)
\(954\) −9.00000 −0.291386
\(955\) 0 0
\(956\) 13.0000 + 22.5167i 0.420450 + 0.728241i
\(957\) 12.0000 0.387905
\(958\) −6.00000 10.3923i −0.193851 0.335760i
\(959\) −18.0000 + 31.1769i −0.581250 + 1.00676i
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 31.5000 + 7.79423i 1.01560 + 0.251296i
\(963\) −2.00000 −0.0644491
\(964\) −3.50000 + 6.06218i −0.112727 + 0.195250i
\(965\) 0 0
\(966\) 6.00000 + 10.3923i 0.193047 + 0.334367i
\(967\) −25.0000 −0.803946 −0.401973 0.915652i \(-0.631675\pi\)
−0.401973 + 0.915652i \(0.631675\pi\)
\(968\) 1.00000 + 1.73205i 0.0321412 + 0.0556702i
\(969\) 0 0
\(970\) 0 0
\(971\) −7.50000 12.9904i −0.240686 0.416881i 0.720224 0.693742i \(-0.244039\pi\)
−0.960910 + 0.276861i \(0.910706\pi\)
\(972\) −0.500000 + 0.866025i −0.0160375 + 0.0277778i
\(973\) −25.5000 + 44.1673i −0.817492 + 1.41594i
\(974\) −29.0000 −0.929220
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) −22.0000 + 38.1051i −0.703842 + 1.21909i 0.263265 + 0.964723i \(0.415201\pi\)
−0.967108 + 0.254367i \(0.918133\pi\)
\(978\) 10.0000 17.3205i 0.319765 0.553849i
\(979\) −4.50000 7.79423i −0.143821 0.249105i
\(980\) 0 0
\(981\) 1.00000 + 1.73205i 0.0319275 + 0.0553001i
\(982\) −2.50000 4.33013i −0.0797782 0.138180i
\(983\) −55.0000 −1.75423 −0.877114 0.480283i \(-0.840534\pi\)
−0.877114 + 0.480283i \(0.840534\pi\)
\(984\) 5.00000 + 8.66025i 0.159394 + 0.276079i
\(985\) 0 0
\(986\) 0 0
\(987\) −9.00000 −0.286473
\(988\) 3.00000 + 10.3923i 0.0954427 + 0.330623i
\(989\) 40.0000 1.27193
\(990\) 0 0
\(991\) −29.0000 + 50.2295i −0.921215 + 1.59559i −0.123678 + 0.992322i \(0.539469\pi\)
−0.797537 + 0.603269i \(0.793864\pi\)
\(992\) −3.00000 5.19615i −0.0952501 0.164978i
\(993\) −28.0000 −0.888553
\(994\) −21.0000 36.3731i −0.666080 1.15368i
\(995\) 0 0
\(996\) −16.0000 −0.506979
\(997\) 23.5000 + 40.7032i 0.744252 + 1.28908i 0.950543 + 0.310592i \(0.100527\pi\)
−0.206291 + 0.978491i \(0.566139\pi\)
\(998\) −10.0000 + 17.3205i −0.316544 + 0.548271i
\(999\) 4.50000 7.79423i 0.142374 0.246598i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1950.2.i.f.451.1 2
5.2 odd 4 1950.2.z.d.1699.1 4
5.3 odd 4 1950.2.z.d.1699.2 4
5.4 even 2 390.2.i.e.61.1 2
13.3 even 3 inner 1950.2.i.f.601.1 2
15.14 odd 2 1170.2.i.c.451.1 2
65.3 odd 12 1950.2.z.d.1849.1 4
65.4 even 6 5070.2.a.r.1.1 1
65.9 even 6 5070.2.a.b.1.1 1
65.19 odd 12 5070.2.b.b.1351.2 2
65.29 even 6 390.2.i.e.211.1 yes 2
65.42 odd 12 1950.2.z.d.1849.2 4
65.59 odd 12 5070.2.b.b.1351.1 2
195.29 odd 6 1170.2.i.c.991.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.i.e.61.1 2 5.4 even 2
390.2.i.e.211.1 yes 2 65.29 even 6
1170.2.i.c.451.1 2 15.14 odd 2
1170.2.i.c.991.1 2 195.29 odd 6
1950.2.i.f.451.1 2 1.1 even 1 trivial
1950.2.i.f.601.1 2 13.3 even 3 inner
1950.2.z.d.1699.1 4 5.2 odd 4
1950.2.z.d.1699.2 4 5.3 odd 4
1950.2.z.d.1849.1 4 65.3 odd 12
1950.2.z.d.1849.2 4 65.42 odd 12
5070.2.a.b.1.1 1 65.9 even 6
5070.2.a.r.1.1 1 65.4 even 6
5070.2.b.b.1351.1 2 65.59 odd 12
5070.2.b.b.1351.2 2 65.19 odd 12