Properties

Label 1950.2.bc.i.901.3
Level $1950$
Weight $2$
Character 1950.901
Analytic conductor $15.571$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1950,2,Mod(751,1950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1950, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1950.751"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-6,6,0,0,12,0,-6,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 8 x^{10} + 34 x^{9} + 8 x^{8} - 134 x^{7} + 98 x^{6} + 154 x^{5} + 104 x^{4} + \cdots + 2197 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.3
Root \(2.00607 - 1.30680i\) of defining polynomial
Character \(\chi\) \(=\) 1950.901
Dual form 1950.2.bc.i.751.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.866025 - 0.500000i) q^{6} +(3.76344 - 2.17283i) q^{7} -1.00000i q^{8} +(-0.500000 - 0.866025i) q^{9} +(-2.04055 - 1.17811i) q^{11} -1.00000 q^{12} +(-1.69144 + 3.18419i) q^{13} -4.34565 q^{14} +(-0.500000 + 0.866025i) q^{16} +(1.50437 + 2.60564i) q^{17} +1.00000i q^{18} +(-0.585872 + 0.338254i) q^{19} +4.34565i q^{21} +(1.17811 + 2.04055i) q^{22} +(-3.22396 + 5.58405i) q^{23} +(0.866025 + 0.500000i) q^{24} +(3.05692 - 1.91187i) q^{26} +1.00000 q^{27} +(3.76344 + 2.17283i) q^{28} +(-4.82620 + 8.35922i) q^{29} -7.11493i q^{31} +(0.866025 - 0.500000i) q^{32} +(2.04055 - 1.17811i) q^{33} -3.00874i q^{34} +(0.500000 - 0.866025i) q^{36} +(6.48073 + 3.74165i) q^{37} +0.676507 q^{38} +(-1.91187 - 3.05692i) q^{39} +(-2.60564 - 1.50437i) q^{41} +(2.17283 - 3.76344i) q^{42} +(3.41624 + 5.91710i) q^{43} -2.35623i q^{44} +(5.58405 - 3.22396i) q^{46} +5.61529i q^{47} +(-0.500000 - 0.866025i) q^{48} +(5.94234 - 10.2924i) q^{49} -3.00874 q^{51} +(-3.60330 + 0.127265i) q^{52} +9.43400 q^{53} +(-0.866025 - 0.500000i) q^{54} +(-2.17283 - 3.76344i) q^{56} -0.676507i q^{57} +(8.35922 - 4.82620i) q^{58} +(4.56364 - 2.63482i) q^{59} +(2.15646 + 3.73509i) q^{61} +(-3.55746 + 6.16171i) q^{62} +(-3.76344 - 2.17283i) q^{63} -1.00000 q^{64} -2.35623 q^{66} +(-5.04596 - 2.91329i) q^{67} +(-1.50437 + 2.60564i) q^{68} +(-3.22396 - 5.58405i) q^{69} +(2.52520 - 1.45793i) q^{71} +(-0.866025 + 0.500000i) q^{72} +7.67804i q^{73} +(-3.74165 - 6.48073i) q^{74} +(-0.585872 - 0.338254i) q^{76} -10.2393 q^{77} +(0.127265 + 3.60330i) q^{78} +3.74519 q^{79} +(-0.500000 + 0.866025i) q^{81} +(1.50437 + 2.60564i) q^{82} -10.3557i q^{83} +(-3.76344 + 2.17283i) q^{84} -6.83247i q^{86} +(-4.82620 - 8.35922i) q^{87} +(-1.17811 + 2.04055i) q^{88} +(-4.15208 - 2.39720i) q^{89} +(0.553049 + 15.6587i) q^{91} -6.44791 q^{92} +(6.16171 + 3.55746i) q^{93} +(2.80764 - 4.86298i) q^{94} +1.00000i q^{96} +(14.1520 - 8.17066i) q^{97} +(-10.2924 + 5.94234i) q^{98} +2.35623i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{3} + 6 q^{4} + 12 q^{7} - 6 q^{9} + 6 q^{11} - 12 q^{12} - 4 q^{13} - 4 q^{14} - 6 q^{16} - 8 q^{17} + 6 q^{19} + 6 q^{22} - 16 q^{23} - 2 q^{26} + 12 q^{27} + 12 q^{28} - 14 q^{29} - 6 q^{33}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0.866025 0.500000i 0.353553 0.204124i
\(7\) 3.76344 2.17283i 1.42245 0.821251i 0.425940 0.904751i \(-0.359943\pi\)
0.996508 + 0.0835003i \(0.0266100\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −2.04055 1.17811i −0.615250 0.355215i 0.159767 0.987155i \(-0.448926\pi\)
−0.775017 + 0.631940i \(0.782259\pi\)
\(12\) −1.00000 −0.288675
\(13\) −1.69144 + 3.18419i −0.469120 + 0.883134i
\(14\) −4.34565 −1.16142
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.50437 + 2.60564i 0.364863 + 0.631962i 0.988754 0.149550i \(-0.0477824\pi\)
−0.623891 + 0.781511i \(0.714449\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −0.585872 + 0.338254i −0.134408 + 0.0776007i −0.565696 0.824614i \(-0.691393\pi\)
0.431288 + 0.902214i \(0.358059\pi\)
\(20\) 0 0
\(21\) 4.34565i 0.948299i
\(22\) 1.17811 + 2.04055i 0.251175 + 0.435047i
\(23\) −3.22396 + 5.58405i −0.672241 + 1.16436i 0.305026 + 0.952344i \(0.401335\pi\)
−0.977267 + 0.212012i \(0.931998\pi\)
\(24\) 0.866025 + 0.500000i 0.176777 + 0.102062i
\(25\) 0 0
\(26\) 3.05692 1.91187i 0.599511 0.374948i
\(27\) 1.00000 0.192450
\(28\) 3.76344 + 2.17283i 0.711224 + 0.410625i
\(29\) −4.82620 + 8.35922i −0.896202 + 1.55227i −0.0638921 + 0.997957i \(0.520351\pi\)
−0.832310 + 0.554311i \(0.812982\pi\)
\(30\) 0 0
\(31\) 7.11493i 1.27788i −0.769257 0.638939i \(-0.779374\pi\)
0.769257 0.638939i \(-0.220626\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 2.04055 1.17811i 0.355215 0.205083i
\(34\) 3.00874i 0.515995i
\(35\) 0 0
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) 6.48073 + 3.74165i 1.06542 + 0.615123i 0.926928 0.375240i \(-0.122440\pi\)
0.138497 + 0.990363i \(0.455773\pi\)
\(38\) 0.676507 0.109744
\(39\) −1.91187 3.05692i −0.306144 0.489499i
\(40\) 0 0
\(41\) −2.60564 1.50437i −0.406933 0.234943i 0.282538 0.959256i \(-0.408824\pi\)
