Properties

Label 1950.2.i
Level $1950$
Weight $2$
Character orbit 1950.i
Rep. character $\chi_{1950}(451,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $92$
Newform subspaces $35$
Sturm bound $840$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 35 \)
Sturm bound: \(840\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\), \(11\), \(17\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1950, [\chi])\).

Total New Old
Modular forms 888 92 796
Cusp forms 792 92 700
Eisenstein series 96 0 96

Trace form

\( 92 q - 2 q^{2} - 46 q^{4} + 4 q^{8} - 46 q^{9} + 10 q^{13} - 16 q^{14} - 46 q^{16} + 2 q^{17} + 4 q^{18} - 12 q^{19} + 16 q^{21} + 8 q^{22} - 16 q^{23} + 26 q^{26} - 18 q^{29} - 48 q^{31} - 2 q^{32} + 4 q^{33}+ \cdots - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1950, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1950.2.i.a 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.y.e \(-1\) \(-1\) \(0\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.b 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 78.2.e.b \(-1\) \(-1\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.c 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 1950.2.i.c \(-1\) \(-1\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.d 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.i.f \(-1\) \(-1\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.e 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 1950.2.i.e \(-1\) \(-1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.f 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.i.e \(-1\) \(-1\) \(0\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.g 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.y.a \(-1\) \(-1\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.h 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 1950.2.i.h \(-1\) \(-1\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.i 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.i.d \(-1\) \(1\) \(0\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.j 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.y.f \(-1\) \(1\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.k 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 1950.2.i.k \(-1\) \(1\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.l 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.y.d \(-1\) \(1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.m 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 78.2.e.a \(-1\) \(1\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.n 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.i.c \(-1\) \(1\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.o 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.i.b \(1\) \(-1\) \(0\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.p 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.y.d \(1\) \(-1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.q 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.y.f \(1\) \(-1\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.r 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 1950.2.i.k \(1\) \(-1\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.s 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.i.a \(1\) \(-1\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.t 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.y.a \(1\) \(1\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.u 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 1950.2.i.h \(1\) \(1\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.v 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 1950.2.i.e \(1\) \(1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.w 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 1950.2.i.c \(1\) \(1\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.x 1950.i 13.c $2$ $15.571$ \(\Q(\sqrt{-3}) \) None 390.2.y.e \(1\) \(1\) \(0\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1950.2.i.y 1950.i 13.c $4$ $15.571$ \(\Q(\zeta_{12})\) None 390.2.y.b \(-2\) \(-2\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{12}^{2})q^{2}+(-1+\zeta_{12}^{2})q^{3}+\cdots\)
1950.2.i.z 1950.i 13.c $4$ $15.571$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 1950.2.i.z \(-2\) \(-2\) \(0\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{2})q^{2}+(-1+\beta _{2})q^{3}-\beta _{2}q^{4}+\cdots\)
1950.2.i.ba 1950.i 13.c $4$ $15.571$ \(\Q(\sqrt{-3}, \sqrt{10})\) None 1950.2.i.ba \(-2\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{2}-\beta _{2}q^{3}+(-1-\beta _{2})q^{4}+(1+\cdots)q^{6}+\cdots\)
1950.2.i.bb 1950.i 13.c $4$ $15.571$ \(\Q(\sqrt{-3}, \sqrt{11})\) None 390.2.y.g \(-2\) \(2\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{2}-\beta _{2}q^{3}+(-1-\beta _{2})q^{4}+(1+\cdots)q^{6}+\cdots\)
1950.2.i.bc 1950.i 13.c $4$ $15.571$ \(\Q(\sqrt{-3}, \sqrt{10})\) None 1950.2.i.bc \(-2\) \(2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{2}-\beta _{2}q^{3}+(-1-\beta _{2})q^{4}+(1+\cdots)q^{6}+\cdots\)
1950.2.i.bd 1950.i 13.c $4$ $15.571$ \(\Q(\sqrt{-3}, \sqrt{10})\) None 1950.2.i.bc \(2\) \(-2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+\beta _{2}q^{3}+(-1-\beta _{2})q^{4}+(1+\cdots)q^{6}+\cdots\)
1950.2.i.be 1950.i 13.c $4$ $15.571$ \(\Q(\sqrt{-3}, \sqrt{11})\) None 390.2.y.g \(2\) \(-2\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+\beta _{2}q^{3}+(-1-\beta _{2})q^{4}+(1+\cdots)q^{6}+\cdots\)
1950.2.i.bf 1950.i 13.c $4$ $15.571$ \(\Q(\sqrt{-3}, \sqrt{10})\) None 1950.2.i.ba \(2\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+\beta _{2}q^{3}+(-1-\beta _{2})q^{4}+(1+\cdots)q^{6}+\cdots\)
1950.2.i.bg 1950.i 13.c $4$ $15.571$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 1950.2.i.z \(2\) \(2\) \(0\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{2})q^{2}+(1-\beta _{2})q^{3}-\beta _{2}q^{4}+\cdots\)
1950.2.i.bh 1950.i 13.c $4$ $15.571$ \(\Q(\zeta_{12})\) None 390.2.y.b \(2\) \(2\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{12}^{2})q^{2}+(1-\zeta_{12}^{2})q^{3}-\zeta_{12}^{2}q^{4}+\cdots\)
1950.2.i.bi 1950.i 13.c $4$ $15.571$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 390.2.i.g \(2\) \(2\) \(0\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{2})q^{2}+(1-\beta _{2})q^{3}-\beta _{2}q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1950, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1950, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(650, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(975, [\chi])\)\(^{\oplus 2}\)