Properties

Label 1950.2.e.m.1249.2
Level $1950$
Weight $2$
Character 1950.1249
Analytic conductor $15.571$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1950.1249
Dual form 1950.2.e.m.1249.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +1.00000 q^{6} +2.00000i q^{7} -1.00000i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +1.00000 q^{6} +2.00000i q^{7} -1.00000i q^{8} -1.00000 q^{9} +4.00000 q^{11} +1.00000i q^{12} -1.00000i q^{13} -2.00000 q^{14} +1.00000 q^{16} -4.00000i q^{17} -1.00000i q^{18} +2.00000 q^{19} +2.00000 q^{21} +4.00000i q^{22} +2.00000i q^{23} -1.00000 q^{24} +1.00000 q^{26} +1.00000i q^{27} -2.00000i q^{28} -8.00000 q^{29} +4.00000 q^{31} +1.00000i q^{32} -4.00000i q^{33} +4.00000 q^{34} +1.00000 q^{36} -6.00000i q^{37} +2.00000i q^{38} -1.00000 q^{39} +10.0000 q^{41} +2.00000i q^{42} +4.00000i q^{43} -4.00000 q^{44} -2.00000 q^{46} -1.00000i q^{48} +3.00000 q^{49} -4.00000 q^{51} +1.00000i q^{52} +6.00000i q^{53} -1.00000 q^{54} +2.00000 q^{56} -2.00000i q^{57} -8.00000i q^{58} +12.0000 q^{59} -2.00000 q^{61} +4.00000i q^{62} -2.00000i q^{63} -1.00000 q^{64} +4.00000 q^{66} +8.00000i q^{67} +4.00000i q^{68} +2.00000 q^{69} +1.00000i q^{72} +6.00000 q^{74} -2.00000 q^{76} +8.00000i q^{77} -1.00000i q^{78} +8.00000 q^{79} +1.00000 q^{81} +10.0000i q^{82} -12.0000i q^{83} -2.00000 q^{84} -4.00000 q^{86} +8.00000i q^{87} -4.00000i q^{88} +10.0000 q^{89} +2.00000 q^{91} -2.00000i q^{92} -4.00000i q^{93} +1.00000 q^{96} +8.00000i q^{97} +3.00000i q^{98} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} + 2q^{6} - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{4} + 2q^{6} - 2q^{9} + 8q^{11} - 4q^{14} + 2q^{16} + 4q^{19} + 4q^{21} - 2q^{24} + 2q^{26} - 16q^{29} + 8q^{31} + 8q^{34} + 2q^{36} - 2q^{39} + 20q^{41} - 8q^{44} - 4q^{46} + 6q^{49} - 8q^{51} - 2q^{54} + 4q^{56} + 24q^{59} - 4q^{61} - 2q^{64} + 8q^{66} + 4q^{69} + 12q^{74} - 4q^{76} + 16q^{79} + 2q^{81} - 4q^{84} - 8q^{86} + 20q^{89} + 4q^{91} + 2q^{96} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) − 1.00000i − 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 1.00000i 0.288675i
\(13\) − 1.00000i − 0.277350i
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 4.00000i − 0.970143i −0.874475 0.485071i \(-0.838794\pi\)
0.874475 0.485071i \(-0.161206\pi\)
\(18\) − 1.00000i − 0.235702i
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 4.00000i 0.852803i
\(23\) 2.00000i 0.417029i 0.978019 + 0.208514i \(0.0668628\pi\)
−0.978019 + 0.208514i \(0.933137\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) 1.00000 0.196116
\(27\) 1.00000i 0.192450i
\(28\) − 2.00000i − 0.377964i
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 1.00000i 0.176777i
\(33\) − 4.00000i − 0.696311i
\(34\) 4.00000 0.685994
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) − 6.00000i − 0.986394i −0.869918 0.493197i \(-0.835828\pi\)
0.869918 0.493197i \(-0.164172\pi\)
\(38\) 2.00000i 0.324443i
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 2.00000i 0.308607i
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) 1.00000i 0.138675i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 2.00000 0.267261
\(57\) − 2.00000i − 0.264906i
\(58\) − 8.00000i − 1.05045i
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 4.00000i 0.508001i
\(63\) − 2.00000i − 0.251976i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 4.00000 0.492366
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 4.00000i 0.485071i
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) −2.00000 −0.229416
\(77\) 8.00000i 0.911685i
\(78\) − 1.00000i − 0.113228i
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 10.0000i 1.10432i
\(83\) − 12.0000i − 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) −2.00000 −0.218218
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) 8.00000i 0.857690i
\(88\) − 4.00000i − 0.426401i
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) − 2.00000i − 0.208514i
\(93\) − 4.00000i − 0.414781i
\(94\) 0 0
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) 8.00000i 0.812277i 0.913812 + 0.406138i \(0.133125\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 3.00000i 0.303046i
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) 20.0000 1.99007 0.995037 0.0995037i \(-0.0317255\pi\)