−0.689471 + 0.724313i \(0.742157\pi\)
\(42\) 2.17283 3.76344i 0.335274 0.580712i
\(43\) 3.41624 + 5.91710i 0.520971 + 0.902349i 0.999703 + 0.0243872i \(0.00776344\pi\)
−0.478731 + 0.877961i \(0.658903\pi\)
\(44\) 2.35623i 0.355215i
\(45\) 0 0
\(46\) 5.58405 3.22396i 0.823324 0.475346i
\(47\) 5.61529i 0.819074i 0.912294 + 0.409537i \(0.134310\pi\)
−0.912294 + 0.409537i \(0.865690\pi\)
\(48\) −0.500000 0.866025i −0.0721688 0.125000i
\(49\) 5.94234 10.2924i 0.848906 1.47035i
\(50\) 0 0
\(51\) −3.00874 −0.421308
\(52\) −3.60330 + 0.127265i −0.499688 + 0.0176485i
\(53\) 9.43400 1.29586 0.647930 0.761700i \(-0.275635\pi\)
0.647930 + 0.761700i \(0.275635\pi\)
\(54\) −0.866025 0.500000i −0.117851 0.0680414i
\(55\) 0 0
\(56\) −2.17283 3.76344i −0.290356 0.502911i
\(57\) 0.676507i 0.0896056i
\(58\) 8.35922 4.82620i 1.09762 0.633711i
\(59\) 4.56364 2.63482i 0.594135 0.343024i −0.172596 0.984993i \(-0.555215\pi\)
0.766731 + 0.641969i \(0.221882\pi\)
\(60\) 0 0
\(61\) 2.15646 + 3.73509i 0.276106 + 0.478230i 0.970414 0.241449i \(-0.0776225\pi\)
−0.694307 + 0.719679i \(0.744289\pi\)
\(62\) −3.55746 + 6.16171i −0.451798 + 0.782538i
\(63\) −3.76344 2.17283i −0.474149 0.273750i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −2.35623 −0.290032
\(67\) −5.04596 2.91329i −0.616463 0.355915i 0.159028 0.987274i \(-0.449164\pi\)
−0.775490 + 0.631359i \(0.782497\pi\)
\(68\) −1.50437 + 2.60564i −0.182432 + 0.315981i
\(69\) −3.22396 5.58405i −0.388119 0.672241i
\(70\) 0 0
\(71\) 2.52520 1.45793i 0.299686 0.173024i −0.342616 0.939476i \(-0.611313\pi\)
0.642302 + 0.766452i \(0.277980\pi\)
\(72\) −0.866025 + 0.500000i −0.102062 + 0.0589256i
\(73\) 7.67804i 0.898647i 0.893369 + 0.449323i \(0.148335\pi\)
−0.893369 + 0.449323i \(0.851665\pi\)
\(74\) −3.74165 6.48073i −0.434958 0.753369i
\(75\) 0 0
\(76\) −0.585872 0.338254i −0.0672042 0.0388004i
\(77\) −10.2393 −1.16688
\(78\) 0.127265 + 3.60330i 0.0144099 + 0.407994i
\(79\) 3.74519 0.421367 0.210683 0.977554i \(-0.432431\pi\)
0.210683 + 0.977554i \(0.432431\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 1.50437 + 2.60564i 0.166130 + 0.287745i
\(83\) 10.3557i 1.13668i −0.822793 0.568341i \(-0.807585\pi\)
0.822793 0.568341i \(-0.192415\pi\)
\(84\) −3.76344 + 2.17283i −0.410625 + 0.237075i
\(85\) 0 0
\(86\) 6.83247i 0.736765i
\(87\) −4.82620 8.35922i −0.517422 0.896202i
\(88\) −1.17811 + 2.04055i −0.125587 + 0.217524i
\(89\) −4.15208 2.39720i −0.440119 0.254103i 0.263529 0.964651i \(-0.415114\pi\)
−0.703648 + 0.710549i \(0.748447\pi\)
\(90\) 0 0
\(91\) 0.553049 + 15.6587i 0.0579753 + 1.64148i
\(92\) −6.44791 −0.672241
\(93\) 6.16171 + 3.55746i 0.638939 + 0.368892i
\(94\) 2.80764 4.86298i 0.289586 0.501578i
\(95\) 0 0
\(96\) 1.00000i 0.102062i
\(97\) 14.1520 8.17066i 1.43692 0.829605i 0.439283 0.898349i \(-0.355232\pi\)
0.997634 + 0.0687436i \(0.0218990\pi\)
\(98\) −10.2924 + 5.94234i −1.03969 + 0.600267i
\(99\) 2.35623i 0.236810i
\(100\) 0 0
\(101\) −6.11911 + 10.5986i −0.608875 + 1.05460i 0.382552 + 0.923934i \(0.375045\pi\)
−0.991426 + 0.130668i \(0.958288\pi\)
\(102\) 2.60564 + 1.50437i 0.257997 + 0.148955i
\(103\) 3.75144 0.369640 0.184820 0.982772i \(-0.440830\pi\)
0.184820 + 0.982772i \(0.440830\pi\)
\(104\) 3.18419 + 1.69144i 0.312235 + 0.165859i
\(105\) 0 0
\(106\) −8.17008 4.71700i −0.793549 0.458156i
\(107\) −8.30831 + 14.3904i −0.803194 + 1.39117i 0.114309 + 0.993445i \(0.463535\pi\)
−0.917503 + 0.397728i \(0.869799\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) 11.1116i 1.06430i 0.846652 + 0.532148i \(0.178615\pi\)
−0.846652 + 0.532148i \(0.821385\pi\)
\(110\) 0 0
\(111\) −6.48073 + 3.74165i −0.615123 + 0.355142i
\(112\) 4.34565i 0.410625i
\(113\) 7.83002 + 13.5620i 0.736587 + 1.27581i 0.954024 + 0.299731i \(0.0968970\pi\)
−0.217437 + 0.976074i \(0.569770\pi\)
\(114\) −0.338254 + 0.585872i −0.0316804 + 0.0548720i
\(115\) 0 0
\(116\) −9.65239 −0.896202
\(117\) 3.60330 0.127265i 0.333126 0.0117657i
\(118\) −5.26964 −0.485109
\(119\) 11.3232 + 6.53747i 1.03800 + 0.599288i
\(120\) 0 0
\(121\) −2.72410 4.71827i −0.247645 0.428934i
\(122\) 4.31292i 0.390473i
\(123\) 2.60564 1.50437i 0.234943 0.135644i
\(124\) 6.16171 3.55746i 0.553338 0.319470i
\(125\) 0 0
\(126\) 2.17283 + 3.76344i 0.193571 + 0.335274i
\(127\) −6.80236 + 11.7820i −0.603611 + 1.04549i 0.388658 + 0.921382i \(0.372939\pi\)
−0.992269 + 0.124103i \(0.960395\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −6.83247 −0.601566
\(130\) 0 0
\(131\) 10.2122 0.892246 0.446123 0.894972i \(-0.352804\pi\)
0.446123 + 0.894972i \(0.352804\pi\)
\(132\) 2.04055 + 1.17811i 0.177607 + 0.102542i
\(133\) −1.46993 + 2.54600i −0.127459 + 0.220766i
\(134\) 2.91329 + 5.04596i 0.251670 + 0.435905i
\(135\) 0 0
\(136\) 2.60564 1.50437i 0.223432 0.128999i
\(137\) 10.7506 6.20689i 0.918489 0.530290i 0.0353365 0.999375i \(-0.488750\pi\)
