Properties

Label 1950.2.bc.j.901.4
Level $1950$
Weight $2$
Character 1950.901
Analytic conductor $15.571$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1950,2,Mod(751,1950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1950.751"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1950, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,6,6,0,0,-12,0,-6,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 8 x^{10} + 34 x^{9} + 8 x^{8} - 134 x^{7} + 98 x^{6} + 154 x^{5} + 104 x^{4} + \cdots + 2197 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.4
Root \(2.00607 - 1.30680i\) of defining polynomial
Character \(\chi\) \(=\) 1950.901
Dual form 1950.2.bc.j.751.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.866025 - 0.500000i) q^{6} +(-3.76344 + 2.17283i) q^{7} +1.00000i q^{8} +(-0.500000 - 0.866025i) q^{9} +(-2.04055 - 1.17811i) q^{11} +1.00000 q^{12} +(1.69144 - 3.18419i) q^{13} -4.34565 q^{14} +(-0.500000 + 0.866025i) q^{16} +(-1.50437 - 2.60564i) q^{17} -1.00000i q^{18} +(-0.585872 + 0.338254i) q^{19} +4.34565i q^{21} +(-1.17811 - 2.04055i) q^{22} +(3.22396 - 5.58405i) q^{23} +(0.866025 + 0.500000i) q^{24} +(3.05692 - 1.91187i) q^{26} -1.00000 q^{27} +(-3.76344 - 2.17283i) q^{28} +(-4.82620 + 8.35922i) q^{29} -7.11493i q^{31} +(-0.866025 + 0.500000i) q^{32} +(-2.04055 + 1.17811i) q^{33} -3.00874i q^{34} +(0.500000 - 0.866025i) q^{36} +(-6.48073 - 3.74165i) q^{37} -0.676507 q^{38} +(-1.91187 - 3.05692i) q^{39} +(-2.60564 - 1.50437i) q^{41} +(-2.17283 + 3.76344i) q^{42} +(-3.41624 - 5.91710i) q^{43} -2.35623i q^{44} +(5.58405 - 3.22396i) q^{46} -5.61529i q^{47} +(0.500000 + 0.866025i) q^{48} +(5.94234 - 10.2924i) q^{49} -3.00874 q^{51} +(3.60330 - 0.127265i) q^{52} -9.43400 q^{53} +(-0.866025 - 0.500000i) q^{54} +(-2.17283 - 3.76344i) q^{56} +0.676507i q^{57} +(-8.35922 + 4.82620i) q^{58} +(4.56364 - 2.63482i) q^{59} +(2.15646 + 3.73509i) q^{61} +(3.55746 - 6.16171i) q^{62} +(3.76344 + 2.17283i) q^{63} -1.00000 q^{64} -2.35623 q^{66} +(5.04596 + 2.91329i) q^{67} +(1.50437 - 2.60564i) q^{68} +(-3.22396 - 5.58405i) q^{69} +(2.52520 - 1.45793i) q^{71} +(0.866025 - 0.500000i) q^{72} -7.67804i q^{73} +(-3.74165 - 6.48073i) q^{74} +(-0.585872 - 0.338254i) q^{76} +10.2393 q^{77} +(-0.127265 - 3.60330i) q^{78} +3.74519 q^{79} +(-0.500000 + 0.866025i) q^{81} +(-1.50437 - 2.60564i) q^{82} +10.3557i q^{83} +(-3.76344 + 2.17283i) q^{84} -6.83247i q^{86} +(4.82620 + 8.35922i) q^{87} +(1.17811 - 2.04055i) q^{88} +(-4.15208 - 2.39720i) q^{89} +(0.553049 + 15.6587i) q^{91} +6.44791 q^{92} +(-6.16171 - 3.55746i) q^{93} +(2.80764 - 4.86298i) q^{94} +1.00000i q^{96} +(-14.1520 + 8.17066i) q^{97} +(10.2924 - 5.94234i) q^{98} +2.35623i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} + 6 q^{4} - 12 q^{7} - 6 q^{9} + 6 q^{11} + 12 q^{12} + 4 q^{13} - 4 q^{14} - 6 q^{16} + 8 q^{17} + 6 q^{19} - 6 q^{22} + 16 q^{23} - 2 q^{26} - 12 q^{27} - 12 q^{28} - 14 q^{29} + 6 q^{33}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0.866025 0.500000i 0.353553 0.204124i
\(7\) −3.76344 + 2.17283i −1.42245 + 0.821251i −0.996508 0.0835003i \(-0.973390\pi\)
−0.425940 + 0.904751i \(0.640057\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −2.04055 1.17811i −0.615250 0.355215i 0.159767 0.987155i \(-0.448926\pi\)
−0.775017 + 0.631940i \(0.782259\pi\)
\(12\) 1.00000 0.288675
\(13\) 1.69144 3.18419i 0.469120 0.883134i
\(14\) −4.34565 −1.16142
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.50437 2.60564i −0.364863 0.631962i 0.623891 0.781511i \(-0.285551\pi\)
−0.988754 + 0.149550i \(0.952218\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −0.585872 + 0.338254i −0.134408 + 0.0776007i −0.565696 0.824614i \(-0.691393\pi\)
0.431288 + 0.902214i \(0.358059\pi\)
\(20\) 0 0
\(21\) 4.34565i 0.948299i
\(22\) −1.17811 2.04055i −0.251175 0.435047i
\(23\) 3.22396 5.58405i 0.672241 1.16436i −0.305026 0.952344i \(-0.598665\pi\)
0.977267 0.212012i \(-0.0680015\pi\)
\(24\) 0.866025 + 0.500000i 0.176777 + 0.102062i
\(25\) 0 0
\(26\) 3.05692 1.91187i 0.599511 0.374948i
\(27\) −1.00000 −0.192450
\(28\) −3.76344 2.17283i −0.711224 0.410625i
\(29\) −4.82620 + 8.35922i −0.896202 + 1.55227i −0.0638921 + 0.997957i \(0.520351\pi\)
−0.832310 + 0.554311i \(0.812982\pi\)
\(30\) 0 0
\(31\) 7.11493i 1.27788i −0.769257 0.638939i \(-0.779374\pi\)
0.769257 0.638939i \(-0.220626\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) −2.04055 + 1.17811i −0.355215 + 0.205083i
\(34\) 3.00874i 0.515995i
\(35\) 0 0
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) −6.48073 3.74165i −1.06542 0.615123i −0.138497 0.990363i \(-0.544227\pi\)
−0.926928 + 0.375240i \(0.877560\pi\)
\(38\) −0.676507 −0.109744
\(39\) −1.91187 3.05692i −0.306144 0.489499i
\(40\) 0 0
\(41\) −2.60564 1.50437i −0.406933 0.234943i 0.282538 0.959256i \(-0.408824\pi\)
−0.689471 + 0.724313i \(0.742157\pi\)
\(42\) −2.17283 + 3.76344i −0.335274 + 0.580712i
\(43\) −3.41624 5.91710i −0.520971 0.902349i −0.999703 0.0243872i \(-0.992237\pi\)
0.478731 0.877961i \(-0.341097\pi\)
\(44\) 2.35623i 0.355215i
\(45\) 0 0
\(46\) 5.58405 3.22396i 0.823324 0.475346i
\(47\) 5.61529i 0.819074i −0.912294 0.409537i \(-0.865690\pi\)
0.912294 0.409537i \(-0.134310\pi\)
\(48\) 0.500000 + 0.866025i 0.0721688 + 0.125000i
\(49\) 5.94234 10.2924i 0.848906 1.47035i
\(50\) 0 0
\(51\) −3.00874 −0.421308
\(52\) 3.60330 0.127265i 0.499688 0.0176485i
\(53\) −9.43400 −1.29586 −0.647930 0.761700i \(-0.724365\pi\)
−0.647930 + 0.761700i \(0.724365\pi\)
\(54\) −0.866025 0.500000i −0.117851 0.0680414i
\(55\) 0 0
\(56\) −2.17283 3.76344i −0.290356 0.502911i
\(57\) 0.676507i 0.0896056i
\(58\) −8.35922 + 4.82620i −1.09762 + 0.633711i
\(59\) 4.56364 2.63482i 0.594135 0.343024i −0.172596 0.984993i \(-0.555215\pi\)
0.766731 + 0.641969i \(0.221882\pi\)
\(60\) 0 0
\(61\) 2.15646 + 3.73509i 0.276106 + 0.478230i 0.970414 0.241449i \(-0.0776225\pi\)
−0.694307 + 0.719679i \(0.744289\pi\)
\(62\) 3.55746 6.16171i 0.451798 0.782538i
\(63\) 3.76344 + 2.17283i 0.474149 + 0.273750i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −2.35623 −0.290032
\(67\) 5.04596 + 2.91329i 0.616463 + 0.355915i 0.775490 0.631359i \(-0.217503\pi\)
−0.159028 + 0.987274i \(0.550836\pi\)
\(68\) 1.50437 2.60564i 0.182432 0.315981i
\(69\) −3.22396 5.58405i −0.388119 0.672241i
\(70\) 0 0
\(71\) 2.52520 1.45793i 0.299686 0.173024i −0.342616 0.939476i \(-0.611313\pi\)
0.642302 + 0.766452i \(0.277980\pi\)