0.995037 + 0.0995037i \(0.0317255\pi\)
\(102\) − 4.00000i − 0.396059i
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) − 4.00000i − 0.386695i −0.981130 0.193347i \(-0.938066\pi\)
0.981130 0.193347i \(-0.0619344\pi\)
\(108\) − 1.00000i − 0.0962250i
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 2.00000i 0.188982i
\(113\) − 16.0000i − 1.50515i −0.658505 0.752577i \(-0.728811\pi\)
0.658505 0.752577i \(-0.271189\pi\)
\(114\) 2.00000 0.187317
\(115\) 0 0
\(116\) 8.00000 0.742781
\(117\) 1.00000i 0.0924500i
\(118\) 12.0000i 1.10469i
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) − 2.00000i − 0.181071i
\(123\) − 10.0000i − 0.901670i
\(124\) −4.00000 −0.359211
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) − 20.0000i − 1.77471i −0.461084 0.887357i \(-0.652539\pi\)
0.461084 0.887357i \(-0.347461\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 14.0000 1.22319 0.611593 0.791173i \(-0.290529\pi\)
0.611593 + 0.791173i \(0.290529\pi\)
\(132\) 4.00000i 0.348155i
\(133\) 4.00000i 0.346844i
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) −4.00000 −0.342997
\(137\) 2.00000i 0.170872i 0.996344 + 0.0854358i \(0.0272282\pi\)
−0.996344 + 0.0854358i \(0.972772\pi\)
\(138\) 2.00000i 0.170251i
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 4.00000i − 0.334497i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 0 0
\(147\) − 3.00000i − 0.247436i
\(148\) 6.00000i 0.493197i
\(149\) 22.0000 1.80231 0.901155 0.433497i \(-0.142720\pi\)
0.901155 + 0.433497i \(0.142720\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) − 2.00000i − 0.162221i
\(153\) 4.00000i 0.323381i
\(154\) −8.00000 −0.644658
\(155\) 0 0
\(156\) 1.00000 0.0800641
\(157\) 10.0000i 0.798087i 0.916932 + 0.399043i \(0.130658\pi\)
−0.916932 + 0.399043i \(0.869342\pi\)
\(158\) 8.00000i 0.636446i
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) 1.00000i 0.0785674i
\(163\) 12.0000i 0.939913i 0.882690 + 0.469956i \(0.155730\pi\)
−0.882690 + 0.469956i \(0.844270\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 12.0000i 0.928588i 0.885681 + 0.464294i \(0.153692\pi\)
−0.885681 + 0.464294i \(0.846308\pi\)
\(168\) − 2.00000i − 0.154303i
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) −2.00000 −0.152944
\(172\) − 4.00000i − 0.304997i
\(173\) 14.0000i 1.06440i 0.846619 + 0.532200i \(0.178635\pi\)
−0.846619 + 0.532200i \(0.821365\pi\)
\(174\) −8.00000 −0.606478
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) − 12.0000i − 0.901975i
\(178\) 10.0000i 0.749532i
\(179\) −2.00000 −0.149487 −0.0747435 0.997203i \(-0.523814\pi\)
−0.0747435 + 0.997203i \(0.523814\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 2.00000i 0.148250i
\(183\) 2.00000i 0.147844i
\(184\) 2.00000 0.147442
\(185\) 0 0
\(186\) 4.00000 0.293294
\(187\) − 16.0000i − 1.17004i
\(188\) 0 0
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 12.0000i 0.863779i 0.901927 + 0.431889i \(0.142153\pi\)
−0.901927 + 0.431889i \(0.857847\pi\)
\(194\) −8.00000 −0.574367
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) − 10.0000i − 0.712470i −0.934396 0.356235i \(-0.884060\pi\)
0.934396 0.356235i \(-0.115940\pi\)
\(198\) − 4.00000i − 0.284268i
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 20.0000i 1.40720i
\(203\) − 16.0000i − 1.12298i
\(204\) 4.00000 0.280056
\(205\) 0 0
\(206\) −4.00000 −0.278693
\(207\) − 2.00000i − 0.139010i
\(208\) − 1.00000i − 0.0693375i
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) − 6.00000i − 0.412082i
\(213\) 0 0
\(214\) 4.00000 0.273434
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 8.00000i 0.543075i
\(218\) − 4.00000i − 0.270914i
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) − 6.00000i − 0.402694i
\(223\) − 22.0000i − 1.47323i −0.676313 0.736614i \(-0.736423\pi\)
0.676313 0.736614i \(-0.263577\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) 16.0000 1.06430
\(227\) − 12.0000i − 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 2.00000i 0.132453i
\(229\) −28.0000 −1.85029 −0.925146 0.379611i \(-0.876058\pi\)
−0.925146 + 0.379611i \(0.876058\pi\)
\(230\) 0 0
\(231\) 8.00000 0.526361
\(232\) 8.00000i 0.525226i
\(233\) 28.0000i 1.83434i 0.398495 + 0.917170i \(0.369533\pi\)