0.883153 + 0.469085i \(0.155416\pi\)
\(138\) 6.44791i 0.548883i
\(139\) 7.80915 + 13.5258i 0.662363 + 1.14725i 0.979993 + 0.199032i \(0.0637797\pi\)
−0.317630 + 0.948215i \(0.602887\pi\)
\(140\) 0 0
\(141\) −4.86298 2.80764i −0.409537 0.236446i
\(142\) −2.91585 −0.244693
\(143\) 7.20280 4.50479i 0.602329 0.376710i
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 3.83902 6.64938i 0.317720 0.550307i
\(147\) 5.94234 + 10.2924i 0.490116 + 0.848906i
\(148\) 7.48330i 0.615123i
\(149\) −16.9104 + 9.76324i −1.38536 + 0.799836i −0.992788 0.119886i \(-0.961747\pi\)
−0.392569 + 0.919722i \(0.628414\pi\)
\(150\) 0 0
\(151\) 11.5027i 0.936079i 0.883707 + 0.468040i \(0.155040\pi\)
−0.883707 + 0.468040i \(0.844960\pi\)
\(152\) 0.338254 + 0.585872i 0.0274360 + 0.0475205i
\(153\) 1.50437 2.60564i 0.121621 0.210654i
\(154\) 8.86753 + 5.11967i 0.714566 + 0.412555i
\(155\) 0 0
\(156\) 1.69144 3.18419i 0.135423 0.254939i
\(157\) −4.47595 −0.357220 −0.178610 0.983920i \(-0.557160\pi\)
−0.178610 + 0.983920i \(0.557160\pi\)
\(158\) −3.24343 1.87260i −0.258033 0.148976i
\(159\) −4.71700 + 8.17008i −0.374082 + 0.647930i
\(160\) 0 0
\(161\) 28.0204i 2.20831i
\(162\) 0.866025 0.500000i 0.0680414 0.0392837i
\(163\) 6.71645 3.87774i 0.526073 0.303728i −0.213343 0.976977i \(-0.568435\pi\)
0.739416 + 0.673249i \(0.235102\pi\)
\(164\) 3.00874i 0.234943i
\(165\) 0 0
\(166\) −5.17783 + 8.96827i −0.401878 + 0.696073i
\(167\) 0.587202 + 0.339021i 0.0454390 + 0.0262342i 0.522547 0.852610i \(-0.324982\pi\)
−0.477108 + 0.878844i \(0.658315\pi\)
\(168\) 4.34565 0.335274
\(169\) −7.27808 10.7717i −0.559852 0.828593i
\(170\) 0 0
\(171\) 0.585872 + 0.338254i 0.0448028 + 0.0258669i
\(172\) −3.41624 + 5.91710i −0.260486 + 0.451174i
\(173\) −0.360974 0.625226i −0.0274444 0.0475350i 0.851977 0.523579i \(-0.175404\pi\)
−0.879421 + 0.476044i \(0.842070\pi\)
\(174\) 9.65239i 0.731746i
\(175\) 0 0
\(176\) 2.04055 1.17811i 0.153812 0.0888037i
\(177\) 5.26964i 0.396090i
\(178\) 2.39720 + 4.15208i 0.179678 + 0.311211i
\(179\) −3.18673 + 5.51958i −0.238187 + 0.412553i −0.960194 0.279333i \(-0.909887\pi\)
0.722007 + 0.691886i \(0.243220\pi\)
\(180\) 0 0
\(181\) 22.0214 1.63683 0.818417 0.574624i \(-0.194852\pi\)
0.818417 + 0.574624i \(0.194852\pi\)
\(182\) 7.35040 13.8374i 0.544848 1.02569i
\(183\) −4.31292 −0.318820
\(184\) 5.58405 + 3.22396i 0.411662 + 0.237673i
\(185\) 0 0
\(186\) −3.55746 6.16171i −0.260846 0.451798i
\(187\) 7.08928i 0.518419i
\(188\) −4.86298 + 2.80764i −0.354669 + 0.204768i
\(189\) 3.76344 2.17283i 0.273750 0.158050i
\(190\) 0 0
\(191\) −0.293441 0.508255i −0.0212326 0.0367760i 0.855214 0.518275i \(-0.173426\pi\)
−0.876446 + 0.481499i \(0.840092\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) −19.5955 11.3135i −1.41052 0.814363i −0.415081 0.909784i \(-0.636247\pi\)
−0.995437 + 0.0954215i \(0.969580\pi\)
\(194\) −16.3413 −1.17324
\(195\) 0 0
\(196\) 11.8847 0.848906
\(197\) −1.42681 0.823770i −0.101656 0.0586912i 0.448310 0.893878i \(-0.352026\pi\)
−0.549966 + 0.835187i \(0.685359\pi\)
\(198\) 1.17811 2.04055i 0.0837249 0.145016i
\(199\) 5.13665 + 8.89694i 0.364127 + 0.630687i 0.988636 0.150331i \(-0.0480339\pi\)
−0.624508 + 0.781018i \(0.714701\pi\)
\(200\) 0 0
\(201\) 5.04596 2.91329i 0.355915 0.205488i
\(202\) 10.5986 6.11911i 0.745716 0.430539i
\(203\) 41.9459i 2.94403i
\(204\) −1.50437 2.60564i −0.105327 0.182432i
\(205\) 0 0
\(206\) −3.24884 1.87572i −0.226357 0.130688i
\(207\) 6.44791 0.448161
\(208\) −1.91187 3.05692i −0.132564 0.211959i
\(209\) 1.59401 0.110260
\(210\) 0 0
\(211\) 12.1905 21.1145i 0.839226 1.45358i −0.0513166 0.998682i \(-0.516342\pi\)
0.890543 0.454900i \(-0.150325\pi\)
\(212\) 4.71700 + 8.17008i 0.323965 + 0.561124i
\(213\) 2.91585i 0.199791i
\(214\) 14.3904 8.30831i 0.983708 0.567944i
\(215\) 0 0
\(216\) 1.00000i 0.0680414i
\(217\) −15.4595 26.7766i −1.04946 1.81772i
\(218\) 5.55578 9.62290i 0.376285 0.651745i
\(219\) −6.64938 3.83902i −0.449323 0.259417i
\(220\) 0 0
\(221\) −10.8414 + 0.382907i −0.729272 + 0.0257571i
\(222\) 7.48330 0.502246
\(223\) −4.01476 2.31792i −0.268848 0.155220i 0.359516 0.933139i \(-0.382942\pi\)
−0.628364 + 0.777919i \(0.716275\pi\)
\(224\) 2.17283 3.76344i 0.145178 0.251456i
\(225\) 0 0
\(226\) 15.6600i 1.04169i
\(227\) 15.4016 8.89213i 1.02224 0.590192i 0.107489 0.994206i \(-0.465719\pi\)
0.914753 + 0.404015i \(0.132385\pi\)
\(228\) 0.585872 0.338254i 0.0388004 0.0224014i
\(229\) 15.3361i 1.01344i 0.862111 + 0.506720i \(0.169142\pi\)
−0.862111 + 0.506720i \(0.830858\pi\)
\(230\) 0 0
\(231\) 5.11967 8.86753i 0.336850 0.583441i
\(232\) 8.35922 + 4.82620i 0.548809 + 0.316855i
\(233\) −7.75548 −0.508079 −0.254039 0.967194i \(-0.581759\pi\)
−0.254039 + 0.967194i \(0.581759\pi\)
\(234\) −3.18419 1.69144i −0.208157 0.110573i
\(235\) 0 0
\(236\) 4.56364 + 2.63482i 0.297068 + 0.171512i