\(72\) 0.866025 0.500000i 0.102062 0.0589256i
\(73\) 7.67804i 0.898647i −0.893369 0.449323i \(-0.851665\pi\)
0.893369 0.449323i \(-0.148335\pi\)
\(74\) −3.74165 6.48073i −0.434958 0.753369i
\(75\) 0 0
\(76\) −0.585872 0.338254i −0.0672042 0.0388004i
\(77\) 10.2393 1.16688
\(78\) −0.127265 3.60330i −0.0144099 0.407994i
\(79\) 3.74519 0.421367 0.210683 0.977554i \(-0.432431\pi\)
0.210683 + 0.977554i \(0.432431\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −1.50437 2.60564i −0.166130 0.287745i
\(83\) 10.3557i 1.13668i 0.822793 + 0.568341i \(0.192415\pi\)
−0.822793 + 0.568341i \(0.807585\pi\)
\(84\) −3.76344 + 2.17283i −0.410625 + 0.237075i
\(85\) 0 0
\(86\) 6.83247i 0.736765i
\(87\) 4.82620 + 8.35922i 0.517422 + 0.896202i
\(88\) 1.17811 2.04055i 0.125587 0.217524i
\(89\) −4.15208 2.39720i −0.440119 0.254103i 0.263529 0.964651i \(-0.415114\pi\)
−0.703648 + 0.710549i \(0.748447\pi\)
\(90\) 0 0
\(91\) 0.553049 + 15.6587i 0.0579753 + 1.64148i
\(92\) 6.44791 0.672241
\(93\) −6.16171 3.55746i −0.638939 0.368892i
\(94\) 2.80764 4.86298i 0.289586 0.501578i
\(95\) 0 0
\(96\) 1.00000i 0.102062i
\(97\) −14.1520 + 8.17066i −1.43692 + 0.829605i −0.997634 0.0687436i \(-0.978101\pi\)
−0.439283 + 0.898349i \(0.644768\pi\)
\(98\) 10.2924 5.94234i 1.03969 0.600267i
\(99\) 2.35623i 0.236810i
\(100\) 0 0
\(101\) −6.11911 + 10.5986i −0.608875 + 1.05460i 0.382552 + 0.923934i \(0.375045\pi\)
−0.991426 + 0.130668i \(0.958288\pi\)
\(102\) −2.60564 1.50437i −0.257997 0.148955i
\(103\) −3.75144 −0.369640 −0.184820 0.982772i \(-0.559170\pi\)
−0.184820 + 0.982772i \(0.559170\pi\)
\(104\) 3.18419 + 1.69144i 0.312235 + 0.165859i
\(105\) 0 0
\(106\) −8.17008 4.71700i −0.793549 0.458156i
\(107\) 8.30831 14.3904i 0.803194 1.39117i −0.114309 0.993445i \(-0.536465\pi\)
0.917503 0.397728i \(-0.130201\pi\)
\(108\) −0.500000 0.866025i −0.0481125 0.0833333i
\(109\) 11.1116i 1.06430i 0.846652 + 0.532148i \(0.178615\pi\)
−0.846652 + 0.532148i \(0.821385\pi\)
\(110\) 0 0
\(111\) −6.48073 + 3.74165i −0.615123 + 0.355142i
\(112\) 4.34565i 0.410625i
\(113\) −7.83002 13.5620i −0.736587 1.27581i −0.954024 0.299731i \(-0.903103\pi\)
0.217437 0.976074i \(-0.430230\pi\)
\(114\) −0.338254 + 0.585872i −0.0316804 + 0.0548720i
\(115\) 0 0
\(116\) −9.65239 −0.896202
\(117\) −3.60330 + 0.127265i −0.333126 + 0.0117657i
\(118\) 5.26964 0.485109
\(119\) 11.3232 + 6.53747i 1.03800 + 0.599288i
\(120\) 0 0
\(121\) −2.72410 4.71827i −0.247645 0.428934i
\(122\) 4.31292i 0.390473i
\(123\) −2.60564 + 1.50437i −0.234943 + 0.135644i
\(124\) 6.16171 3.55746i 0.553338 0.319470i
\(125\) 0 0
\(126\) 2.17283 + 3.76344i 0.193571 + 0.335274i
\(127\) 6.80236 11.7820i 0.603611 1.04549i −0.388658 0.921382i \(-0.627061\pi\)
0.992269 0.124103i \(-0.0396055\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) −6.83247 −0.601566
\(130\) 0 0
\(131\) 10.2122 0.892246 0.446123 0.894972i \(-0.352804\pi\)
0.446123 + 0.894972i \(0.352804\pi\)
\(132\) −2.04055 1.17811i −0.177607 0.102542i
\(133\) 1.46993 2.54600i 0.127459 0.220766i
\(134\) 2.91329 + 5.04596i 0.251670 + 0.435905i
\(135\) 0 0
\(136\) 2.60564 1.50437i 0.223432 0.128999i
\(137\) −10.7506 + 6.20689i −0.918489 + 0.530290i −0.883153 0.469085i \(-0.844584\pi\)
−0.0353365 + 0.999375i \(0.511250\pi\)
\(138\) 6.44791i 0.548883i
\(139\) 7.80915 + 13.5258i 0.662363 + 1.14725i 0.979993 + 0.199032i \(0.0637797\pi\)
−0.317630 + 0.948215i \(0.602887\pi\)
\(140\) 0 0
\(141\) −4.86298 2.80764i −0.409537 0.236446i
\(142\) 2.91585 0.244693
\(143\) −7.20280 + 4.50479i −0.602329 + 0.376710i
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 3.83902 6.64938i 0.317720 0.550307i
\(147\) −5.94234 10.2924i −0.490116 0.848906i
\(148\) 7.48330i 0.615123i
\(149\) −16.9104 + 9.76324i −1.38536 + 0.799836i −0.992788 0.119886i \(-0.961747\pi\)
−0.392569 + 0.919722i \(0.628414\pi\)
\(150\) 0 0
\(151\) 11.5027i 0.936079i 0.883707 + 0.468040i \(0.155040\pi\)
−0.883707 + 0.468040i \(0.844960\pi\)
\(152\) −0.338254 0.585872i −0.0274360 0.0475205i
\(153\) −1.50437 + 2.60564i −0.121621 + 0.210654i
\(154\) 8.86753 + 5.11967i 0.714566 + 0.412555i
\(155\) 0 0
\(156\) 1.69144 3.18419i 0.135423 0.254939i
\(157\) 4.47595 0.357220 0.178610 0.983920i \(-0.442840\pi\)
0.178610 + 0.983920i \(0.442840\pi\)
\(158\) 3.24343 + 1.87260i 0.258033 + 0.148976i
\(159\) −4.71700 + 8.17008i −0.374082 + 0.647930i
\(160\) 0 0
\(161\) 28.0204i 2.20831i
\(162\) −0.866025 + 0.500000i −0.0680414 + 0.0392837i
\(163\) −6.71645 + 3.87774i −0.526073 + 0.303728i −0.739416 0.673249i \(-0.764898\pi\)
0.213343 + 0.976977i \(0.431565\pi\)
\(164\) 3.00874i 0.234943i
\(165\) 0 0
\(166\) −5.17783 + 8.96827i −0.401878 + 0.696073i
\(167\) −0.587202 0.339021i −0.0454390 0.0262342i 0.477108 0.878844i \(-0.341685\pi\)
−0.522547 + 0.852610i \(0.675018\pi\)
\(168\) −4.34565 −0.335274
\(169\) −7.27808 10.7717i −0.559852 0.828593i
\(170\) 0 0
\(171\) 0.585872 + 0.338254i 0.0448028 + 0.0258669i
\(172\) 3.41624 5.91710i 0.260486 0.451174i
\(173\) 0.360974 + 0.625226i 0.0274444 + 0.0475350i 0.879421 0.476044i \(-0.157930\pi\)
−0.851977 + 0.523579i \(0.824596\pi\)
\(174\) 9.65239i 0.731746i
\(175\) 0 0
\(176\) 2.04055 1.17811i 0.153812 0.0888037i
\(177\) 5.26964i 0.396090i
\(178\) −2.39720 4.15208i −0.179678 0.311211i
\(179\) −3.18673 + 5.51958i −0.238187 + 0.412553i −0.960194 0.279333i \(-0.909887\pi\)
0.722007 + 0.691886i \(0.243220\pi\)
\(180\) 0 0
\(181\) 22.0214 1.63683 0.818417 0.574624i \(-0.194852\pi\)
0.818417 + 0.574624i \(0.194852\pi\)
\(182\) −7.35040 + 13.8374i −0.544848 + 1.02569i
\(183\) 4.31292 0.318820
\(184\) 5.58405 + 3.22396i 0.411662 + 0.237673i
\(185\) 0 0
\(186\) −3.55746 6.16171i −0.260846 0.451798i
\(187\) 7.08928i 0.518419i
\(188\) 4.86298 2.80764i 0.354669 0.204768i
\(189\) 3.76344 2.17283i 0.273750 0.158050i
\(190\) 0 0
\(191\) −0.293441 0.508255i −0.0212326 0.0367760i 0.855214 0.518275i \(-0.173426\pi\)
−0.876446 + 0.481499i \(0.840092\pi\)
\(192\) −0.500000 + 0.866025i −0.0360844 + 0.0625000i
\(193\) 19.5955 + 11.3135i 1.41052 + 0.814363i 0.995437 0.0954215i \(-0.0304199\pi\)
0.415081 + 0.909784i \(0.363753\pi\)
\(194\) −16.3413 −1.17324
\(195\) 0 0
\(196\) 11.8847 0.848906
\(197\) 1.42681 + 0.823770i 0.101656 + 0.0586912i 0.549966 0.835187i \(-0.314641\pi\)
−0.448310 + 0.893878i \(0.647974\pi\)
\(198\) −1.17811 + 2.04055i −0.0837249 + 0.145016i
\(199\) 5.13665 + 8.89694i 0.364127 + 0.630687i 0.988636 0.150331i \(-0.0480339\pi\)