−0.398495 + 0.917170i \(0.630467\pi\)
\(234\) −1.00000 −0.0653720
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) − 8.00000i − 0.519656i
\(238\) 8.00000i 0.518563i
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 5.00000i 0.321412i
\(243\) − 1.00000i − 0.0641500i
\(244\) 2.00000 0.128037
\(245\) 0 0
\(246\) 10.0000 0.637577
\(247\) − 2.00000i − 0.127257i
\(248\) − 4.00000i − 0.254000i
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 10.0000 0.631194 0.315597 0.948893i \(-0.397795\pi\)
0.315597 + 0.948893i \(0.397795\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 8.00000i 0.502956i
\(254\) 20.0000 1.25491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.00000i 0.499026i 0.968371 + 0.249513i \(0.0802706\pi\)
−0.968371 + 0.249513i \(0.919729\pi\)
\(258\) 4.00000i 0.249029i
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) 8.00000 0.495188
\(262\) 14.0000i 0.864923i
\(263\) − 18.0000i − 1.10993i −0.831875 0.554964i \(-0.812732\pi\)
0.831875 0.554964i \(-0.187268\pi\)
\(264\) −4.00000 −0.246183
\(265\) 0 0
\(266\) −4.00000 −0.245256
\(267\) − 10.0000i − 0.611990i
\(268\) − 8.00000i − 0.488678i
\(269\) 4.00000 0.243884 0.121942 0.992537i \(-0.461088\pi\)
0.121942 + 0.992537i \(0.461088\pi\)
\(270\) 0 0
\(271\) −28.0000 −1.70088 −0.850439 0.526073i \(-0.823664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) − 4.00000i − 0.242536i
\(273\) − 2.00000i − 0.121046i
\(274\) −2.00000 −0.120824
\(275\) 0 0
\(276\) −2.00000 −0.120386
\(277\) − 22.0000i − 1.32185i −0.750451 0.660926i \(-0.770164\pi\)
0.750451 0.660926i \(-0.229836\pi\)
\(278\) 16.0000i 0.959616i
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 28.0000i 1.66443i 0.554455 + 0.832214i \(0.312927\pi\)
−0.554455 + 0.832214i \(0.687073\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 20.0000i 1.18056i
\(288\) − 1.00000i − 0.0589256i
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 8.00000 0.468968
\(292\) 0 0
\(293\) − 6.00000i − 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 3.00000 0.174964
\(295\) 0 0
\(296\) −6.00000 −0.348743
\(297\) 4.00000i 0.232104i
\(298\) 22.0000i 1.27443i
\(299\) 2.00000 0.115663
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) − 4.00000i − 0.230174i
\(303\) − 20.0000i − 1.14897i
\(304\) 2.00000 0.114708
\(305\) 0 0
\(306\) −4.00000 −0.228665
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) − 8.00000i − 0.455842i
\(309\) 4.00000 0.227552
\(310\) 0 0
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 1.00000i 0.0566139i
\(313\) − 10.0000i − 0.565233i −0.959233 0.282617i \(-0.908798\pi\)
0.959233 0.282617i \(-0.0912024\pi\)
\(314\) −10.0000 −0.564333
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 2.00000i 0.112331i 0.998421 + 0.0561656i \(0.0178875\pi\)
−0.998421 + 0.0561656i \(0.982113\pi\)
\(318\) 6.00000i 0.336463i
\(319\) −32.0000 −1.79166
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) − 4.00000i − 0.222911i
\(323\) − 8.00000i − 0.445132i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −12.0000 −0.664619
\(327\) 4.00000i 0.221201i
\(328\) − 10.0000i − 0.552158i
\(329\) 0 0
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 6.00000i 0.328798i
\(334\) −12.0000 −0.656611
\(335\) 0 0
\(336\) 2.00000 0.109109
\(337\) 26.0000i 1.41631i 0.706057 + 0.708155i \(0.250472\pi\)
−0.706057 + 0.708155i \(0.749528\pi\)
\(338\) − 1.00000i − 0.0543928i
\(339\) −16.0000 −0.869001
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) − 2.00000i − 0.108148i
\(343\) 20.0000i 1.07990i
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) −14.0000 −0.752645
\(347\) − 16.0000i − 0.858925i −0.903085 0.429463i \(-0.858703\pi\)
0.903085 0.429463i \(-0.141297\pi\)
\(348\) − 8.00000i − 0.428845i
\(349\) 28.0000 1.49881 0.749403 0.662114i \(-0.230341\pi\)
0.749403 + 0.662114i \(0.230341\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 4.00000i 0.213201i
\(353\) 6.00000i 0.319348i 0.987170 + 0.159674i \(0.0510443\pi\)
−0.987170 + 0.159674i \(0.948956\pi\)
\(354\) 12.0000 0.637793
\(355\) 0 0
\(356\) −10.0000 −0.529999
\(357\) − 8.00000i − 0.423405i
\(358\) − 2.00000i − 0.105703i
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) − 22.0000i − 1.15629i
\(363\) − 5.00000i − 0.262432i