\(237\) −1.87260 + 3.24343i −0.121638 + 0.210683i
\(238\) −6.53747 11.3232i −0.423761 0.733975i
\(239\) 18.6409i 1.20578i −0.797824 0.602890i \(-0.794016\pi\)
0.797824 0.602890i \(-0.205984\pi\)
\(240\) 0 0
\(241\) −2.65884 + 1.53508i −0.171271 + 0.0988833i −0.583185 0.812339i \(-0.698194\pi\)
0.411914 + 0.911223i \(0.364860\pi\)
\(242\) 5.44819i 0.350223i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) −2.15646 + 3.73509i −0.138053 + 0.239115i
\(245\) 0 0
\(246\) −3.00874 −0.191830
\(247\) −0.0860957 2.43766i −0.00547814 0.155105i
\(248\) −7.11493 −0.451798
\(249\) 8.96827 + 5.17783i 0.568341 + 0.328132i
\(250\) 0 0
\(251\) −3.56404 6.17309i −0.224960 0.389642i 0.731347 0.682005i \(-0.238892\pi\)
−0.956307 + 0.292363i \(0.905558\pi\)
\(252\) 4.34565i 0.273750i
\(253\) 13.1573 7.59637i 0.827193 0.477580i
\(254\) 11.7820 6.80236i 0.739270 0.426818i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −7.12178 + 12.3353i −0.444244 + 0.769454i −0.997999 0.0632261i \(-0.979861\pi\)
0.553755 + 0.832680i \(0.313194\pi\)
\(258\) 5.91710 + 3.41624i 0.368382 + 0.212686i
\(259\) 32.5198 2.02068
\(260\) 0 0
\(261\) 9.65239 0.597468
\(262\) −8.84404 5.10611i −0.546387 0.315457i
\(263\) 7.70101 13.3385i 0.474865 0.822490i −0.524721 0.851274i \(-0.675830\pi\)
0.999586 + 0.0287845i \(0.00916367\pi\)
\(264\) −1.17811 2.04055i −0.0725079 0.125587i
\(265\) 0 0
\(266\) 2.54600 1.46993i 0.156105 0.0901273i
\(267\) 4.15208 2.39720i 0.254103 0.146706i
\(268\) 5.82658i 0.355915i
\(269\) −13.3134 23.0595i −0.811732 1.40596i −0.911651 0.410966i \(-0.865192\pi\)
0.0999185 0.994996i \(-0.468142\pi\)
\(270\) 0 0
\(271\) −6.66899 3.85034i −0.405112 0.233892i 0.283575 0.958950i \(-0.408479\pi\)
−0.688687 + 0.725058i \(0.741813\pi\)
\(272\) −3.00874 −0.182432
\(273\) −13.8374 7.35040i −0.837475 0.444866i
\(274\) −12.4138 −0.749943
\(275\) 0 0
\(276\) 3.22396 5.58405i 0.194059 0.336121i
\(277\) 7.15114 + 12.3861i 0.429671 + 0.744211i 0.996844 0.0793871i \(-0.0252963\pi\)
−0.567173 + 0.823599i \(0.691963\pi\)
\(278\) 15.6183i 0.936723i
\(279\) −6.16171 + 3.55746i −0.368892 + 0.212980i
\(280\) 0 0
\(281\) 7.96746i 0.475299i 0.971351 + 0.237649i \(0.0763769\pi\)
−0.971351 + 0.237649i \(0.923623\pi\)
\(282\) 2.80764 + 4.86298i 0.167193 + 0.289586i
\(283\) −7.33785 + 12.7095i −0.436190 + 0.755503i −0.997392 0.0721756i \(-0.977006\pi\)
0.561202 + 0.827679i \(0.310339\pi\)
\(284\) 2.52520 + 1.45793i 0.149843 + 0.0865120i
\(285\) 0 0
\(286\) −8.49021 + 0.299865i −0.502036 + 0.0177314i
\(287\) −13.0749 −0.771789
\(288\) −0.866025 0.500000i −0.0510310 0.0294628i
\(289\) 3.97374 6.88273i 0.233750 0.404866i
\(290\) 0 0
\(291\) 16.3413i 0.957945i
\(292\) −6.64938 + 3.83902i −0.389125 + 0.224662i
\(293\) −5.94436 + 3.43198i −0.347273 + 0.200498i −0.663484 0.748191i \(-0.730923\pi\)
0.316210 + 0.948689i \(0.397589\pi\)
\(294\) 11.8847i 0.693129i
\(295\) 0 0
\(296\) 3.74165 6.48073i 0.217479 0.376685i
\(297\) −2.04055 1.17811i −0.118405 0.0683611i
\(298\) 19.5265 1.13114
\(299\) −12.3275 19.7108i −0.712921 1.13990i
\(300\) 0 0
\(301\) 25.7136 + 14.8458i 1.48211 + 0.855696i
\(302\) 5.75137 9.96166i 0.330954 0.573229i
\(303\) −6.11911 10.5986i −0.351534 0.608875i
\(304\) 0.676507i 0.0388004i
\(305\) 0 0
\(306\) −2.60564 + 1.50437i −0.148955 + 0.0859991i
\(307\) 10.9917i 0.627328i 0.949534 + 0.313664i \(0.101557\pi\)
−0.949534 + 0.313664i \(0.898443\pi\)
\(308\) −5.11967 8.86753i −0.291720 0.505275i
\(309\) −1.87572 + 3.24884i −0.106706 + 0.184820i
\(310\) 0 0
\(311\) −13.9044 −0.788446 −0.394223 0.919015i \(-0.628986\pi\)
−0.394223 + 0.919015i \(0.628986\pi\)
\(312\) −3.05692 + 1.91187i −0.173064 + 0.108238i
\(313\) −14.1734 −0.801130 −0.400565 0.916268i \(-0.631186\pi\)
−0.400565 + 0.916268i \(0.631186\pi\)
\(314\) 3.87629 + 2.23798i 0.218752 + 0.126296i
\(315\) 0 0
\(316\) 1.87260 + 3.24343i 0.105342 + 0.182457i
\(317\) 3.20808i 0.180184i −0.995933 0.0900920i \(-0.971284\pi\)
0.995933 0.0900920i \(-0.0287161\pi\)
\(318\) 8.17008 4.71700i 0.458156 0.264516i
\(319\) 19.6962 11.3716i 1.10278 0.636688i
\(320\) 0 0
\(321\) −8.30831 14.3904i −0.463724 0.803194i
\(322\) 14.0102 24.2664i 0.780757 1.35231i
\(323\) −1.76274 1.01772i −0.0980813 0.0566273i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −7.75548 −0.429537
\(327\) −9.62290 5.55578i −0.532148 0.307236i
\(328\) −1.50437 + 2.60564i −0.0830649 + 0.143873i
\(329\) 12.2010 + 21.1328i 0.672665 + 1.16509i
\(330\) 0 0
\(331\) −22.3066 + 12.8787i −1.22608 + 0.707878i −0.966208 0.257765i \(-0.917014\pi\)
−0.259873 + 0.965643i \(0.583681\pi\)
\(332\) 8.96827 5.17783i 0.492198 0.284170i
\(333\) 7.48330i 0.410082i
\(334\) −0.339021 0.587202i −0.0185504 0.0321302i
\(335\) 0 0
\(336\) −3.76344 2.17283i −0.205313 0.118537i
\(337\) 0.772078 0.0420578 0.0210289 0.999779i \(-0.493306\pi\)