−0.624508 + 0.781018i \(0.714701\pi\)
\(200\) 0 0
\(201\) 5.04596 2.91329i 0.355915 0.205488i
\(202\) −10.5986 + 6.11911i −0.745716 + 0.430539i
\(203\) 41.9459i 2.94403i
\(204\) −1.50437 2.60564i −0.105327 0.182432i
\(205\) 0 0
\(206\) −3.24884 1.87572i −0.226357 0.130688i
\(207\) −6.44791 −0.448161
\(208\) 1.91187 + 3.05692i 0.132564 + 0.211959i
\(209\) 1.59401 0.110260
\(210\) 0 0
\(211\) 12.1905 21.1145i 0.839226 1.45358i −0.0513166 0.998682i \(-0.516342\pi\)
0.890543 0.454900i \(-0.150325\pi\)
\(212\) −4.71700 8.17008i −0.323965 0.561124i
\(213\) 2.91585i 0.199791i
\(214\) 14.3904 8.30831i 0.983708 0.567944i
\(215\) 0 0
\(216\) 1.00000i 0.0680414i
\(217\) 15.4595 + 26.7766i 1.04946 + 1.81772i
\(218\) −5.55578 + 9.62290i −0.376285 + 0.651745i
\(219\) −6.64938 3.83902i −0.449323 0.259417i
\(220\) 0 0
\(221\) −10.8414 + 0.382907i −0.729272 + 0.0257571i
\(222\) −7.48330 −0.502246
\(223\) 4.01476 + 2.31792i 0.268848 + 0.155220i 0.628364 0.777919i \(-0.283725\pi\)
−0.359516 + 0.933139i \(0.617058\pi\)
\(224\) 2.17283 3.76344i 0.145178 0.251456i
\(225\) 0 0
\(226\) 15.6600i 1.04169i
\(227\) −15.4016 + 8.89213i −1.02224 + 0.590192i −0.914753 0.404015i \(-0.867615\pi\)
−0.107489 + 0.994206i \(0.534281\pi\)
\(228\) −0.585872 + 0.338254i −0.0388004 + 0.0224014i
\(229\) 15.3361i 1.01344i 0.862111 + 0.506720i \(0.169142\pi\)
−0.862111 + 0.506720i \(0.830858\pi\)
\(230\) 0 0
\(231\) 5.11967 8.86753i 0.336850 0.583441i
\(232\) −8.35922 4.82620i −0.548809 0.316855i
\(233\) 7.75548 0.508079 0.254039 0.967194i \(-0.418241\pi\)
0.254039 + 0.967194i \(0.418241\pi\)
\(234\) −3.18419 1.69144i −0.208157 0.110573i
\(235\) 0 0
\(236\) 4.56364 + 2.63482i 0.297068 + 0.171512i
\(237\) 1.87260 3.24343i 0.121638 0.210683i
\(238\) 6.53747 + 11.3232i 0.423761 + 0.733975i
\(239\) 18.6409i 1.20578i −0.797824 0.602890i \(-0.794016\pi\)
0.797824 0.602890i \(-0.205984\pi\)
\(240\) 0 0
\(241\) −2.65884 + 1.53508i −0.171271 + 0.0988833i −0.583185 0.812339i \(-0.698194\pi\)
0.411914 + 0.911223i \(0.364860\pi\)
\(242\) 5.44819i 0.350223i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −2.15646 + 3.73509i −0.138053 + 0.239115i
\(245\) 0 0
\(246\) −3.00874 −0.191830
\(247\) 0.0860957 + 2.43766i 0.00547814 + 0.155105i
\(248\) 7.11493 0.451798
\(249\) 8.96827 + 5.17783i 0.568341 + 0.328132i
\(250\) 0 0
\(251\) −3.56404 6.17309i −0.224960 0.389642i 0.731347 0.682005i \(-0.238892\pi\)
−0.956307 + 0.292363i \(0.905558\pi\)
\(252\) 4.34565i 0.273750i
\(253\) −13.1573 + 7.59637i −0.827193 + 0.477580i
\(254\) 11.7820 6.80236i 0.739270 0.426818i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 7.12178 12.3353i 0.444244 0.769454i −0.553755 0.832680i \(-0.686806\pi\)
0.997999 + 0.0632261i \(0.0201389\pi\)
\(258\) −5.91710 3.41624i −0.368382 0.212686i
\(259\) 32.5198 2.02068
\(260\) 0 0
\(261\) 9.65239 0.597468
\(262\) 8.84404 + 5.10611i 0.546387 + 0.315457i
\(263\) −7.70101 + 13.3385i −0.474865 + 0.822490i −0.999586 0.0287845i \(-0.990836\pi\)
0.524721 + 0.851274i \(0.324170\pi\)
\(264\) −1.17811 2.04055i −0.0725079 0.125587i
\(265\) 0 0
\(266\) 2.54600 1.46993i 0.156105 0.0901273i
\(267\) −4.15208 + 2.39720i −0.254103 + 0.146706i
\(268\) 5.82658i 0.355915i
\(269\) −13.3134 23.0595i −0.811732 1.40596i −0.911651 0.410966i \(-0.865192\pi\)
0.0999185 0.994996i \(-0.468142\pi\)
\(270\) 0 0
\(271\) −6.66899 3.85034i −0.405112 0.233892i 0.283575 0.958950i \(-0.408479\pi\)
−0.688687 + 0.725058i \(0.741813\pi\)
\(272\) 3.00874 0.182432
\(273\) 13.8374 + 7.35040i 0.837475 + 0.444866i
\(274\) −12.4138 −0.749943
\(275\) 0 0
\(276\) 3.22396 5.58405i 0.194059 0.336121i
\(277\) −7.15114 12.3861i −0.429671 0.744211i 0.567173 0.823599i \(-0.308037\pi\)
−0.996844 + 0.0793871i \(0.974704\pi\)
\(278\) 15.6183i 0.936723i
\(279\) −6.16171 + 3.55746i −0.368892 + 0.212980i
\(280\) 0 0
\(281\) 7.96746i 0.475299i 0.971351 + 0.237649i \(0.0763769\pi\)
−0.971351 + 0.237649i \(0.923623\pi\)
\(282\) −2.80764 4.86298i −0.167193 0.289586i
\(283\) 7.33785 12.7095i 0.436190 0.755503i −0.561202 0.827679i \(-0.689661\pi\)
0.997392 + 0.0721756i \(0.0229942\pi\)
\(284\) 2.52520 + 1.45793i 0.149843 + 0.0865120i
\(285\) 0 0
\(286\) −8.49021 + 0.299865i −0.502036 + 0.0177314i
\(287\) 13.0749 0.771789
\(288\) 0.866025 + 0.500000i 0.0510310 + 0.0294628i
\(289\) 3.97374 6.88273i 0.233750 0.404866i
\(290\) 0 0
\(291\) 16.3413i 0.957945i
\(292\) 6.64938 3.83902i 0.389125 0.224662i
\(293\) 5.94436 3.43198i 0.347273 0.200498i −0.316210 0.948689i \(-0.602411\pi\)
0.663484 + 0.748191i \(0.269077\pi\)
\(294\) 11.8847i 0.693129i
\(295\) 0 0
\(296\) 3.74165 6.48073i 0.217479 0.376685i
\(297\) 2.04055 + 1.17811i 0.118405 + 0.0683611i
\(298\) −19.5265 −1.13114
\(299\) −12.3275 19.7108i −0.712921 1.13990i
\(300\) 0 0
\(301\) 25.7136 + 14.8458i 1.48211 + 0.855696i
\(302\) −5.75137 + 9.96166i −0.330954 + 0.573229i
\(303\) 6.11911 + 10.5986i 0.351534 + 0.608875i
\(304\) 0.676507i 0.0388004i
\(305\) 0 0
\(306\) −2.60564 + 1.50437i −0.148955 + 0.0859991i
\(307\) 10.9917i 0.627328i −0.949534 0.313664i \(-0.898443\pi\)
0.949534 0.313664i \(-0.101557\pi\)
\(308\) 5.11967 + 8.86753i 0.291720 + 0.505275i
\(309\) −1.87572 + 3.24884i −0.106706 + 0.184820i
\(310\) 0 0
\(311\) −13.9044 −0.788446 −0.394223 0.919015i \(-0.628986\pi\)
−0.394223 + 0.919015i \(0.628986\pi\)
\(312\) 3.05692 1.91187i 0.173064 0.108238i
\(313\) 14.1734 0.801130 0.400565 0.916268i \(-0.368814\pi\)
0.400565 + 0.916268i \(0.368814\pi\)
\(314\) 3.87629 + 2.23798i 0.218752 + 0.126296i
\(315\) 0 0
\(316\) 1.87260 + 3.24343i 0.105342 + 0.182457i
\(317\) 3.20808i 0.180184i 0.995933 + 0.0900920i \(0.0287161\pi\)
−0.995933 + 0.0900920i \(0.971284\pi\)
\(318\) −8.17008 + 4.71700i −0.458156 + 0.264516i
\(319\) 19.6962 11.3716i 1.10278 0.636688i
\(320\) 0 0
\(321\) −8.30831 14.3904i −0.463724 0.803194i
\(322\) −14.0102 + 24.2664i −0.780757 + 1.35231i
\(323\) 1.76274 + 1.01772i 0.0980813 + 0.0566273i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −7.75548 −0.429537
\(327\) 9.62290 + 5.55578i 0.532148 + 0.307236i
\(328\) 1.50437 2.60564i 0.0830649 0.143873i
\(329\) 12.2010 + 21.1328i 0.672665 + 1.16509i
\(330\) 0 0
\(331\) −22.3066 + 12.8787i −1.22608 + 0.707878i −0.966208 0.257765i \(-0.917014\pi\)
−0.259873 + 0.965643i \(0.583681\pi\)
\(332\) −8.96827 + 5.17783i −0.492198 + 0.284170i
\(333\) 7.48330i 0.410082i
\(334\) −0.339021 0.587202i −0.0185504 0.0321302i