\(364\) −2.00000 −0.104828
\(365\) 0 0
\(366\) −2.00000 −0.104542
\(367\) 4.00000i 0.208798i 0.994535 + 0.104399i \(0.0332919\pi\)
−0.994535 + 0.104399i \(0.966708\pi\)
\(368\) 2.00000i 0.104257i
\(369\) −10.0000 −0.520579
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) 4.00000i 0.207390i
\(373\) 14.0000i 0.724893i 0.932005 + 0.362446i \(0.118058\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) 16.0000 0.827340
\(375\) 0 0
\(376\) 0 0
\(377\) 8.00000i 0.412021i
\(378\) − 2.00000i − 0.102869i
\(379\) 14.0000 0.719132 0.359566 0.933120i \(-0.382925\pi\)
0.359566 + 0.933120i \(0.382925\pi\)
\(380\) 0 0
\(381\) −20.0000 −1.02463
\(382\) − 8.00000i − 0.409316i
\(383\) − 20.0000i − 1.02195i −0.859595 0.510976i \(-0.829284\pi\)
0.859595 0.510976i \(-0.170716\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −12.0000 −0.610784
\(387\) − 4.00000i − 0.203331i
\(388\) − 8.00000i − 0.406138i
\(389\) −20.0000 −1.01404 −0.507020 0.861934i \(-0.669253\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) − 3.00000i − 0.151523i
\(393\) − 14.0000i − 0.706207i
\(394\) 10.0000 0.503793
\(395\) 0 0
\(396\) 4.00000 0.201008
\(397\) − 6.00000i − 0.301131i −0.988600 0.150566i \(-0.951890\pi\)
0.988600 0.150566i \(-0.0481095\pi\)
\(398\) − 24.0000i − 1.20301i
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 8.00000i 0.399004i
\(403\) − 4.00000i − 0.199254i
\(404\) −20.0000 −0.995037
\(405\) 0 0
\(406\) 16.0000 0.794067
\(407\) − 24.0000i − 1.18964i
\(408\) 4.00000i 0.198030i
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 0 0
\(411\) 2.00000 0.0986527
\(412\) − 4.00000i − 0.197066i
\(413\) 24.0000i 1.18096i
\(414\) 2.00000 0.0982946
\(415\) 0 0
\(416\) 1.00000 0.0490290
\(417\) − 16.0000i − 0.783523i
\(418\) 8.00000i 0.391293i
\(419\) −14.0000 −0.683945 −0.341972 0.939710i \(-0.611095\pi\)
−0.341972 + 0.939710i \(0.611095\pi\)
\(420\) 0 0
\(421\) −16.0000 −0.779792 −0.389896 0.920859i \(-0.627489\pi\)
−0.389896 + 0.920859i \(0.627489\pi\)
\(422\) − 4.00000i − 0.194717i
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) − 4.00000i − 0.193574i
\(428\) 4.00000i 0.193347i
\(429\) −4.00000 −0.193122
\(430\) 0 0
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) − 26.0000i − 1.24948i −0.780833 0.624740i \(-0.785205\pi\)
0.780833 0.624740i \(-0.214795\pi\)
\(434\) −8.00000 −0.384012
\(435\) 0 0
\(436\) 4.00000 0.191565
\(437\) 4.00000i 0.191346i
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) − 4.00000i − 0.190261i
\(443\) − 16.0000i − 0.760183i −0.924949 0.380091i \(-0.875893\pi\)
0.924949 0.380091i \(-0.124107\pi\)
\(444\) 6.00000 0.284747
\(445\) 0 0
\(446\) 22.0000 1.04173
\(447\) − 22.0000i − 1.04056i
\(448\) − 2.00000i − 0.0944911i
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 40.0000 1.88353
\(452\) 16.0000i 0.752577i
\(453\) 4.00000i 0.187936i
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) −2.00000 −0.0936586
\(457\) 16.0000i 0.748448i 0.927338 + 0.374224i \(0.122091\pi\)
−0.927338 + 0.374224i \(0.877909\pi\)
\(458\) − 28.0000i − 1.30835i
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 8.00000i 0.372194i
\(463\) 2.00000i 0.0929479i 0.998920 + 0.0464739i \(0.0147984\pi\)
−0.998920 + 0.0464739i \(0.985202\pi\)
\(464\) −8.00000 −0.371391
\(465\) 0 0
\(466\) −28.0000 −1.29707
\(467\) − 12.0000i − 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) − 1.00000i − 0.0462250i
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 10.0000 0.460776
\(472\) − 12.0000i − 0.552345i
\(473\) 16.0000i 0.735681i
\(474\) 8.00000 0.367452
\(475\) 0 0
\(476\) −8.00000 −0.366679
\(477\) − 6.00000i − 0.274721i
\(478\) 8.00000i 0.365911i
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) − 22.0000i − 1.00207i
\(483\) 4.00000i 0.182006i
\(484\) −5.00000 −0.227273
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) − 38.0000i − 1.72194i −0.508652 0.860972i \(-0.669856\pi\)
0.508652 0.860972i \(-0.330144\pi\)
\(488\) 2.00000i 0.0905357i
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) 38.0000 1.71492 0.857458 0.514554i \(-0.172042\pi\)
0.857458 + 0.514554i \(0.172042\pi\)
\(492\) 10.0000i 0.450835i
\(493\) 32.0000i 1.44121i
\(494\) 2.00000 0.0899843
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 0 0