0.0210289 + 0.999779i \(0.493306\pi\)
\(338\) 0.917149 + 12.9676i 0.0498863 + 0.705345i
\(339\) −15.6600 −0.850537
\(340\) 0 0
\(341\) −8.38219 + 14.5184i −0.453921 + 0.786215i
\(342\) −0.338254 0.585872i −0.0182907 0.0316804i
\(343\) 21.2271i 1.14616i
\(344\) 5.91710 3.41624i 0.319028 0.184191i
\(345\) 0 0
\(346\) 0.721948i 0.0388122i
\(347\) 12.5779 + 21.7856i 0.675218 + 1.16951i 0.976405 + 0.215946i \(0.0692836\pi\)
−0.301188 + 0.953565i \(0.597383\pi\)
\(348\) 4.82620 8.35922i 0.258711 0.448101i
\(349\) 23.6602 + 13.6602i 1.26650 + 0.731214i 0.974324 0.225151i \(-0.0722874\pi\)
0.292176 + 0.956365i \(0.405621\pi\)
\(350\) 0 0
\(351\) −1.69144 + 3.18419i −0.0902823 + 0.169959i
\(352\) −2.35623 −0.125587
\(353\) −6.51161 3.75948i −0.346578 0.200097i 0.316599 0.948559i \(-0.397459\pi\)
−0.663177 + 0.748462i \(0.730792\pi\)
\(354\) 2.63482 4.56364i 0.140039 0.242555i
\(355\) 0 0
\(356\) 4.79440i 0.254103i
\(357\) −11.3232 + 6.53747i −0.599288 + 0.345999i
\(358\) 5.51958 3.18673i 0.291719 0.168424i
\(359\) 10.8402i 0.572124i 0.958211 + 0.286062i \(0.0923463\pi\)
−0.958211 + 0.286062i \(0.907654\pi\)
\(360\) 0 0
\(361\) −9.27117 + 16.0581i −0.487956 + 0.845165i
\(362\) −19.0711 11.0107i −1.00235 0.578708i
\(363\) 5.44819 0.285956
\(364\) −13.2843 + 8.30831i −0.696287 + 0.435474i
\(365\) 0 0
\(366\) 3.73509 + 2.15646i 0.195237 + 0.112720i
\(367\) −3.75761 + 6.50838i −0.196146 + 0.339735i −0.947276 0.320420i \(-0.896176\pi\)
0.751130 + 0.660155i \(0.229509\pi\)
\(368\) −3.22396 5.58405i −0.168060 0.291089i
\(369\) 3.00874i 0.156629i
\(370\) 0 0
\(371\) 35.5043 20.4984i 1.84329 1.06423i
\(372\) 7.11493i 0.368892i
\(373\) −11.4393 19.8135i −0.592305 1.02590i −0.993921 0.110095i \(-0.964885\pi\)
0.401616 0.915808i \(-0.368449\pi\)
\(374\) −3.54464 + 6.13949i −0.183289 + 0.317466i
\(375\) 0 0
\(376\) 5.61529 0.289586
\(377\) −18.4541 29.5066i −0.950434 1.51967i
\(378\) −4.34565 −0.223516
\(379\) 22.6152 + 13.0569i 1.16166 + 0.670687i 0.951702 0.307022i \(-0.0993327\pi\)
0.209962 + 0.977710i \(0.432666\pi\)
\(380\) 0 0
\(381\) −6.80236 11.7820i −0.348495 0.603611i
\(382\) 0.586882i 0.0300275i
\(383\) 11.8585 6.84652i 0.605942 0.349841i −0.165434 0.986221i \(-0.552902\pi\)
0.771376 + 0.636380i \(0.219569\pi\)
\(384\) −0.866025 + 0.500000i −0.0441942 + 0.0255155i
\(385\) 0 0
\(386\) 11.3135 + 19.5955i 0.575842 + 0.997387i
\(387\) 3.41624 5.91710i 0.173657 0.300783i
\(388\) 14.1520 + 8.17066i 0.718459 + 0.414802i
\(389\) −24.9403 −1.26452 −0.632261 0.774755i \(-0.717873\pi\)
−0.632261 + 0.774755i \(0.717873\pi\)
\(390\) 0 0
\(391\) −19.4001 −0.981104
\(392\) −10.2924 5.94234i −0.519847 0.300134i
\(393\) −5.10611 + 8.84404i −0.257569 + 0.446123i
\(394\) 0.823770 + 1.42681i 0.0415009 + 0.0718817i
\(395\) 0 0
\(396\) −2.04055 + 1.17811i −0.102542 + 0.0592025i
\(397\) −25.2043 + 14.5517i −1.26497 + 0.730328i −0.974031 0.226415i \(-0.927300\pi\)
−0.290934 + 0.956743i \(0.593966\pi\)
\(398\) 10.2733i 0.514954i
\(399\) −1.46993 2.54600i −0.0735887 0.127459i
\(400\) 0 0
\(401\) −14.4596 8.34823i −0.722076 0.416891i 0.0934404 0.995625i \(-0.470214\pi\)
−0.815516 + 0.578734i \(0.803547\pi\)
\(402\) −5.82658 −0.290603
\(403\) 22.6552 + 12.0345i 1.12854 + 0.599479i
\(404\) −12.2382 −0.608875
\(405\) 0 0
\(406\) 20.9730 36.3262i 1.04087 1.80284i
\(407\) −8.81618 15.2701i −0.437002 0.756909i
\(408\) 3.00874i 0.148955i
\(409\) −21.3140 + 12.3056i −1.05391 + 0.608475i −0.923741 0.383017i \(-0.874885\pi\)
−0.130168 + 0.991492i \(0.541552\pi\)
\(410\) 0 0
\(411\) 12.4138i 0.612326i
\(412\) 1.87572 + 3.24884i 0.0924100 + 0.160059i
\(413\) 11.4500 19.8320i 0.563418 0.975868i
\(414\) −5.58405 3.22396i −0.274441 0.158449i
\(415\) 0 0
\(416\) 0.127265 + 3.60330i 0.00623968 + 0.176667i
\(417\) −15.6183 −0.764831
\(418\) −1.38045 0.797003i −0.0675200 0.0389827i
\(419\) 13.5527 23.4739i 0.662091 1.14678i −0.317974 0.948099i \(-0.603002\pi\)
0.980065 0.198676i \(-0.0636643\pi\)
\(420\) 0 0
\(421\) 32.9996i 1.60830i −0.594425 0.804151i \(-0.702620\pi\)
0.594425 0.804151i \(-0.297380\pi\)
\(422\) −21.1145 + 12.1905i −1.02784 + 0.593422i
\(423\) 4.86298 2.80764i 0.236446 0.136512i
\(424\) 9.43400i 0.458156i
\(425\) 0 0
\(426\) 1.45793 2.52520i 0.0706367 0.122346i
\(427\) 16.2314 + 9.37121i 0.785493 + 0.453505i
\(428\) −16.6166 −0.803194
\(429\) 0.299865 + 8.49021i 0.0144776 + 0.409911i
\(430\) 0 0
\(431\) 7.45678 + 4.30517i 0.359180 + 0.207373i 0.668721 0.743513i \(-0.266842\pi\)
−0.309541 + 0.950886i \(0.600175\pi\)
\(432\) −0.500000 + 0.866025i −0.0240563 + 0.0416667i
\(433\) 1.72744 + 2.99201i 0.0830155 + 0.143787i 0.904544 0.426381i \(-0.140212\pi\)
−0.821528 + 0.570168i \(0.806878\pi\)
\(434\) 30.9190i 1.48416i
\(435\) 0 0
\(436\) −9.62290 + 5.55578i −0.460853 + 0.266074i
\(437\) 4.36206i 0.208666i
\(438\) 3.83902 + 6.64938i 0.183436 + 0.317720i