\(335\) 0 0
\(336\) −3.76344 2.17283i −0.205313 0.118537i
\(337\) −0.772078 −0.0420578 −0.0210289 0.999779i \(-0.506694\pi\)
−0.0210289 + 0.999779i \(0.506694\pi\)
\(338\) −0.917149 12.9676i −0.0498863 0.705345i
\(339\) −15.6600 −0.850537
\(340\) 0 0
\(341\) −8.38219 + 14.5184i −0.453921 + 0.786215i
\(342\) 0.338254 + 0.585872i 0.0182907 + 0.0316804i
\(343\) 21.2271i 1.14616i
\(344\) 5.91710 3.41624i 0.319028 0.184191i
\(345\) 0 0
\(346\) 0.721948i 0.0388122i
\(347\) −12.5779 21.7856i −0.675218 1.16951i −0.976405 0.215946i \(-0.930716\pi\)
0.301188 0.953565i \(-0.402617\pi\)
\(348\) −4.82620 + 8.35922i −0.258711 + 0.448101i
\(349\) 23.6602 + 13.6602i 1.26650 + 0.731214i 0.974324 0.225151i \(-0.0722874\pi\)
0.292176 + 0.956365i \(0.405621\pi\)
\(350\) 0 0
\(351\) −1.69144 + 3.18419i −0.0902823 + 0.169959i
\(352\) 2.35623 0.125587
\(353\) 6.51161 + 3.75948i 0.346578 + 0.200097i 0.663177 0.748462i \(-0.269208\pi\)
−0.316599 + 0.948559i \(0.602541\pi\)
\(354\) 2.63482 4.56364i 0.140039 0.242555i
\(355\) 0 0
\(356\) 4.79440i 0.254103i
\(357\) 11.3232 6.53747i 0.599288 0.345999i
\(358\) −5.51958 + 3.18673i −0.291719 + 0.168424i
\(359\) 10.8402i 0.572124i 0.958211 + 0.286062i \(0.0923463\pi\)
−0.958211 + 0.286062i \(0.907654\pi\)
\(360\) 0 0
\(361\) −9.27117 + 16.0581i −0.487956 + 0.845165i
\(362\) 19.0711 + 11.0107i 1.00235 + 0.578708i
\(363\) −5.44819 −0.285956
\(364\) −13.2843 + 8.30831i −0.696287 + 0.435474i
\(365\) 0 0
\(366\) 3.73509 + 2.15646i 0.195237 + 0.112720i
\(367\) 3.75761 6.50838i 0.196146 0.339735i −0.751130 0.660155i \(-0.770491\pi\)
0.947276 + 0.320420i \(0.103824\pi\)
\(368\) 3.22396 + 5.58405i 0.168060 + 0.291089i
\(369\) 3.00874i 0.156629i
\(370\) 0 0
\(371\) 35.5043 20.4984i 1.84329 1.06423i
\(372\) 7.11493i 0.368892i
\(373\) 11.4393 + 19.8135i 0.592305 + 1.02590i 0.993921 + 0.110095i \(0.0351154\pi\)
−0.401616 + 0.915808i \(0.631551\pi\)
\(374\) −3.54464 + 6.13949i −0.183289 + 0.317466i
\(375\) 0 0
\(376\) 5.61529 0.289586
\(377\) 18.4541 + 29.5066i 0.950434 + 1.51967i
\(378\) 4.34565 0.223516
\(379\) 22.6152 + 13.0569i 1.16166 + 0.670687i 0.951702 0.307022i \(-0.0993327\pi\)
0.209962 + 0.977710i \(0.432666\pi\)
\(380\) 0 0
\(381\) −6.80236 11.7820i −0.348495 0.603611i
\(382\) 0.586882i 0.0300275i
\(383\) −11.8585 + 6.84652i −0.605942 + 0.349841i −0.771376 0.636380i \(-0.780431\pi\)
0.165434 + 0.986221i \(0.447098\pi\)
\(384\) −0.866025 + 0.500000i −0.0441942 + 0.0255155i
\(385\) 0 0
\(386\) 11.3135 + 19.5955i 0.575842 + 0.997387i
\(387\) −3.41624 + 5.91710i −0.173657 + 0.300783i
\(388\) −14.1520 8.17066i −0.718459 0.414802i
\(389\) −24.9403 −1.26452 −0.632261 0.774755i \(-0.717873\pi\)
−0.632261 + 0.774755i \(0.717873\pi\)
\(390\) 0 0
\(391\) −19.4001 −0.981104
\(392\) 10.2924 + 5.94234i 0.519847 + 0.300134i
\(393\) 5.10611 8.84404i 0.257569 0.446123i
\(394\) 0.823770 + 1.42681i 0.0415009 + 0.0718817i
\(395\) 0 0
\(396\) −2.04055 + 1.17811i −0.102542 + 0.0592025i
\(397\) 25.2043 14.5517i 1.26497 0.730328i 0.290934 0.956743i \(-0.406034\pi\)
0.974031 + 0.226415i \(0.0727005\pi\)
\(398\) 10.2733i 0.514954i
\(399\) −1.46993 2.54600i −0.0735887 0.127459i
\(400\) 0 0
\(401\) −14.4596 8.34823i −0.722076 0.416891i 0.0934404 0.995625i \(-0.470214\pi\)
−0.815516 + 0.578734i \(0.803547\pi\)
\(402\) 5.82658 0.290603
\(403\) −22.6552 12.0345i −1.12854 0.599479i
\(404\) −12.2382 −0.608875
\(405\) 0 0
\(406\) 20.9730 36.3262i 1.04087 1.80284i
\(407\) 8.81618 + 15.2701i 0.437002 + 0.756909i
\(408\) 3.00874i 0.148955i
\(409\) −21.3140 + 12.3056i −1.05391 + 0.608475i −0.923741 0.383017i \(-0.874885\pi\)
−0.130168 + 0.991492i \(0.541552\pi\)
\(410\) 0 0
\(411\) 12.4138i 0.612326i
\(412\) −1.87572 3.24884i −0.0924100 0.160059i
\(413\) −11.4500 + 19.8320i −0.563418 + 0.975868i
\(414\) −5.58405 3.22396i −0.274441 0.158449i
\(415\) 0 0
\(416\) 0.127265 + 3.60330i 0.00623968 + 0.176667i
\(417\) 15.6183 0.764831
\(418\) 1.38045 + 0.797003i 0.0675200 + 0.0389827i
\(419\) 13.5527 23.4739i 0.662091 1.14678i −0.317974 0.948099i \(-0.603002\pi\)
0.980065 0.198676i \(-0.0636643\pi\)
\(420\) 0 0
\(421\) 32.9996i 1.60830i −0.594425 0.804151i \(-0.702620\pi\)
0.594425 0.804151i \(-0.297380\pi\)
\(422\) 21.1145 12.1905i 1.02784 0.593422i
\(423\) −4.86298 + 2.80764i −0.236446 + 0.136512i
\(424\) 9.43400i 0.458156i
\(425\) 0 0
\(426\) 1.45793 2.52520i 0.0706367 0.122346i
\(427\) −16.2314 9.37121i −0.785493 0.453505i
\(428\) 16.6166 0.803194
\(429\) 0.299865 + 8.49021i 0.0144776 + 0.409911i
\(430\) 0 0
\(431\) 7.45678 + 4.30517i 0.359180 + 0.207373i 0.668721 0.743513i \(-0.266842\pi\)
−0.309541 + 0.950886i \(0.600175\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) −1.72744 2.99201i −0.0830155 0.143787i 0.821528 0.570168i \(-0.193122\pi\)
−0.904544 + 0.426381i \(0.859788\pi\)
\(434\) 30.9190i 1.48416i
\(435\) 0 0
\(436\) −9.62290 + 5.55578i −0.460853 + 0.266074i
\(437\) 4.36206i 0.208666i
\(438\) −3.83902 6.64938i −0.183436 0.317720i
\(439\) 12.1229 20.9974i 0.578593 1.00215i −0.417049 0.908884i \(-0.636936\pi\)
0.995641 0.0932675i \(-0.0297312\pi\)
\(440\) 0 0
\(441\) −11.8847 −0.565937
\(442\) −9.58038 5.08909i −0.455692 0.242064i
\(443\) 13.1629 0.625390 0.312695 0.949854i \(-0.398768\pi\)
0.312695 + 0.949854i \(0.398768\pi\)
\(444\) −6.48073 3.74165i −0.307562 0.177571i
\(445\) 0 0
\(446\) 2.31792 + 4.01476i 0.109757 + 0.190104i
\(447\) 19.5265i 0.923571i
\(448\) 3.76344 2.17283i 0.177806 0.102656i
\(449\) −2.17774 + 1.25732i −0.102774 + 0.0593365i −0.550506 0.834831i \(-0.685565\pi\)
0.447732 + 0.894168i \(0.352232\pi\)
\(450\) 0 0
\(451\) 3.54464 + 6.13949i 0.166910 + 0.289097i
\(452\) 7.83002 13.5620i 0.368293 0.637903i
\(453\) 9.96166 + 5.75137i 0.468040 + 0.270223i
\(454\) −17.7843 −0.834657
\(455\) 0 0
\(456\) −0.676507 −0.0316804
\(457\) −9.32698 5.38493i −0.436298 0.251897i 0.265728 0.964048i \(-0.414388\pi\)
−0.702026 + 0.712151i \(0.747721\pi\)
\(458\) −7.66806 + 13.2815i −0.358305 + 0.620602i
\(459\) 1.50437 + 2.60564i 0.0702180 + 0.121621i
\(460\) 0 0
\(461\) 10.2984 5.94576i 0.479642 0.276922i −0.240625 0.970618i \(-0.577352\pi\)
0.720267 + 0.693697i \(0.244019\pi\)
\(462\) 8.86753 5.11967i 0.412555 0.238189i
\(463\) 29.9462i 1.39172i 0.718178 + 0.695860i \(0.244976\pi\)
−0.718178 + 0.695860i \(0.755024\pi\)
\(464\) −4.82620 8.35922i −0.224051 0.388067i
\(465\) 0 0
\(466\) 6.71645 + 3.87774i 0.311133 + 0.179633i