\(498\) − 12.0000i − 0.537733i
\(499\) 14.0000 0.626726 0.313363 0.949633i \(-0.398544\pi\)
0.313363 + 0.949633i \(0.398544\pi\)
\(500\) 0 0
\(501\) 12.0000 0.536120
\(502\) 10.0000i 0.446322i
\(503\) − 42.0000i − 1.87269i −0.351085 0.936344i \(-0.614187\pi\)
0.351085 0.936344i \(-0.385813\pi\)
\(504\) −2.00000 −0.0890871
\(505\) 0 0
\(506\) −8.00000 −0.355643
\(507\) 1.00000i 0.0444116i
\(508\) 20.0000i 0.887357i
\(509\) −38.0000 −1.68432 −0.842160 0.539227i \(-0.818716\pi\)
−0.842160 + 0.539227i \(0.818716\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 2.00000i 0.0883022i
\(514\) −8.00000 −0.352865
\(515\) 0 0
\(516\) −4.00000 −0.176090
\(517\) 0 0
\(518\) 12.0000i 0.527250i
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 8.00000i 0.350150i
\(523\) − 4.00000i − 0.174908i −0.996169 0.0874539i \(-0.972127\pi\)
0.996169 0.0874539i \(-0.0278730\pi\)
\(524\) −14.0000 −0.611593
\(525\) 0 0
\(526\) 18.0000 0.784837
\(527\) − 16.0000i − 0.696971i
\(528\) − 4.00000i − 0.174078i
\(529\) 19.0000 0.826087
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) − 4.00000i − 0.173422i
\(533\) − 10.0000i − 0.433148i
\(534\) 10.0000 0.432742
\(535\) 0 0
\(536\) 8.00000 0.345547
\(537\) 2.00000i 0.0863064i
\(538\) 4.00000i 0.172452i
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) − 28.0000i − 1.20270i
\(543\) 22.0000i 0.944110i
\(544\) 4.00000 0.171499
\(545\) 0 0
\(546\) 2.00000 0.0855921
\(547\) 12.0000i 0.513083i 0.966533 + 0.256541i \(0.0825830\pi\)
−0.966533 + 0.256541i \(0.917417\pi\)
\(548\) − 2.00000i − 0.0854358i
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) −16.0000 −0.681623
\(552\) − 2.00000i − 0.0851257i
\(553\) 16.0000i 0.680389i
\(554\) 22.0000 0.934690
\(555\) 0 0
\(556\) −16.0000 −0.678551
\(557\) 10.0000i 0.423714i 0.977301 + 0.211857i \(0.0679510\pi\)
−0.977301 + 0.211857i \(0.932049\pi\)
\(558\) − 4.00000i − 0.169334i
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) −16.0000 −0.675521
\(562\) − 10.0000i − 0.421825i
\(563\) − 24.0000i − 1.01148i −0.862686 0.505740i \(-0.831220\pi\)
0.862686 0.505740i \(-0.168780\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −28.0000 −1.17693
\(567\) 2.00000i 0.0839921i
\(568\) 0 0
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 0 0
\(571\) −16.0000 −0.669579 −0.334790 0.942293i \(-0.608665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) 4.00000i 0.167248i
\(573\) 8.00000i 0.334205i
\(574\) −20.0000 −0.834784
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 4.00000i 0.166522i 0.996528 + 0.0832611i \(0.0265335\pi\)
−0.996528 + 0.0832611i \(0.973466\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) 12.0000 0.498703
\(580\) 0 0
\(581\) 24.0000 0.995688
\(582\) 8.00000i 0.331611i
\(583\) 24.0000i 0.993978i
\(584\) 0 0
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) − 12.0000i − 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 3.00000i 0.123718i
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) −10.0000 −0.411345
\(592\) − 6.00000i − 0.246598i
\(593\) 34.0000i 1.39621i 0.715994 + 0.698106i \(0.245974\pi\)
−0.715994 + 0.698106i \(0.754026\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) −22.0000 −0.901155
\(597\) 24.0000i 0.982255i
\(598\) 2.00000i 0.0817861i
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) −42.0000 −1.71322 −0.856608 0.515968i \(-0.827432\pi\)
−0.856608 + 0.515968i \(0.827432\pi\)
\(602\) − 8.00000i − 0.326056i
\(603\) − 8.00000i − 0.325785i
\(604\) 4.00000 0.162758
\(605\) 0 0
\(606\) 20.0000 0.812444
\(607\) 12.0000i 0.487065i 0.969893 + 0.243532i \(0.0783062\pi\)
−0.969893 + 0.243532i \(0.921694\pi\)
\(608\) 2.00000i 0.0811107i
\(609\) −16.0000 −0.648353
\(610\) 0 0
\(611\) 0 0
\(612\) − 4.00000i − 0.161690i
\(613\) − 2.00000i − 0.0807792i −0.999184 0.0403896i \(-0.987140\pi\)
0.999184 0.0403896i \(-0.0128599\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 8.00000 0.322329
\(617\) − 38.0000i − 1.52982i −0.644136 0.764911i \(-0.722783\pi\)
0.644136 0.764911i \(-0.277217\pi\)
\(618\) 4.00000i 0.160904i
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 0 0
\(621\) −2.00000 −0.0802572
\(622\) − 16.0000i − 0.641542i
\(623\) 20.0000i 0.801283i
\(624\) −1.00000 −0.0400320
\(625\) 0 0