\(439\) 12.1229 20.9974i 0.578593 1.00215i −0.417049 0.908884i \(-0.636936\pi\)
0.995641 0.0932675i \(-0.0297312\pi\)
\(440\) 0 0
\(441\) −11.8847 −0.565937
\(442\) 9.58038 + 5.08909i 0.455692 + 0.242064i
\(443\) −13.1629 −0.625390 −0.312695 0.949854i \(-0.601232\pi\)
−0.312695 + 0.949854i \(0.601232\pi\)
\(444\) −6.48073 3.74165i −0.307562 0.177571i
\(445\) 0 0
\(446\) 2.31792 + 4.01476i 0.109757 + 0.190104i
\(447\) 19.5265i 0.923571i
\(448\) −3.76344 + 2.17283i −0.177806 + 0.102656i
\(449\) −2.17774 + 1.25732i −0.102774 + 0.0593365i −0.550506 0.834831i \(-0.685565\pi\)
0.447732 + 0.894168i \(0.352232\pi\)
\(450\) 0 0
\(451\) 3.54464 + 6.13949i 0.166910 + 0.289097i
\(452\) −7.83002 + 13.5620i −0.368293 + 0.637903i
\(453\) −9.96166 5.75137i −0.468040 0.270223i
\(454\) −17.7843 −0.834657
\(455\) 0 0
\(456\) −0.676507 −0.0316804
\(457\) 9.32698 + 5.38493i 0.436298 + 0.251897i 0.702026 0.712151i \(-0.252279\pi\)
−0.265728 + 0.964048i \(0.585612\pi\)
\(458\) 7.66806 13.2815i 0.358305 0.620602i
\(459\) 1.50437 + 2.60564i 0.0702180 + 0.121621i
\(460\) 0 0
\(461\) 10.2984 5.94576i 0.479642 0.276922i −0.240625 0.970618i \(-0.577352\pi\)
0.720267 + 0.693697i \(0.244019\pi\)
\(462\) −8.86753 + 5.11967i −0.412555 + 0.238189i
\(463\) 29.9462i 1.39172i −0.718178 0.695860i \(-0.755024\pi\)
0.718178 0.695860i \(-0.244976\pi\)
\(464\) −4.82620 8.35922i −0.224051 0.388067i
\(465\) 0 0
\(466\) 6.71645 + 3.87774i 0.311133 + 0.179633i
\(467\) 21.8940 1.01313 0.506566 0.862201i \(-0.330915\pi\)
0.506566 + 0.862201i \(0.330915\pi\)
\(468\) 1.91187 + 3.05692i 0.0883761 + 0.141306i
\(469\) −25.3203 −1.16918
\(470\) 0 0
\(471\) 2.23798 3.87629i 0.103121 0.178610i
\(472\) −2.63482 4.56364i −0.121277 0.210059i
\(473\) 16.0989i 0.740227i
\(474\) 3.24343 1.87260i 0.148976 0.0860112i
\(475\) 0 0
\(476\) 13.0749i 0.599288i
\(477\) −4.71700 8.17008i −0.215977 0.374082i
\(478\) −9.32045 + 16.1435i −0.426307 + 0.738386i
\(479\) 7.90106 + 4.56168i 0.361009 + 0.208429i 0.669523 0.742791i \(-0.266498\pi\)
−0.308514 + 0.951220i \(0.599832\pi\)
\(480\) 0 0
\(481\) −22.8758 + 14.3071i −1.04305 + 0.652346i
\(482\) 3.07016 0.139842
\(483\) −24.2664 14.0102i −1.10416 0.637486i
\(484\) 2.72410 4.71827i 0.123823 0.214467i
\(485\) 0 0
\(486\) 1.00000i 0.0453609i
\(487\) 18.8079 10.8587i 0.852265 0.492056i −0.00914916 0.999958i \(-0.502912\pi\)
0.861415 + 0.507902i \(0.169579\pi\)
\(488\) 3.73509 2.15646i 0.169080 0.0976183i
\(489\) 7.75548i 0.350715i
\(490\) 0 0
\(491\) 16.5438 28.6548i 0.746613 1.29317i −0.202824 0.979215i \(-0.565012\pi\)
0.949437 0.313957i \(-0.101655\pi\)
\(492\) 2.60564 + 1.50437i 0.117472 + 0.0678222i
\(493\) −29.0415 −1.30796
\(494\) −1.14427 + 2.15412i −0.0514831 + 0.0969187i
\(495\) 0 0
\(496\) 6.16171 + 3.55746i 0.276669 + 0.159735i
\(497\) 6.33564 10.9736i 0.284192 0.492235i
\(498\) −5.17783 8.96827i −0.232024 0.401878i
\(499\) 10.4889i 0.469546i −0.972050 0.234773i \(-0.924565\pi\)
0.972050 0.234773i \(-0.0754347\pi\)
\(500\) 0 0
\(501\) −0.587202 + 0.339021i −0.0262342 + 0.0151463i
\(502\) 7.12807i 0.318142i
\(503\) −4.12700 7.14818i −0.184014 0.318722i 0.759230 0.650823i \(-0.225576\pi\)
−0.943244 + 0.332101i \(0.892243\pi\)
\(504\) −2.17283 + 3.76344i −0.0967853 + 0.167637i
\(505\) 0 0
\(506\) −15.1927 −0.675400
\(507\) 12.9676 0.917149i 0.575912 0.0407320i
\(508\) −13.6047 −0.603611
\(509\) −5.84526 3.37476i −0.259087 0.149584i 0.364831 0.931074i \(-0.381127\pi\)
−0.623918 + 0.781490i \(0.714460\pi\)
\(510\) 0 0
\(511\) 16.6830 + 28.8959i 0.738014 + 1.27828i
\(512\) 1.00000i 0.0441942i
\(513\) −0.585872 + 0.338254i −0.0258669 + 0.0149343i
\(514\) 12.3353 7.12178i 0.544086 0.314128i
\(515\) 0 0
\(516\) −3.41624 5.91710i −0.150391 0.260486i
\(517\) 6.61545 11.4583i 0.290947 0.503935i
\(518\) −28.1630 16.2599i −1.23741 0.714419i
\(519\) 0.721948 0.0316900
\(520\) 0 0
\(521\) −30.4048 −1.33206 −0.666029 0.745926i \(-0.732007\pi\)
−0.666029 + 0.745926i \(0.732007\pi\)
\(522\) −8.35922 4.82620i −0.365873 0.211237i
\(523\) 1.57175 2.72235i 0.0687279 0.119040i −0.829614 0.558338i \(-0.811439\pi\)
0.898342 + 0.439298i \(0.144773\pi\)
\(524\) 5.10611 + 8.84404i 0.223062 + 0.386354i
\(525\) 0 0
\(526\) −13.3385 + 7.70101i −0.581588 + 0.335780i
\(527\) 18.5390 10.7035i 0.807570 0.466251i
\(528\) 2.35623i 0.102542i
\(529\) −9.28778 16.0869i −0.403816 0.699431i
\(530\) 0 0
\(531\) −4.56364 2.63482i −0.198045 0.114341i
\(532\) −2.93986 −0.127459
\(533\) 9.19748 5.75231i 0.398387 0.249160i
\(534\) −4.79440 −0.207474
\(535\) 0 0
\(536\) −2.91329 + 5.04596i −0.125835 + 0.217952i
\(537\) −3.18673 5.51958i −0.137518 0.238187i
\(538\) 26.6268i 1.14796i
\(539\) −24.2513 + 14.0015i −1.04458 + 0.603088i
\(540\) 0 0
\(541\) 17.6144i 0.757301i −0.925540 0.378650i \(-0.876388\pi\)
0.925540 0.378650i \(-0.123612\pi\)
\(542\) 3.85034 + 6.66899i 0.165386 + 0.286458i