\(467\) −21.8940 −1.01313 −0.506566 0.862201i \(-0.669085\pi\)
−0.506566 + 0.862201i \(0.669085\pi\)
\(468\) −1.91187 3.05692i −0.0883761 0.141306i
\(469\) −25.3203 −1.16918
\(470\) 0 0
\(471\) 2.23798 3.87629i 0.103121 0.178610i
\(472\) 2.63482 + 4.56364i 0.121277 + 0.210059i
\(473\) 16.0989i 0.740227i
\(474\) 3.24343 1.87260i 0.148976 0.0860112i
\(475\) 0 0
\(476\) 13.0749i 0.599288i
\(477\) 4.71700 + 8.17008i 0.215977 + 0.374082i
\(478\) 9.32045 16.1435i 0.426307 0.738386i
\(479\) 7.90106 + 4.56168i 0.361009 + 0.208429i 0.669523 0.742791i \(-0.266498\pi\)
−0.308514 + 0.951220i \(0.599832\pi\)
\(480\) 0 0
\(481\) −22.8758 + 14.3071i −1.04305 + 0.652346i
\(482\) −3.07016 −0.139842
\(483\) 24.2664 + 14.0102i 1.10416 + 0.637486i
\(484\) 2.72410 4.71827i 0.123823 0.214467i
\(485\) 0 0
\(486\) 1.00000i 0.0453609i
\(487\) −18.8079 + 10.8587i −0.852265 + 0.492056i −0.861415 0.507902i \(-0.830421\pi\)
0.00914916 + 0.999958i \(0.497088\pi\)
\(488\) −3.73509 + 2.15646i −0.169080 + 0.0976183i
\(489\) 7.75548i 0.350715i
\(490\) 0 0
\(491\) 16.5438 28.6548i 0.746613 1.29317i −0.202824 0.979215i \(-0.565012\pi\)
0.949437 0.313957i \(-0.101655\pi\)
\(492\) −2.60564 1.50437i −0.117472 0.0678222i
\(493\) 29.0415 1.30796
\(494\) −1.14427 + 2.15412i −0.0514831 + 0.0969187i
\(495\) 0 0
\(496\) 6.16171 + 3.55746i 0.276669 + 0.159735i
\(497\) −6.33564 + 10.9736i −0.284192 + 0.492235i
\(498\) 5.17783 + 8.96827i 0.232024 + 0.401878i
\(499\) 10.4889i 0.469546i −0.972050 0.234773i \(-0.924565\pi\)
0.972050 0.234773i \(-0.0754347\pi\)
\(500\) 0 0
\(501\) −0.587202 + 0.339021i −0.0262342 + 0.0151463i
\(502\) 7.12807i 0.318142i
\(503\) 4.12700 + 7.14818i 0.184014 + 0.318722i 0.943244 0.332101i \(-0.107757\pi\)
−0.759230 + 0.650823i \(0.774424\pi\)
\(504\) −2.17283 + 3.76344i −0.0967853 + 0.167637i
\(505\) 0 0
\(506\) −15.1927 −0.675400
\(507\) −12.9676 + 0.917149i −0.575912 + 0.0407320i
\(508\) 13.6047 0.603611
\(509\) −5.84526 3.37476i −0.259087 0.149584i 0.364831 0.931074i \(-0.381127\pi\)
−0.623918 + 0.781490i \(0.714460\pi\)
\(510\) 0 0
\(511\) 16.6830 + 28.8959i 0.738014 + 1.27828i
\(512\) 1.00000i 0.0441942i
\(513\) 0.585872 0.338254i 0.0258669 0.0149343i
\(514\) 12.3353 7.12178i 0.544086 0.314128i
\(515\) 0 0
\(516\) −3.41624 5.91710i −0.150391 0.260486i
\(517\) −6.61545 + 11.4583i −0.290947 + 0.503935i
\(518\) 28.1630 + 16.2599i 1.23741 + 0.714419i
\(519\) 0.721948 0.0316900
\(520\) 0 0
\(521\) −30.4048 −1.33206 −0.666029 0.745926i \(-0.732007\pi\)
−0.666029 + 0.745926i \(0.732007\pi\)
\(522\) 8.35922 + 4.82620i 0.365873 + 0.211237i
\(523\) −1.57175 + 2.72235i −0.0687279 + 0.119040i −0.898342 0.439298i \(-0.855227\pi\)
0.829614 + 0.558338i \(0.188561\pi\)
\(524\) 5.10611 + 8.84404i 0.223062 + 0.386354i
\(525\) 0 0
\(526\) −13.3385 + 7.70101i −0.581588 + 0.335780i
\(527\) −18.5390 + 10.7035i −0.807570 + 0.466251i
\(528\) 2.35623i 0.102542i
\(529\) −9.28778 16.0869i −0.403816 0.699431i
\(530\) 0 0
\(531\) −4.56364 2.63482i −0.198045 0.114341i
\(532\) 2.93986 0.127459
\(533\) −9.19748 + 5.75231i −0.398387 + 0.249160i
\(534\) −4.79440 −0.207474
\(535\) 0 0
\(536\) −2.91329 + 5.04596i −0.125835 + 0.217952i
\(537\) 3.18673 + 5.51958i 0.137518 + 0.238187i
\(538\) 26.6268i 1.14796i
\(539\) −24.2513 + 14.0015i −1.04458 + 0.603088i
\(540\) 0 0
\(541\) 17.6144i 0.757301i −0.925540 0.378650i \(-0.876388\pi\)
0.925540 0.378650i \(-0.123612\pi\)
\(542\) −3.85034 6.66899i −0.165386 0.286458i
\(543\) 11.0107 19.0711i 0.472513 0.818417i
\(544\) 2.60564 + 1.50437i 0.111716 + 0.0644993i
\(545\) 0 0
\(546\) 8.30831 + 13.2843i 0.355563 + 0.568516i
\(547\) 40.8067 1.74477 0.872385 0.488820i \(-0.162572\pi\)
0.872385 + 0.488820i \(0.162572\pi\)
\(548\) −10.7506 6.20689i −0.459245 0.265145i
\(549\) 2.15646 3.73509i 0.0920354 0.159410i
\(550\) 0 0
\(551\) 6.52991i 0.278184i
\(552\) 5.58405 3.22396i 0.237673 0.137221i
\(553\) −14.0948 + 8.13765i −0.599373 + 0.346048i
\(554\) 14.3023i 0.607646i
\(555\) 0 0
\(556\) −7.80915 + 13.5258i −0.331182 + 0.573623i
\(557\) −21.8427 12.6109i −0.925504 0.534340i −0.0401170 0.999195i \(-0.512773\pi\)
−0.885387 + 0.464855i \(0.846106\pi\)
\(558\) −7.11493 −0.301199
\(559\) −24.6195 + 0.869535i −1.04129 + 0.0367774i
\(560\) 0 0
\(561\) 6.13949 + 3.54464i 0.259210 + 0.149655i
\(562\) −3.98373 + 6.90002i −0.168043 + 0.291060i
\(563\) −18.2071 31.5356i −0.767337 1.32907i −0.939002 0.343912i \(-0.888248\pi\)
0.171664 0.985155i \(-0.445086\pi\)
\(564\) 5.61529i 0.236446i
\(565\) 0 0
\(566\) 12.7095 7.33785i 0.534222 0.308433i
\(567\) 4.34565i 0.182500i
\(568\) 1.45793 + 2.52520i 0.0611732 + 0.105955i
\(569\) 13.6768 23.6888i 0.573360 0.993088i −0.422858 0.906196i \(-0.638973\pi\)
0.996218 0.0868922i \(-0.0276936\pi\)
\(570\) 0 0
\(571\) 45.7020 1.91257 0.956285 0.292438i \(-0.0944664\pi\)
0.956285 + 0.292438i \(0.0944664\pi\)
\(572\) −7.50267 3.98541i −0.313702 0.166638i
\(573\) −0.586882 −0.0245174
\(574\) 11.3232 + 6.53747i 0.472622 + 0.272869i
\(575\) 0 0
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 31.1697i 1.29761i −0.760954 0.648806i \(-0.775269\pi\)
0.760954 0.648806i \(-0.224731\pi\)
\(578\) 6.88273 3.97374i 0.286284 0.165286i
\(579\) 19.5955 11.3135i 0.814363 0.470173i
\(580\) 0 0
\(581\) −22.5011 38.9730i −0.933501 1.61687i
\(582\) −8.17066 + 14.1520i −0.338685 + 0.586619i
\(583\) 19.2506 + 11.1143i 0.797278 + 0.460308i
\(584\) 7.67804 0.317720
\(585\) 0 0
\(586\) 6.86396 0.283547
\(587\) −13.1880 7.61411i −0.544328 0.314268i 0.202503 0.979282i \(-0.435092\pi\)
−0.746831 + 0.665014i \(0.768426\pi\)
\(588\) 5.94234 10.2924i 0.245058 0.424453i
\(589\) 2.40665 + 4.16844i 0.0991643 + 0.171758i
\(590\) 0 0
\(591\) 1.42681 0.823770i 0.0586912 0.0338854i
\(592\) 6.48073 3.74165i 0.266356 0.153781i
\(593\) 15.1921i 0.623865i −0.950104 0.311933i \(-0.899024\pi\)
0.950104 0.311933i \(-0.100976\pi\)
\(594\) 1.17811 + 2.04055i 0.0483386 + 0.0837249i
\(595\) 0 0
\(596\) −16.9104 9.76324i −0.692678 0.399918i
\(597\) 10.2733 0.420458
\(598\) −0.820594 23.2338i −0.0335566 0.950100i
\(599\) −4.34655 −0.177595 −0.0887975 0.996050i \(-0.528302\pi\)
−0.0887975 + 0.996050i \(0.528302\pi\)
\(600\) 0 0
\(601\) −5.14622 + 8.91351i −0.209918 + 0.363590i −0.951689 0.307065i \(-0.900653\pi\)
0.741770 + 0.670654i \(0.233987\pi\)
\(602\) 14.8458 + 25.7136i 0.605069 + 1.04801i
\(603\) 5.82658i 0.237277i
\(604\) −9.96166 + 5.75137i −0.405334 + 0.234020i
\(605\) 0 0
\(606\) 12.2382i 0.497144i