\(626\) 10.0000 0.399680
\(627\) − 8.00000i − 0.319489i
\(628\) − 10.0000i − 0.399043i
\(629\) −24.0000 −0.956943
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) − 8.00000i − 0.318223i
\(633\) 4.00000i 0.158986i
\(634\) −2.00000 −0.0794301
\(635\) 0 0
\(636\) −6.00000 −0.237915
\(637\) − 3.00000i − 0.118864i
\(638\) − 32.0000i − 1.26689i
\(639\) 0 0
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) − 4.00000i − 0.157867i
\(643\) − 40.0000i − 1.57745i −0.614749 0.788723i \(-0.710743\pi\)
0.614749 0.788723i \(-0.289257\pi\)
\(644\) 4.00000 0.157622
\(645\) 0 0
\(646\) 8.00000 0.314756
\(647\) 18.0000i 0.707653i 0.935311 + 0.353827i \(0.115120\pi\)
−0.935311 + 0.353827i \(0.884880\pi\)
\(648\) − 1.00000i − 0.0392837i
\(649\) 48.0000 1.88416
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) − 12.0000i − 0.469956i
\(653\) − 38.0000i − 1.48705i −0.668705 0.743527i \(-0.733151\pi\)
0.668705 0.743527i \(-0.266849\pi\)
\(654\) −4.00000 −0.156412
\(655\) 0 0
\(656\) 10.0000 0.390434
\(657\) 0 0
\(658\) 0 0
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) −16.0000 −0.622328 −0.311164 0.950356i \(-0.600719\pi\)
−0.311164 + 0.950356i \(0.600719\pi\)
\(662\) − 10.0000i − 0.388661i
\(663\) 4.00000i 0.155347i
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) −6.00000 −0.232495
\(667\) − 16.0000i − 0.619522i
\(668\) − 12.0000i − 0.464294i
\(669\) −22.0000 −0.850569
\(670\) 0 0
\(671\) −8.00000 −0.308837
\(672\) 2.00000i 0.0771517i
\(673\) − 46.0000i − 1.77317i −0.462566 0.886585i \(-0.653071\pi\)
0.462566 0.886585i \(-0.346929\pi\)
\(674\) −26.0000 −1.00148
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 22.0000i 0.845529i 0.906240 + 0.422764i \(0.138940\pi\)
−0.906240 + 0.422764i \(0.861060\pi\)
\(678\) − 16.0000i − 0.614476i
\(679\) −16.0000 −0.614024
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 16.0000i 0.612672i
\(683\) 36.0000i 1.37750i 0.724998 + 0.688751i \(0.241841\pi\)
−0.724998 + 0.688751i \(0.758159\pi\)
\(684\) 2.00000 0.0764719
\(685\) 0 0
\(686\) −20.0000 −0.763604
\(687\) 28.0000i 1.06827i
\(688\) 4.00000i 0.152499i
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −18.0000 −0.684752 −0.342376 0.939563i \(-0.611232\pi\)
−0.342376 + 0.939563i \(0.611232\pi\)
\(692\) − 14.0000i − 0.532200i
\(693\) − 8.00000i − 0.303895i
\(694\) 16.0000 0.607352
\(695\) 0 0
\(696\) 8.00000 0.303239
\(697\) − 40.0000i − 1.51511i
\(698\) 28.0000i 1.05982i
\(699\) 28.0000 1.05906
\(700\) 0 0
\(701\) −20.0000 −0.755390 −0.377695 0.925930i \(-0.623283\pi\)
−0.377695 + 0.925930i \(0.623283\pi\)
\(702\) 1.00000i 0.0377426i
\(703\) − 12.0000i − 0.452589i
\(704\) −4.00000 −0.150756
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 40.0000i 1.50435i
\(708\) 12.0000i 0.450988i
\(709\) −4.00000 −0.150223 −0.0751116 0.997175i \(-0.523931\pi\)
−0.0751116 + 0.997175i \(0.523931\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) − 10.0000i − 0.374766i
\(713\) 8.00000i 0.299602i
\(714\) 8.00000 0.299392
\(715\) 0 0
\(716\) 2.00000 0.0747435
\(717\) − 8.00000i − 0.298765i
\(718\) − 24.0000i − 0.895672i
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) − 15.0000i − 0.558242i
\(723\) 22.0000i 0.818189i
\(724\) 22.0000 0.817624
\(725\) 0 0
\(726\) 5.00000 0.185567
\(727\) − 8.00000i − 0.296704i −0.988935 0.148352i \(-0.952603\pi\)
0.988935 0.148352i \(-0.0473968\pi\)
\(728\) − 2.00000i − 0.0741249i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 16.0000 0.591781
\(732\) − 2.00000i − 0.0739221i
\(733\) 6.00000i 0.221615i 0.993842 + 0.110808i \(0.0353437\pi\)
−0.993842 + 0.110808i \(0.964656\pi\)
\(734\) −4.00000 −0.147643
\(735\) 0 0
\(736\) −2.00000 −0.0737210
\(737\) 32.0000i 1.17874i
\(738\) − 10.0000i − 0.368105i
\(739\) −50.0000 −1.83928 −0.919640 0.392763i \(-0.871519\pi\)
−0.919640 + 0.392763i \(0.871519\pi\)
\(740\) 0 0
\(741\) −2.00000 −0.0734718
\(742\) − 12.0000i − 0.440534i
\(743\) 36.0000i 1.32071i 0.750953 + 0.660356i \(0.229595\pi\)
−0.750953 + 0.660356i \(0.770405\pi\)
\(744\) −4.00000 −0.146647
\(745\) 0 0
\(746\) −14.0000 −0.512576
\(747\) 12.0000i 0.439057i
\(748\) 16.0000i 0.585018i
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) 0 0
\(753\) − 10.0000i − 0.364420i
\(754\) −8.00000 −0.291343
\(755\) 0 0