\(543\) −11.0107 + 19.0711i −0.472513 + 0.818417i
\(544\) 2.60564 + 1.50437i 0.111716 + 0.0644993i
\(545\) 0 0
\(546\) 8.30831 + 13.2843i 0.355563 + 0.568516i
\(547\) −40.8067 −1.74477 −0.872385 0.488820i \(-0.837428\pi\)
−0.872385 + 0.488820i \(0.837428\pi\)
\(548\) 10.7506 + 6.20689i 0.459245 + 0.265145i
\(549\) 2.15646 3.73509i 0.0920354 0.159410i
\(550\) 0 0
\(551\) 6.52991i 0.278184i
\(552\) −5.58405 + 3.22396i −0.237673 + 0.137221i
\(553\) 14.0948 8.13765i 0.599373 0.346048i
\(554\) 14.3023i 0.607646i
\(555\) 0 0
\(556\) −7.80915 + 13.5258i −0.331182 + 0.573623i
\(557\) 21.8427 + 12.6109i 0.925504 + 0.534340i 0.885387 0.464855i \(-0.153894\pi\)
0.0401170 + 0.999195i \(0.487227\pi\)
\(558\) 7.11493 0.301199
\(559\) −24.6195 + 0.869535i −1.04129 + 0.0367774i
\(560\) 0 0
\(561\) 6.13949 + 3.54464i 0.259210 + 0.149655i
\(562\) 3.98373 6.90002i 0.168043 0.291060i
\(563\) 18.2071 + 31.5356i 0.767337 + 1.32907i 0.939002 + 0.343912i \(0.111752\pi\)
−0.171664 + 0.985155i \(0.554914\pi\)
\(564\) 5.61529i 0.236446i
\(565\) 0 0
\(566\) 12.7095 7.33785i 0.534222 0.308433i
\(567\) 4.34565i 0.182500i
\(568\) −1.45793 2.52520i −0.0611732 0.105955i
\(569\) 13.6768 23.6888i 0.573360 0.993088i −0.422858 0.906196i \(-0.638973\pi\)
0.996218 0.0868922i \(-0.0276936\pi\)
\(570\) 0 0
\(571\) 45.7020 1.91257 0.956285 0.292438i \(-0.0944664\pi\)
0.956285 + 0.292438i \(0.0944664\pi\)
\(572\) 7.50267 + 3.98541i 0.313702 + 0.166638i
\(573\) 0.586882 0.0245174
\(574\) 11.3232 + 6.53747i 0.472622 + 0.272869i
\(575\) 0 0
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 31.1697i 1.29761i 0.760954 + 0.648806i \(0.224731\pi\)
−0.760954 + 0.648806i \(0.775269\pi\)
\(578\) −6.88273 + 3.97374i −0.286284 + 0.165286i
\(579\) 19.5955 11.3135i 0.814363 0.470173i
\(580\) 0 0
\(581\) −22.5011 38.9730i −0.933501 1.61687i
\(582\) 8.17066 14.1520i 0.338685 0.586619i
\(583\) −19.2506 11.1143i −0.797278 0.460308i
\(584\) 7.67804 0.317720
\(585\) 0 0
\(586\) 6.86396 0.283547
\(587\) 13.1880 + 7.61411i 0.544328 + 0.314268i 0.746831 0.665014i \(-0.231574\pi\)
−0.202503 + 0.979282i \(0.564908\pi\)
\(588\) −5.94234 + 10.2924i −0.245058 + 0.424453i
\(589\) 2.40665 + 4.16844i 0.0991643 + 0.171758i
\(590\) 0 0
\(591\) 1.42681 0.823770i 0.0586912 0.0338854i
\(592\) −6.48073 + 3.74165i −0.266356 + 0.153781i
\(593\) 15.1921i 0.623865i 0.950104 + 0.311933i \(0.100976\pi\)
−0.950104 + 0.311933i \(0.899024\pi\)
\(594\) 1.17811 + 2.04055i 0.0483386 + 0.0837249i
\(595\) 0 0
\(596\) −16.9104 9.76324i −0.692678 0.399918i
\(597\) −10.2733 −0.420458
\(598\) 0.820594 + 23.2338i 0.0335566 + 0.950100i
\(599\) −4.34655 −0.177595 −0.0887975 0.996050i \(-0.528302\pi\)
−0.0887975 + 0.996050i \(0.528302\pi\)
\(600\) 0 0
\(601\) −5.14622 + 8.91351i −0.209918 + 0.363590i −0.951689 0.307065i \(-0.900653\pi\)
0.741770 + 0.670654i \(0.233987\pi\)
\(602\) −14.8458 25.7136i −0.605069 1.04801i
\(603\) 5.82658i 0.237277i
\(604\) −9.96166 + 5.75137i −0.405334 + 0.234020i
\(605\) 0 0
\(606\) 12.2382i 0.497144i
\(607\) −21.7138 37.6094i −0.881335 1.52652i −0.849858 0.527012i \(-0.823312\pi\)
−0.0314772 0.999504i \(-0.510021\pi\)
\(608\) −0.338254 + 0.585872i −0.0137180 + 0.0237603i
\(609\) −36.3262 20.9730i −1.47201 0.849867i
\(610\) 0 0
\(611\) −17.8801 9.49791i −0.723352 0.384244i
\(612\) 3.00874 0.121621
\(613\) −28.2771 16.3258i −1.14210 0.659392i −0.195150 0.980773i \(-0.562519\pi\)
−0.946950 + 0.321382i \(0.895853\pi\)
\(614\) 5.49584 9.51907i 0.221794 0.384159i
\(615\) 0 0
\(616\) 10.2393i 0.412555i
\(617\) 8.37426 4.83488i 0.337135 0.194645i −0.321869 0.946784i \(-0.604311\pi\)
0.659004 + 0.752139i \(0.270978\pi\)
\(618\) 3.24884 1.87572i 0.130688 0.0754525i
\(619\) 5.20064i 0.209031i −0.994523 0.104516i \(-0.966671\pi\)
0.994523 0.104516i \(-0.0333292\pi\)
\(620\) 0 0
\(621\) −3.22396 + 5.58405i −0.129373 + 0.224080i
\(622\) 12.0416 + 6.95220i 0.482823 + 0.278758i
\(623\) −20.8348 −0.834729
\(624\) 3.60330 0.127265i 0.144248 0.00509468i
\(625\) 0 0
\(626\) 12.2746 + 7.08672i 0.490590 + 0.283242i
\(627\) −0.797003 + 1.38045i −0.0318292 + 0.0551298i
\(628\) −2.23798 3.87629i −0.0893050 0.154681i
\(629\) 22.5153i 0.897743i
\(630\) 0 0
\(631\) −6.86811 + 3.96531i −0.273415 + 0.157856i −0.630439 0.776239i \(-0.717125\pi\)
0.357023 + 0.934095i \(0.383792\pi\)
\(632\) 3.74519i 0.148976i
\(633\) 12.1905 + 21.1145i 0.484527 + 0.839226i
\(634\) −1.60404 + 2.77828i −0.0637046 + 0.110340i
\(635\) 0 0
\(636\) −9.43400 −0.374082
\(637\) 22.7219 + 36.3305i 0.900276 + 1.43947i
\(638\) −22.7432 −0.900413
\(639\) −2.52520 1.45793i −0.0998954 0.0576746i
\(640\) 0 0
\(641\) −1.69937 2.94340i −0.0671212 0.116257i 0.830512 0.557001i \(-0.188048\pi\)
−0.897633 + 0.440744i \(0.854715\pi\)
\(642\) 16.6166i 0.655805i
\(643\) 8.13918 4.69916i 0.320978 0.185317i −0.330851 0.943683i \(-0.607336\pi\)