\(607\) 21.7138 + 37.6094i 0.881335 + 1.52652i 0.849858 + 0.527012i \(0.176688\pi\)
0.0314772 + 0.999504i \(0.489979\pi\)
\(608\) 0.338254 0.585872i 0.0137180 0.0237603i
\(609\) −36.3262 20.9730i −1.47201 0.849867i
\(610\) 0 0
\(611\) −17.8801 9.49791i −0.723352 0.384244i
\(612\) −3.00874 −0.121621
\(613\) 28.2771 + 16.3258i 1.14210 + 0.659392i 0.946950 0.321382i \(-0.104147\pi\)
0.195150 + 0.980773i \(0.437481\pi\)
\(614\) 5.49584 9.51907i 0.221794 0.384159i
\(615\) 0 0
\(616\) 10.2393i 0.412555i
\(617\) −8.37426 + 4.83488i −0.337135 + 0.194645i −0.659004 0.752139i \(-0.729022\pi\)
0.321869 + 0.946784i \(0.395689\pi\)
\(618\) −3.24884 + 1.87572i −0.130688 + 0.0754525i
\(619\) 5.20064i 0.209031i −0.994523 0.104516i \(-0.966671\pi\)
0.994523 0.104516i \(-0.0333292\pi\)
\(620\) 0 0
\(621\) −3.22396 + 5.58405i −0.129373 + 0.224080i
\(622\) −12.0416 6.95220i −0.482823 0.278758i
\(623\) 20.8348 0.834729
\(624\) 3.60330 0.127265i 0.144248 0.00509468i
\(625\) 0 0
\(626\) 12.2746 + 7.08672i 0.490590 + 0.283242i
\(627\) 0.797003 1.38045i 0.0318292 0.0551298i
\(628\) 2.23798 + 3.87629i 0.0893050 + 0.154681i
\(629\) 22.5153i 0.897743i
\(630\) 0 0
\(631\) −6.86811 + 3.96531i −0.273415 + 0.157856i −0.630439 0.776239i \(-0.717125\pi\)
0.357023 + 0.934095i \(0.383792\pi\)
\(632\) 3.74519i 0.148976i
\(633\) −12.1905 21.1145i −0.484527 0.839226i
\(634\) −1.60404 + 2.77828i −0.0637046 + 0.110340i
\(635\) 0 0
\(636\) −9.43400 −0.374082
\(637\) −22.7219 36.3305i −0.900276 1.43947i
\(638\) 22.7432 0.900413
\(639\) −2.52520 1.45793i −0.0998954 0.0576746i
\(640\) 0 0
\(641\) −1.69937 2.94340i −0.0671212 0.116257i 0.830512 0.557001i \(-0.188048\pi\)
−0.897633 + 0.440744i \(0.854715\pi\)
\(642\) 16.6166i 0.655805i
\(643\) −8.13918 + 4.69916i −0.320978 + 0.185317i −0.651828 0.758367i \(-0.725998\pi\)
0.330851 + 0.943683i \(0.392664\pi\)
\(644\) −24.2664 + 14.0102i −0.956228 + 0.552079i
\(645\) 0 0
\(646\) 1.01772 + 1.76274i 0.0400415 + 0.0693540i
\(647\) −20.0324 + 34.6972i −0.787555 + 1.36409i 0.139905 + 0.990165i \(0.455320\pi\)
−0.927461 + 0.373921i \(0.878013\pi\)
\(648\) −0.866025 0.500000i −0.0340207 0.0196419i
\(649\) −12.4165 −0.487389
\(650\) 0 0
\(651\) 30.9190 1.21181
\(652\) −6.71645 3.87774i −0.263036 0.151864i
\(653\) −15.6981 + 27.1900i −0.614316 + 1.06403i 0.376189 + 0.926543i \(0.377234\pi\)
−0.990504 + 0.137483i \(0.956099\pi\)
\(654\) 5.55578 + 9.62290i 0.217248 + 0.376285i
\(655\) 0 0
\(656\) 2.60564 1.50437i 0.101733 0.0587358i
\(657\) −6.64938 + 3.83902i −0.259417 + 0.149774i
\(658\) 24.4021i 0.951292i
\(659\) −9.48950 16.4363i −0.369659 0.640268i 0.619853 0.784718i \(-0.287192\pi\)
−0.989512 + 0.144450i \(0.953859\pi\)
\(660\) 0 0
\(661\) 11.4484 + 6.60972i 0.445290 + 0.257088i 0.705839 0.708372i \(-0.250570\pi\)
−0.260549 + 0.965461i \(0.583904\pi\)
\(662\) −25.7574 −1.00109
\(663\) −5.08909 + 9.58038i −0.197644 + 0.372071i
\(664\) −10.3557 −0.401878
\(665\) 0 0
\(666\) −3.74165 + 6.48073i −0.144986 + 0.251123i
\(667\) 31.1189 + 53.8995i 1.20493 + 2.08700i
\(668\) 0.678042i 0.0262342i
\(669\) 4.01476 2.31792i 0.155220 0.0896161i
\(670\) 0 0
\(671\) 10.1622i 0.392308i
\(672\) −2.17283 3.76344i −0.0838186 0.145178i
\(673\) −4.30020 + 7.44817i −0.165761 + 0.287106i −0.936925 0.349530i \(-0.886341\pi\)
0.771164 + 0.636636i \(0.219675\pi\)
\(674\) −0.668639 0.386039i −0.0257550 0.0148697i
\(675\) 0 0
\(676\) 5.68953 11.6889i 0.218828 0.449571i
\(677\) 25.8539 0.993646 0.496823 0.867852i \(-0.334500\pi\)
0.496823 + 0.867852i \(0.334500\pi\)
\(678\) −13.5620 7.83002i −0.520845 0.300710i
\(679\) 35.5068 61.4997i 1.36263 2.36014i
\(680\) 0 0
\(681\) 17.7843i 0.681495i
\(682\) −14.5184 + 8.38219i −0.555938 + 0.320971i
\(683\) −18.1041 + 10.4524i −0.692734 + 0.399950i −0.804636 0.593769i \(-0.797639\pi\)
0.111901 + 0.993719i \(0.464306\pi\)
\(684\) 0.676507i 0.0258669i
\(685\) 0 0
\(686\) −10.6136 + 18.3832i −0.405228 + 0.701875i
\(687\) 13.2815 + 7.66806i 0.506720 + 0.292555i
\(688\) 6.83247 0.260486
\(689\) −15.9570 + 30.0396i −0.607914 + 1.14442i
\(690\) 0 0
\(691\) −42.3440 24.4473i −1.61084 0.930019i −0.989176 0.146736i \(-0.953123\pi\)
−0.621665 0.783283i \(-0.713543\pi\)
\(692\) −0.360974 + 0.625226i −0.0137222 + 0.0237675i
\(693\) −5.11967 8.86753i −0.194480 0.336850i
\(694\) 25.1558i 0.954902i
\(695\) 0 0
\(696\) −8.35922 + 4.82620i −0.316855 + 0.182936i
\(697\) 9.05251i 0.342888i
\(698\) 13.6602 + 23.6602i 0.517046 + 0.895551i
\(699\) 3.87774 6.71645i 0.146670 0.254039i
\(700\) 0 0
\(701\) 31.9805 1.20789 0.603944 0.797027i \(-0.293595\pi\)
0.603944 + 0.797027i \(0.293595\pi\)
\(702\) −3.05692 + 1.91187i −0.115376 + 0.0721588i
\(703\) 5.06250 0.190936
\(704\) 2.04055 + 1.17811i 0.0769062 + 0.0444018i
\(705\) 0 0
\(706\) 3.75948 + 6.51161i 0.141490 + 0.245068i
\(707\) 53.1831i 2.00016i
\(708\) 4.56364 2.63482i 0.171512 0.0990225i
\(709\) 5.42026 3.12939i 0.203562 0.117527i −0.394754 0.918787i \(-0.629170\pi\)
0.598316 + 0.801260i \(0.295837\pi\)
\(710\) 0 0
\(711\) −1.87260 3.24343i −0.0702278 0.121638i
\(712\) 2.39720 4.15208i 0.0898389 0.155606i
\(713\) −39.7301 22.9382i −1.48791 0.859043i
\(714\) 13.0749 0.489317
\(715\) 0 0
\(716\) −6.37346 −0.238187
\(717\) −16.1435 9.32045i −0.602890 0.348079i
\(718\) −5.42010 + 9.38789i −0.202276 + 0.350353i
\(719\) 9.52308 + 16.4945i 0.355151 + 0.615140i 0.987144 0.159835i \(-0.0510961\pi\)
−0.631993 + 0.774974i \(0.717763\pi\)
\(720\) 0 0
\(721\) 14.1183 8.15122i 0.525794 0.303567i
\(722\) −16.0581 + 9.27117i −0.597622 + 0.345037i
\(723\) 3.07016i 0.114181i
\(724\) 11.0107 + 19.0711i 0.409209 + 0.708770i
\(725\) 0 0
\(726\) −4.71827 2.72410i −0.175111 0.101101i
\(727\) −28.2602 −1.04811 −0.524056 0.851684i \(-0.675582\pi\)
−0.524056 + 0.851684i \(0.675582\pi\)
\(728\) −15.6587 + 0.553049i −0.580350 + 0.0204974i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −10.2786 + 17.8030i −0.380166 + 0.658468i
\(732\) 2.15646 + 3.73509i 0.0797050 + 0.138053i
\(733\) 5.28165i 0.195082i −0.995232 0.0975410i \(-0.968902\pi\)
0.995232 0.0975410i \(-0.0310977\pi\)
\(734\) 6.50838 3.75761i 0.240229 0.138696i
\(735\) 0 0
\(736\) 6.44791i 0.237673i
\(737\) −6.86437 11.8894i −0.252852 0.437953i
\(738\) −1.50437 + 2.60564i −0.0553766 + 0.0959151i
\(739\) −34.5736 19.9611i −1.27181 0.734280i −0.296482 0.955038i \(-0.595813\pi\)
−0.975329 + 0.220758i \(0.929147\pi\)
\(740\) 0 0
\(741\) 2.15412 + 1.14427i 0.0791337 + 0.0420358i
