Properties

Label 1950.2.f
Level $1950$
Weight $2$
Character orbit 1950.f
Rep. character $\chi_{1950}(649,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $16$
Sturm bound $840$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(840\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(7\), \(11\), \(19\), \(37\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1950, [\chi])\).

Total New Old
Modular forms 444 44 400
Cusp forms 396 44 352
Eisenstein series 48 0 48

Trace form

\( 44 q + 44 q^{4} - 44 q^{9} + 16 q^{14} + 44 q^{16} + 32 q^{29} - 44 q^{36} + 12 q^{39} + 100 q^{49} - 24 q^{51} + 16 q^{56} + 96 q^{61} + 44 q^{64} + 32 q^{66} + 16 q^{69} + 8 q^{79} + 44 q^{81} + 48 q^{91}+ \cdots - 64 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1950, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1950.2.f.a 1950.f 65.d $2$ $15.571$ \(\Q(\sqrt{-1}) \) None 1950.2.b.b \(-2\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+i q^{3}+q^{4}-i q^{6}-3 q^{7}+\cdots\)
1950.2.f.b 1950.f 65.d $2$ $15.571$ \(\Q(\sqrt{-1}) \) None 390.2.b.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-i q^{3}+q^{4}+i q^{6}-q^{8}+\cdots\)
1950.2.f.c 1950.f 65.d $2$ $15.571$ \(\Q(\sqrt{-1}) \) None 390.2.b.b \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+i q^{3}+q^{4}-i q^{6}-q^{8}+\cdots\)
1950.2.f.d 1950.f 65.d $2$ $15.571$ \(\Q(\sqrt{-1}) \) None 78.2.b.a \(-2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+i q^{3}+q^{4}-i q^{6}+2 q^{7}+\cdots\)
1950.2.f.e 1950.f 65.d $2$ $15.571$ \(\Q(\sqrt{-1}) \) None 1950.2.b.a \(-2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-i q^{3}+q^{4}+i q^{6}+2 q^{7}+\cdots\)
1950.2.f.f 1950.f 65.d $2$ $15.571$ \(\Q(\sqrt{-1}) \) None 1950.2.b.a \(2\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+i q^{3}+q^{4}+i q^{6}-2 q^{7}+\cdots\)
1950.2.f.g 1950.f 65.d $2$ $15.571$ \(\Q(\sqrt{-1}) \) None 78.2.b.a \(2\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+i q^{3}+q^{4}+i q^{6}-2 q^{7}+\cdots\)
1950.2.f.h 1950.f 65.d $2$ $15.571$ \(\Q(\sqrt{-1}) \) None 390.2.b.b \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-i q^{3}+q^{4}-i q^{6}+q^{8}+\cdots\)
1950.2.f.i 1950.f 65.d $2$ $15.571$ \(\Q(\sqrt{-1}) \) None 390.2.b.a \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-i q^{3}+q^{4}-i q^{6}+q^{8}+\cdots\)
1950.2.f.j 1950.f 65.d $2$ $15.571$ \(\Q(\sqrt{-1}) \) None 1950.2.b.b \(2\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-i q^{3}+q^{4}-i q^{6}+3 q^{7}+\cdots\)
1950.2.f.k 1950.f 65.d $4$ $15.571$ \(\Q(i, \sqrt{17})\) None 1950.2.b.i \(-4\) \(0\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-\beta _{2}q^{3}+q^{4}+\beta _{2}q^{6}+(-3+\cdots)q^{7}+\cdots\)
1950.2.f.l 1950.f 65.d $4$ $15.571$ \(\Q(i, \sqrt{17})\) None 390.2.b.d \(-4\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{1}q^{6}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
1950.2.f.m 1950.f 65.d $4$ $15.571$ \(\Q(i, \sqrt{13})\) None 390.2.b.c \(-4\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{1}q^{6}+(1-\beta _{3})q^{7}+\cdots\)
1950.2.f.n 1950.f 65.d $4$ $15.571$ \(\Q(i, \sqrt{13})\) None 390.2.b.c \(4\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{1}q^{6}+(-1+\cdots)q^{7}+\cdots\)
1950.2.f.o 1950.f 65.d $4$ $15.571$ \(\Q(i, \sqrt{17})\) None 390.2.b.d \(4\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{1}q^{6}+(\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
1950.2.f.p 1950.f 65.d $4$ $15.571$ \(\Q(i, \sqrt{17})\) None 1950.2.b.i \(4\) \(0\) \(0\) \(10\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-\beta _{2}q^{3}+q^{4}-\beta _{2}q^{6}+(3-\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1950, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1950, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(650, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(975, [\chi])\)\(^{\oplus 2}\)