\(756\) 2.00000 0.0727393
\(757\) 38.0000i 1.38113i 0.723269 + 0.690567i \(0.242639\pi\)
−0.723269 + 0.690567i \(0.757361\pi\)
\(758\) 14.0000i 0.508503i
\(759\) 8.00000 0.290382
\(760\) 0 0
\(761\) −46.0000 −1.66750 −0.833749 0.552143i \(-0.813810\pi\)
−0.833749 + 0.552143i \(0.813810\pi\)
\(762\) − 20.0000i − 0.724524i
\(763\) − 8.00000i − 0.289619i
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 20.0000 0.722629
\(767\) − 12.0000i − 0.433295i
\(768\) − 1.00000i − 0.0360844i
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 0 0
\(771\) 8.00000 0.288113
\(772\) − 12.0000i − 0.431889i
\(773\) 26.0000i 0.935155i 0.883952 + 0.467578i \(0.154873\pi\)
−0.883952 + 0.467578i \(0.845127\pi\)
\(774\) 4.00000 0.143777
\(775\) 0 0
\(776\) 8.00000 0.287183
\(777\) − 12.0000i − 0.430498i
\(778\) − 20.0000i − 0.717035i
\(779\) 20.0000 0.716574
\(780\) 0 0
\(781\) 0 0
\(782\) 8.00000i 0.286079i
\(783\) − 8.00000i − 0.285897i
\(784\) 3.00000 0.107143
\(785\) 0 0
\(786\) 14.0000 0.499363
\(787\) 28.0000i 0.998092i 0.866575 + 0.499046i \(0.166316\pi\)
−0.866575 + 0.499046i \(0.833684\pi\)
\(788\) 10.0000i 0.356235i
\(789\) −18.0000 −0.640817
\(790\) 0 0
\(791\) 32.0000 1.13779
\(792\) 4.00000i 0.142134i
\(793\) 2.00000i 0.0710221i
\(794\) 6.00000 0.212932
\(795\) 0 0
\(796\) 24.0000 0.850657
\(797\) 42.0000i 1.48772i 0.668338 + 0.743858i \(0.267006\pi\)
−0.668338 + 0.743858i \(0.732994\pi\)
\(798\) 4.00000i 0.141598i
\(799\) 0 0
\(800\) 0 0
\(801\) −10.0000 −0.353333
\(802\) − 30.0000i − 1.05934i
\(803\) 0 0
\(804\) −8.00000 −0.282138
\(805\) 0 0
\(806\) 4.00000 0.140894
\(807\) − 4.00000i − 0.140807i
\(808\) − 20.0000i − 0.703598i
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) −34.0000 −1.19390 −0.596951 0.802278i \(-0.703621\pi\)
−0.596951 + 0.802278i \(0.703621\pi\)
\(812\) 16.0000i 0.561490i
\(813\) 28.0000i 0.982003i
\(814\) 24.0000 0.841200
\(815\) 0 0
\(816\) −4.00000 −0.140028
\(817\) 8.00000i 0.279885i
\(818\) 18.0000i 0.629355i
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) 2.00000i 0.0697580i
\(823\) − 20.0000i − 0.697156i −0.937280 0.348578i \(-0.886665\pi\)
0.937280 0.348578i \(-0.113335\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) −24.0000 −0.835067
\(827\) 44.0000i 1.53003i 0.644013 + 0.765015i \(0.277268\pi\)
−0.644013 + 0.765015i \(0.722732\pi\)
\(828\) 2.00000i 0.0695048i
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) 0 0
\(831\) −22.0000 −0.763172
\(832\) 1.00000i 0.0346688i
\(833\) − 12.0000i − 0.415775i
\(834\) 16.0000 0.554035
\(835\) 0 0
\(836\) −8.00000 −0.276686
\(837\) 4.00000i 0.138260i
\(838\) − 14.0000i − 0.483622i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) − 16.0000i − 0.551396i
\(843\) 10.0000i 0.344418i
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) 0 0
\(847\) 10.0000i 0.343604i
\(848\) 6.00000i 0.206041i
\(849\) 28.0000 0.960958
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) 0 0
\(853\) − 10.0000i − 0.342393i −0.985237 0.171197i \(-0.945237\pi\)
0.985237 0.171197i \(-0.0547634\pi\)
\(854\) 4.00000 0.136877
\(855\) 0 0
\(856\) −4.00000 −0.136717
\(857\) 16.0000i 0.546550i 0.961936 + 0.273275i \(0.0881068\pi\)
−0.961936 + 0.273275i \(0.911893\pi\)
\(858\) − 4.00000i − 0.136558i
\(859\) 44.0000 1.50126 0.750630 0.660722i \(-0.229750\pi\)
0.750630 + 0.660722i \(0.229750\pi\)
\(860\) 0 0
\(861\) 20.0000 0.681598
\(862\) 16.0000i 0.544962i
\(863\) − 36.0000i − 1.22545i −0.790295 0.612727i \(-0.790072\pi\)
0.790295 0.612727i \(-0.209928\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 26.0000 0.883516
\(867\) − 1.00000i − 0.0339618i
\(868\) − 8.00000i − 0.271538i
\(869\) 32.0000 1.08553
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 4.00000i 0.135457i
\(873\) − 8.00000i − 0.270759i
\(874\) −4.00000 −0.135302
\(875\) 0 0
\(876\) 0 0
\(877\) 22.0000i 0.742887i 0.928456 + 0.371444i \(0.121137\pi\)
−0.928456 + 0.371444i \(0.878863\pi\)
\(878\) − 8.00000i − 0.269987i
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) − 3.00000i − 0.101015i
\(883\) 44.0000i 1.48072i 0.672212 + 0.740359i \(0.265344\pi\)
−0.672212 + 0.740359i \(0.734656\pi\)
\(884\) 4.00000 0.134535
\(885\) 0 0
\(886\) 16.0000 0.537531
\(887\) 6.00000i 0.201460i 0.994914 + 0.100730i \(0.0321179\pi\)