\(742\) 40.9969 1.50504
\(743\) −16.0828 9.28543i −0.590022 0.340650i 0.175084 0.984553i \(-0.443980\pi\)
−0.765106 + 0.643904i \(0.777314\pi\)
\(744\) 3.55746 6.16171i 0.130423 0.225899i
\(745\) 0 0
\(746\) 22.8786i 0.837646i
\(747\) 8.96827 5.17783i 0.328132 0.189447i
\(748\) −6.13949 + 3.54464i −0.224482 + 0.129605i
\(749\) 72.2100i 2.63850i
\(750\) 0 0
\(751\) 15.1001 26.1541i 0.551010 0.954377i −0.447192 0.894438i \(-0.647576\pi\)
0.998202 0.0599394i \(-0.0190907\pi\)
\(752\) 4.86298 + 2.80764i 0.177335 + 0.102384i
\(753\) −7.12807 −0.259761
\(754\) 1.22841 + 34.7805i 0.0447361 + 1.26663i
\(755\) 0 0
\(756\) 3.76344 + 2.17283i 0.136875 + 0.0790249i
\(757\) −2.80211 + 4.85341i −0.101845 + 0.176400i −0.912445 0.409200i \(-0.865808\pi\)
0.810600 + 0.585600i \(0.199141\pi\)
\(758\) 13.0569 + 22.6152i 0.474247 + 0.821421i
\(759\) 15.1927i 0.551462i
\(760\) 0 0
\(761\) −5.77640 + 3.33501i −0.209394 + 0.120894i −0.601030 0.799227i \(-0.705243\pi\)
0.391635 + 0.920120i \(0.371909\pi\)
\(762\) 13.6047i 0.492847i
\(763\) −24.1435 41.8178i −0.874053 1.51391i
\(764\) 0.293441 0.508255i 0.0106163 0.0183880i
\(765\) 0 0
\(766\) −13.6930 −0.494750
\(767\) −0.670640 18.9881i −0.0242154 0.685621i
\(768\) −1.00000 −0.0360844
\(769\) −6.03234 3.48277i −0.217532 0.125592i 0.387275 0.921964i \(-0.373416\pi\)
−0.604807 + 0.796372i \(0.706750\pi\)
\(770\) 0 0
\(771\) −7.12178 12.3353i −0.256485 0.444244i
\(772\) 22.6270i 0.814363i
\(773\) 18.4893 10.6748i 0.665013 0.383945i −0.129172 0.991622i \(-0.541232\pi\)
0.794184 + 0.607677i \(0.207898\pi\)
\(774\) −5.91710 + 3.41624i −0.212686 + 0.122794i
\(775\) 0 0
\(776\) −8.17066 14.1520i −0.293310 0.508027i
\(777\) 16.2599 28.1630i 0.583321 1.01034i
\(778\) −21.5989 12.4701i −0.774359 0.447076i
\(779\) 2.03543 0.0729270
\(780\) 0 0
\(781\) −6.87041 −0.245843
\(782\) −16.8010 9.70004i −0.600801 0.346873i
\(783\) 4.82620 8.35922i 0.172474 0.298734i
\(784\) 5.94234 + 10.2924i 0.212226 + 0.367587i
\(785\) 0 0
\(786\) 8.84404 5.10611i 0.315457 0.182129i
\(787\) 16.6562 9.61648i 0.593731 0.342791i −0.172841 0.984950i \(-0.555295\pi\)
0.766571 + 0.642159i \(0.221961\pi\)
\(788\) 1.64754i 0.0586912i
\(789\) 7.70101 + 13.3385i 0.274163 + 0.474865i
\(790\) 0 0
\(791\) 58.9357 + 34.0265i 2.09551 + 1.20984i
\(792\) −2.35623 −0.0837249
\(793\) 15.5407 0.548883i 0.551868 0.0194914i
\(794\) 29.1034 1.03284
\(795\) 0 0
\(796\) −5.13665 + 8.89694i −0.182064 + 0.315344i
\(797\) 11.3784 + 19.7080i 0.403044 + 0.698094i 0.994092 0.108543i \(-0.0346187\pi\)
−0.591047 + 0.806637i \(0.701285\pi\)
\(798\) 2.93986i 0.104070i
\(799\) −14.6314 + 8.44747i −0.517623 + 0.298850i
\(800\) 0 0
\(801\) 4.79440i 0.169402i
\(802\) −8.34823 14.4596i −0.294786 0.510585i
\(803\) −9.04561 + 15.6675i −0.319213 + 0.552892i
\(804\) 5.04596 + 2.91329i 0.177957 + 0.102744i
\(805\) 0 0
\(806\) −13.6028 21.7498i −0.479138 0.766103i
\(807\) −26.6268 −0.937308
\(808\) −10.5986 6.11911i −0.372858 0.215270i
\(809\) 17.7054 30.6667i 0.622490 1.07818i −0.366530 0.930406i \(-0.619454\pi\)
0.989020 0.147779i \(-0.0472123\pi\)
\(810\) 0 0
\(811\) 1.41268i 0.0496060i −0.999692 0.0248030i \(-0.992104\pi\)
0.999692 0.0248030i \(-0.00789586\pi\)
\(812\) 36.3262 20.9730i 1.27480 0.736007i
\(813\) −6.66899 + 3.85034i −0.233892 + 0.135037i
\(814\) 17.6324i 0.618014i
\(815\) 0 0
\(816\) 1.50437 2.60564i 0.0526635 0.0912158i
\(817\) 4.00296 + 2.31111i 0.140046 + 0.0808555i
\(818\) −24.6113 −0.860513
\(819\) 13.2843 8.30831i 0.464191 0.290316i
\(820\) 0 0
\(821\) 14.7591 + 8.52118i 0.515097 + 0.297391i 0.734926 0.678147i \(-0.237217\pi\)
−0.219829 + 0.975538i \(0.570550\pi\)
\(822\) −6.20689 + 10.7506i −0.216490 + 0.374972i
\(823\) 2.21485 + 3.83623i 0.0772047 + 0.133723i 0.902043 0.431646i \(-0.142067\pi\)
−0.824838 + 0.565369i \(0.808734\pi\)
\(824\) 3.75144i 0.130688i
\(825\) 0 0
\(826\) −19.8320 + 11.4500i −0.690043 + 0.398396i
\(827\) 41.2574i 1.43466i −0.696734 0.717330i \(-0.745364\pi\)
0.696734 0.717330i \(-0.254636\pi\)
\(828\) −3.22396 5.58405i −0.112040 0.194059i
\(829\) −21.3857 + 37.0411i −0.742756 + 1.28649i 0.208479 + 0.978027i \(0.433149\pi\)
−0.951236 + 0.308465i \(0.900185\pi\)
\(830\) 0 0
\(831\) −14.3023 −0.496141
\(832\) −1.69144 + 3.18419i −0.0586400 + 0.110392i
\(833\) −35.7579 −1.23894
\(834\) 13.5258 + 7.80915i 0.468361 + 0.270409i
\(835\) 0 0
\(836\) 0.797003 + 1.38045i 0.0275649 + 0.0477438i
\(837\) 7.11493i 0.245928i
\(838\) 23.4739 13.5527i 0.810893 0.468169i
\(839\) 0.249908 0.144284i 0.00862777 0.00498124i −0.495680 0.868505i \(-0.665081\pi\)
0.504308 + 0.863524i \(0.331748\pi\)
\(840\) 0 0
\(841\) −32.0843 55.5717i −1.10636 1.91626i
\(842\) 16.4998 28.5785i 0.568621 0.984880i
\(843\) 6.90002 + 3.98373i 0.237649 + 0.137207i
\(844\) 24.3809 0.839226
\(845\) 0 0
\(846\) −5.61529 −0.193058
\(847\) 20.5040 + 11.8380i 0.704524 + 0.406757i
\(848\) 4.71700 8.17008i 0.161982 0.280562i
\(849\) −7.33785 12.7095i −0.251834 0.436190i
\(850\) 0 0
\(851\) −41.7871 + 24.1258i −1.43244 + 0.827022i
\(852\) 2.52520 1.45793i 0.0865120 0.0499477i
\(853\) 42.9336i 1.47002i −0.678058 0.735009i \(-0.737178\pi\)
0.678058 0.735009i \(-0.262822\pi\)
\(854\) −9.37121 16.2314i −0.320676 0.555428i
\(855\) 0 0
\(856\) 14.3904 + 8.30831i 0.491854 + 0.283972i
\(857\) −43.6929 −1.49252 −0.746261 0.665654i \(-0.768153\pi\)
−0.746261 + 0.665654i \(0.768153\pi\)
\(858\) −3.98541 + 7.50267i −0.136060 + 0.256137i
\(859\) 50.5362 1.72427 0.862137 0.506676i \(-0.169126\pi\)
0.862137 + 0.506676i \(0.169126\pi\)
\(860\) 0 0
\(861\) 6.53747 11.3232i 0.222796 0.385894i
\(862\) 4.30517 + 7.45678i 0.146635 + 0.253979i
\(863\) 9.24937i 0.314852i −0.987531 0.157426i \(-0.949680\pi\)
0.987531 0.157426i \(-0.0503196\pi\)
\(864\) 0.866025 0.500000i 0.0294628 0.0170103i
\(865\) 0 0
\(866\) 3.45488i 0.117402i
\(867\) −3.97374 6.88273i −0.134955 0.233750i
\(868\) −15.4595 + 26.7766i −0.524729 + 0.908858i
\(869\) −7.64226 4.41226i −0.259246 0.149676i
\(870\) 0 0
\(871\) 17.8114 11.1396i 0.603516 0.377452i
\(872\) −11.1116 −0.376285
\(873\) 14.1520 + 8.17066i 0.478973 + 0.276535i
\(874\) −2.18103 + 3.77765i −0.0737744 + 0.127781i
\(875\) 0 0
\(876\) 7.67804i 0.259417i
\(877\) 49.3035 28.4654i 1.66486 0.961208i 0.694517 0.719476i \(-0.255618\pi\)
0.970343 0.241731i \(-0.0777153\pi\)
\(878\) 20.9974 12.1229i 0.708628 0.409127i
\(879\) 6.86396i 0.231515i
\(880\) 0 0
\(881\) 7.98900 13.8374i 0.269156 0.466192i −0.699488 0.714644i \(-0.746588\pi\)
0.968644 + 0.248452i \(0.0799218\pi\)
\(882\) −10.2924 5.94234i −0.346564 0.200089i
\(883\) 0.189481 0.00637654 0.00318827 0.999995i \(-0.498985\pi\)
0.00318827 + 0.999995i \(0.498985\pi\)
\(884\) −5.75231 9.19748i −0.193471 0.309345i
\(885\) 0 0
\(886\) 11.3994 + 6.58147i 0.382972 + 0.221109i
\(887\) −8.96852 + 15.5339i −0.301133 + 0.521578i −0.976393 0.216002i \(-0.930698\pi\)
0.675260 + 0.737580i \(0.264032\pi\)
\(888\) −3.74165 6.48073i −0.125562 0.217479i
\(889\) 59.1213i 1.98287i
\(890\) 0 0
\(891\) 2.04055 1.17811i 0.0683611 0.0394683i
\(892\) 4.63585i 0.155220i
\(893\) 1.89939 + 3.28984i 0.0635607 + 0.110090i
\(894\) −9.76324 + 16.9104i −0.326532 + 0.565570i
\(895\) 0 0
\(896\) 4.34565 0.145178
\(897\) −23.2338 + 0.820594i −0.775754 + 0.0273988i
\(898\) −2.51464 −0.0839145
\(899\) 59.4752 + 34.3380i 1.98361 + 1.14524i
\(900\) 0 0
\(901\) 14.1922 + 24.5817i 0.472812 + 0.818934i
\(902\) 7.08928i 0.236047i
\(903\) 25.7136 14.8458i 0.855696 0.494036i
\(904\) 13.5620 7.83002i 0.451065 0.260423i
\(905\) 0 0
\(906\) 5.75137 + 9.96166i 0.191076 + 0.330954i
\(907\) 16.5050 28.5874i 0.548038 0.949230i −0.450371 0.892842i \(-0.648708\pi\)
0.998409 0.0563882i \(-0.0179585\pi\)
\(908\) −15.4016 8.89213i −0.511121 0.295096i
\(909\) 12.2382 0.405916
\(910\) 0 0
\(911\) 13.9676 0.462768 0.231384 0.972863i \(-0.425675\pi\)
0.231384 + 0.972863i \(0.425675\pi\)
\(912\) −0.585872 0.338254i −0.0194002 0.0112007i
\(913\) 12.2002 21.1313i 0.403766 0.699344i
\(914\) −5.38493 9.32698i −0.178118 0.308509i
\(915\) 0 0
\(916\) −13.2815 + 7.66806i −0.438832 + 0.253360i
\(917\) −38.4331 + 22.1894i −1.26917 + 0.732758i
\(918\) 3.00874i 0.0993032i
\(919\) −9.50273 16.4592i −0.313466 0.542939i 0.665644 0.746269i \(-0.268157\pi\)
−0.979110 + 0.203330i \(0.934824\pi\)
\(920\) 0 0
\(921\) −9.51907 5.49584i −0.313664 0.181094i
\(922\) 11.8915 0.391626
\(923\) −0.371086 10.5067i −0.0122144 0.345832i
\(924\) 10.2393 0.336850
\(925\) 0 0
\(926\) −14.9731 + 25.9342i −0.492047 + 0.852250i
\(927\) 1.87572 + 3.24884i 0.0616067 + 0.106706i
\(928\) 9.65239i 0.316855i
\(929\) 50.0606 28.9025i 1.64243 0.948259i 0.662468 0.749090i \(-0.269509\pi\)
0.979965 0.199169i \(-0.0638244\pi\)
\(930\) 0 0
\(931\) 8.04007i 0.263503i
\(932\) 3.87774 + 6.71645i 0.127020 + 0.220005i
\(933\) −6.95220 + 12.0416i −0.227605 + 0.394223i
\(934\) −18.9607 10.9470i −0.620414 0.358196i
\(935\) 0 0
\(936\) −0.127265 3.60330i −0.00415979 0.117778i
\(937\) −39.7996 −1.30020 −0.650099 0.759850i \(-0.725273\pi\)
−0.650099 + 0.759850i \(0.725273\pi\)
\(938\) −21.9280 12.6601i −0.715974 0.413368i
\(939\) 7.08672 12.2746i 0.231266 0.400565i
\(940\) 0 0
\(941\) 1.26326i 0.0411810i 0.999788 + 0.0205905i \(0.00655462\pi\)
−0.999788 + 0.0205905i \(0.993445\pi\)
\(942\) 3.87629 2.23798i 0.126296 0.0729172i
\(943\) −16.8010 + 9.70004i −0.547115 + 0.315877i
\(944\) 5.26964i 0.171512i
\(945\) 0 0
\(946\) −8.04943 + 13.9420i −0.261710 + 0.453294i
\(947\) 7.75545 + 4.47761i 0.252018 + 0.145503i 0.620688 0.784058i \(-0.286853\pi\)
−0.368670 + 0.929560i \(0.620187\pi\)
\(948\) 3.74519 0.121638
\(949\) −24.4483 12.9869i −0.793626 0.421574i
\(950\) 0 0
\(951\) 2.77828 + 1.60404i 0.0900920 + 0.0520146i
\(952\) −6.53747 + 11.3232i −0.211880 + 0.366988i
\(953\) −6.18504 10.7128i −0.200353 0.347022i 0.748289 0.663373i \(-0.230876\pi\)
−0.948642 + 0.316351i \(0.897542\pi\)
\(954\) 9.43400i 0.305437i
\(955\) 0 0
\(956\) 16.1435 9.32045i 0.522118 0.301445i
\(957\) 22.7432i 0.735184i
\(958\) 4.56168 + 7.90106i 0.147381 + 0.255272i
\(959\) 26.9730 46.7185i 0.871002 1.50862i
\(960\) 0 0
\(961\) −19.6222 −0.632973
\(962\) −26.9646 + 0.952362i −0.869374 + 0.0307054i
\(963\) −16.6166 −0.535463
\(964\) −2.65884 1.53508i −0.0856354 0.0494416i
\(965\) 0 0
\(966\) 14.0102 + 24.2664i 0.450770 + 0.780757i
\(967\) 6.35606i 0.204397i −0.994764 0.102198i \(-0.967412\pi\)
0.994764 0.102198i \(-0.0325877\pi\)
\(968\) 4.71827 2.72410i 0.151651 0.0875557i
\(969\) 1.76274 1.01772i 0.0566273 0.0326938i
\(970\) 0 0
\(971\) 23.6660 + 40.9907i 0.759477 + 1.31545i 0.943117 + 0.332460i \(0.107879\pi\)
−0.183640 + 0.982994i \(0.558788\pi\)
\(972\) −0.500000 + 0.866025i −0.0160375 + 0.0277778i
\(973\) −58.7786 33.9358i −1.88435 1.08793i
\(974\) −21.7174 −0.695872
\(975\) 0 0
\(976\) −4.31292 −0.138053
\(977\) 42.6002 + 24.5952i 1.36290 + 0.786871i 0.990009 0.141005i \(-0.0450332\pi\)
0.372891 + 0.927875i \(0.378367\pi\)
\(978\) −3.87774 + 6.71645i −0.123997 + 0.214768i
\(979\) 5.64835 + 9.78324i 0.180522 + 0.312674i
\(980\) 0 0
\(981\) 9.62290 5.55578i 0.307236 0.177383i
\(982\) 28.6548 16.5438i 0.914411 0.527935i
\(983\) 22.1542i 0.706609i −0.935508 0.353304i \(-0.885058\pi\)
0.935508 0.353304i \(-0.114942\pi\)
\(984\) −1.50437 2.60564i −0.0479576 0.0830649i
\(985\) 0 0
\(986\) 25.1507 + 14.5208i 0.800961 + 0.462435i
\(987\) 24.4021 0.776727
\(988\) −2.06803 + 1.29339i −0.0657928 + 0.0411483i
\(989\) −44.0552 −1.40087
\(990\) 0 0
\(991\) 24.0251 41.6127i 0.763182 1.32187i −0.178020 0.984027i \(-0.556969\pi\)
0.941202 0.337843i \(-0.109697\pi\)
\(992\) 3.55746 + 6.16171i 0.112950 + 0.195634i
\(993\) 25.7574i 0.817387i
\(994\) −10.9736 + 6.33564i −0.348063 + 0.200954i
\(995\) 0 0
\(996\) 10.3557i 0.328132i
\(997\) 23.6919 + 41.0355i 0.750329 + 1.29961i 0.947663 + 0.319271i \(0.103438\pi\)
−0.197335 + 0.980336i \(0.563229\pi\)
\(998\) 5.24444 9.08363i 0.166010 0.287537i
\(999\) 6.48073 + 3.74165i 0.205041 + 0.118381i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1950.2.bc.j.901.4 12
5.2 odd 4 390.2.x.a.199.3 yes 12
5.3 odd 4 390.2.x.b.199.4 yes 12
5.4 even 2 1950.2.bc.i.901.3 12
13.10 even 6 inner 1950.2.bc.j.751.4 12
15.2 even 4 1170.2.bj.d.199.2 12
15.8 even 4 1170.2.bj.c.199.5 12
65.23 odd 12 390.2.x.a.49.3 12
65.49 even 6 1950.2.bc.i.751.3 12
65.62 odd 12 390.2.x.b.49.4 yes 12
195.23 even 12 1170.2.bj.d.829.2 12
195.62 even 12 1170.2.bj.c.829.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.x.a.49.3 12 65.23 odd 12
390.2.x.a.199.3 yes 12 5.2 odd 4
390.2.x.b.49.4 yes 12 65.62 odd 12
390.2.x.b.199.4 yes 12 5.3 odd 4
1170.2.bj.c.199.5 12 15.8 even 4
1170.2.bj.c.829.5 12 195.62 even 12
1170.2.bj.d.199.2 12 15.2 even 4
1170.2.bj.d.829.2 12 195.23 even 12
1950.2.bc.i.751.3 12 65.49 even 6
1950.2.bc.i.901.3 12 5.4 even 2
1950.2.bc.j.751.4 12 13.10 even 6 inner
1950.2.bc.j.901.4 12 1.1 even 1 trivial