−0.994914 + 0.100730i \(0.967882\pi\)
\(888\) 6.00000i 0.201347i
\(889\) 40.0000 1.34156
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) 22.0000i 0.736614i
\(893\) 0 0
\(894\) 22.0000 0.735790
\(895\) 0 0
\(896\) 2.00000 0.0668153
\(897\) − 2.00000i − 0.0667781i
\(898\) 18.0000i 0.600668i
\(899\) −32.0000 −1.06726
\(900\) 0 0
\(901\) 24.0000 0.799556
\(902\) 40.0000i 1.33185i
\(903\) 8.00000i 0.266223i
\(904\) −16.0000 −0.532152
\(905\) 0 0
\(906\) −4.00000 −0.132891
\(907\) 44.0000i 1.46100i 0.682915 + 0.730498i \(0.260712\pi\)
−0.682915 + 0.730498i \(0.739288\pi\)
\(908\) 12.0000i 0.398234i
\(909\) −20.0000 −0.663358
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) − 2.00000i − 0.0662266i
\(913\) − 48.0000i − 1.58857i
\(914\) −16.0000 −0.529233
\(915\) 0 0
\(916\) 28.0000 0.925146
\(917\) 28.0000i 0.924641i
\(918\) 4.00000i 0.132020i
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 30.0000i 0.987997i
\(923\) 0 0
\(924\) −8.00000 −0.263181
\(925\) 0 0
\(926\) −2.00000 −0.0657241
\(927\) − 4.00000i − 0.131377i
\(928\) − 8.00000i − 0.262613i
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) − 28.0000i − 0.917170i
\(933\) 16.0000i 0.523816i
\(934\) 12.0000 0.392652
\(935\) 0 0
\(936\) 1.00000 0.0326860
\(937\) − 10.0000i − 0.326686i −0.986569 0.163343i \(-0.947772\pi\)
0.986569 0.163343i \(-0.0522277\pi\)
\(938\) − 16.0000i − 0.522419i
\(939\) −10.0000 −0.326338
\(940\) 0 0
\(941\) −38.0000 −1.23876 −0.619382 0.785090i \(-0.712617\pi\)
−0.619382 + 0.785090i \(0.712617\pi\)
\(942\) 10.0000i 0.325818i
\(943\) 20.0000i 0.651290i
\(944\) 12.0000 0.390567
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) 4.00000i 0.129983i 0.997886 + 0.0649913i \(0.0207020\pi\)
−0.997886 + 0.0649913i \(0.979298\pi\)
\(948\) 8.00000i 0.259828i
\(949\) 0 0
\(950\) 0 0
\(951\) 2.00000 0.0648544
\(952\) − 8.00000i − 0.259281i
\(953\) − 36.0000i − 1.16615i −0.812417 0.583077i \(-0.801849\pi\)
0.812417 0.583077i \(-0.198151\pi\)
\(954\) 6.00000 0.194257
\(955\) 0 0
\(956\) −8.00000 −0.258738
\(957\) 32.0000i 1.03441i
\(958\) − 24.0000i − 0.775405i
\(959\) −4.00000 −0.129167
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) − 6.00000i − 0.193448i
\(963\) 4.00000i 0.128898i
\(964\) 22.0000 0.708572
\(965\) 0 0
\(966\) −4.00000 −0.128698
\(967\) − 14.0000i − 0.450210i −0.974335 0.225105i \(-0.927728\pi\)
0.974335 0.225105i \(-0.0722725\pi\)
\(968\) − 5.00000i − 0.160706i
\(969\) −8.00000 −0.256997
\(970\) 0 0
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) 32.0000i 1.02587i
\(974\) 38.0000 1.21760
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) − 42.0000i − 1.34370i −0.740688 0.671850i \(-0.765500\pi\)
0.740688 0.671850i \(-0.234500\pi\)
\(978\) 12.0000i 0.383718i
\(979\) 40.0000 1.27841
\(980\) 0 0
\(981\) 4.00000 0.127710
\(982\) 38.0000i 1.21263i
\(983\) − 12.0000i − 0.382741i −0.981518 0.191370i \(-0.938707\pi\)
0.981518 0.191370i \(-0.0612931\pi\)
\(984\) −10.0000 −0.318788
\(985\) 0 0
\(986\) −32.0000 −1.01909
\(987\) 0 0
\(988\) 2.00000i 0.0636285i
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 4.00000i 0.127000i
\(993\) 10.0000i 0.317340i
\(994\) 0 0
\(995\) 0 0
\(996\) 12.0000 0.380235
\(997\) 26.0000i 0.823428i 0.911313 + 0.411714i \(0.135070\pi\)
−0.911313 + 0.411714i \(0.864930\pi\)
\(998\) 14.0000i 0.443162i
\(999\) 6.00000 0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1950.2.e.m.1249.2 2
3.2 odd 2 5850.2.e.h.5149.1 2
5.2 odd 4 390.2.a.b.1.1 1
5.3 odd 4 1950.2.a.ba.1.1 1
5.4 even 2 inner 1950.2.e.m.1249.1 2
15.2 even 4 1170.2.a.j.1.1 1
15.8 even 4 5850.2.a.s.1.1 1
15.14 odd 2 5850.2.e.h.5149.2 2
20.7 even 4 3120.2.a.y.1.1 1
60.47 odd 4 9360.2.a.v.1.1 1
65.12 odd 4 5070.2.a.n.1.1 1
65.47 even 4 5070.2.b.f.1351.1 2
65.57 even 4 5070.2.b.f.1351.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.a.b.1.1 1 5.2 odd 4
1170.2.a.j.1.1 1 15.2 even 4
1950.2.a.ba.1.1 1 5.3 odd 4
1950.2.e.m.1249.1 2 5.4 even 2 inner
1950.2.e.m.1249.2 2 1.1 even 1 trivial
3120.2.a.y.1.1 1 20.7 even 4
5070.2.a.n.1.1 1 65.12 odd 4
5070.2.b.f.1351.1 2 65.47 even 4
5070.2.b.f.1351.2 2 65.57 even 4
5850.2.a.s.1.1 1 15.8 even 4
5850.2.e.h.5149.1 2 3.2 odd 2
5850.2.e.h.5149.2 2 15.14 odd 2
9360.2.a.v.1.1 1 60.47 odd 4