0.651828 + 0.758367i \(0.274002\pi\)
\(644\) −24.2664 + 14.0102i −0.956228 + 0.552079i
\(645\) 0 0
\(646\) 1.01772 + 1.76274i 0.0400415 + 0.0693540i
\(647\) 20.0324 34.6972i 0.787555 1.36409i −0.139905 0.990165i \(-0.544680\pi\)
0.927461 0.373921i \(-0.121987\pi\)
\(648\) 0.866025 + 0.500000i 0.0340207 + 0.0196419i
\(649\) −12.4165 −0.487389
\(650\) 0 0
\(651\) 30.9190 1.21181
\(652\) 6.71645 + 3.87774i 0.263036 + 0.151864i
\(653\) 15.6981 27.1900i 0.614316 1.06403i −0.376189 0.926543i \(-0.622766\pi\)
0.990504 0.137483i \(-0.0439011\pi\)
\(654\) 5.55578 + 9.62290i 0.217248 + 0.376285i
\(655\) 0 0
\(656\) 2.60564 1.50437i 0.101733 0.0587358i
\(657\) 6.64938 3.83902i 0.259417 0.149774i
\(658\) 24.4021i 0.951292i
\(659\) −9.48950 16.4363i −0.369659 0.640268i 0.619853 0.784718i \(-0.287192\pi\)
−0.989512 + 0.144450i \(0.953859\pi\)
\(660\) 0 0
\(661\) 11.4484 + 6.60972i 0.445290 + 0.257088i 0.705839 0.708372i \(-0.250570\pi\)
−0.260549 + 0.965461i \(0.583904\pi\)
\(662\) 25.7574 1.00109
\(663\) 5.08909 9.58038i 0.197644 0.372071i
\(664\) −10.3557 −0.401878
\(665\) 0 0
\(666\) −3.74165 + 6.48073i −0.144986 + 0.251123i
\(667\) −31.1189 53.8995i −1.20493 2.08700i
\(668\) 0.678042i 0.0262342i
\(669\) 4.01476 2.31792i 0.155220 0.0896161i
\(670\) 0 0
\(671\) 10.1622i 0.392308i
\(672\) 2.17283 + 3.76344i 0.0838186 + 0.145178i
\(673\) 4.30020 7.44817i 0.165761 0.287106i −0.771164 0.636636i \(-0.780325\pi\)
0.936925 + 0.349530i \(0.113659\pi\)
\(674\) −0.668639 0.386039i −0.0257550 0.0148697i
\(675\) 0 0
\(676\) 5.68953 11.6889i 0.218828 0.449571i
\(677\) −25.8539 −0.993646 −0.496823 0.867852i \(-0.665500\pi\)
−0.496823 + 0.867852i \(0.665500\pi\)
\(678\) 13.5620 + 7.83002i 0.520845 + 0.300710i
\(679\) 35.5068 61.4997i 1.36263 2.36014i
\(680\) 0 0
\(681\) 17.7843i 0.681495i
\(682\) 14.5184 8.38219i 0.555938 0.320971i
\(683\) 18.1041 10.4524i 0.692734 0.399950i −0.111901 0.993719i \(-0.535694\pi\)
0.804636 + 0.593769i \(0.202361\pi\)
\(684\) 0.676507i 0.0258669i
\(685\) 0 0
\(686\) −10.6136 + 18.3832i −0.405228 + 0.701875i
\(687\) −13.2815 7.66806i −0.506720 0.292555i
\(688\) −6.83247 −0.260486
\(689\) −15.9570 + 30.0396i −0.607914 + 1.14442i
\(690\) 0 0
\(691\) −42.3440 24.4473i −1.61084 0.930019i −0.989176 0.146736i \(-0.953123\pi\)
−0.621665 0.783283i \(-0.713543\pi\)
\(692\) 0.360974 0.625226i 0.0137222 0.0237675i
\(693\) 5.11967 + 8.86753i 0.194480 + 0.336850i
\(694\) 25.1558i 0.954902i
\(695\) 0 0
\(696\) −8.35922 + 4.82620i −0.316855 + 0.182936i
\(697\) 9.05251i 0.342888i
\(698\) −13.6602 23.6602i −0.517046 0.895551i
\(699\) 3.87774 6.71645i 0.146670 0.254039i
\(700\) 0 0
\(701\) 31.9805 1.20789 0.603944 0.797027i \(-0.293595\pi\)
0.603944 + 0.797027i \(0.293595\pi\)
\(702\) 3.05692 1.91187i 0.115376 0.0721588i
\(703\) −5.06250 −0.190936
\(704\) 2.04055 + 1.17811i 0.0769062 + 0.0444018i
\(705\) 0 0
\(706\) 3.75948 + 6.51161i 0.141490 + 0.245068i
\(707\) 53.1831i 2.00016i
\(708\) −4.56364 + 2.63482i −0.171512 + 0.0990225i
\(709\) 5.42026 3.12939i 0.203562 0.117527i −0.394754 0.918787i \(-0.629170\pi\)
0.598316 + 0.801260i \(0.295837\pi\)
\(710\) 0 0
\(711\) −1.87260 3.24343i −0.0702278 0.121638i
\(712\) −2.39720 + 4.15208i −0.0898389 + 0.155606i
\(713\) 39.7301 + 22.9382i 1.48791 + 0.859043i
\(714\) 13.0749 0.489317
\(715\) 0 0
\(716\) −6.37346 −0.238187
\(717\) 16.1435 + 9.32045i 0.602890 + 0.348079i
\(718\) 5.42010 9.38789i 0.202276 0.350353i
\(719\) 9.52308 + 16.4945i 0.355151 + 0.615140i 0.987144 0.159835i \(-0.0510961\pi\)
−0.631993 + 0.774974i \(0.717763\pi\)
\(720\) 0 0
\(721\) 14.1183 8.15122i 0.525794 0.303567i
\(722\) 16.0581 9.27117i 0.597622 0.345037i
\(723\) 3.07016i 0.114181i
\(724\) 11.0107 + 19.0711i 0.409209 + 0.708770i
\(725\) 0 0
\(726\) −4.71827 2.72410i −0.175111 0.101101i
\(727\) 28.2602 1.04811 0.524056 0.851684i \(-0.324418\pi\)
0.524056 + 0.851684i \(0.324418\pi\)
\(728\) 15.6587 0.553049i 0.580350 0.0204974i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −10.2786 + 17.8030i −0.380166 + 0.658468i
\(732\) −2.15646 3.73509i −0.0797050 0.138053i
\(733\) 5.28165i 0.195082i 0.995232 + 0.0975410i \(0.0310977\pi\)
−0.995232 + 0.0975410i \(0.968902\pi\)
\(734\) 6.50838 3.75761i 0.240229 0.138696i
\(735\) 0 0
\(736\) 6.44791i 0.237673i
\(737\) 6.86437 + 11.8894i 0.252852 + 0.437953i
\(738\) 1.50437 2.60564i 0.0553766 0.0959151i
\(739\) −34.5736 19.9611i −1.27181 0.734280i −0.296482 0.955038i \(-0.595813\pi\)
−0.975329 + 0.220758i \(0.929147\pi\)
\(740\) 0 0
\(741\) 2.15412 + 1.14427i 0.0791337 + 0.0420358i
\(742\) −40.9969 −1.50504
\(743\) 16.0828 + 9.28543i 0.590022 + 0.340650i 0.765106 0.643904i \(-0.222686\pi\)
−0.175084 + 0.984553i \(0.556020\pi\)
\(744\) 3.55746 6.16171i 0.130423 0.225899i
\(745\) 0 0
\(746\) 22.8786i 0.837646i
\(747\) −8.96827 + 5.17783i −0.328132 + 0.189447i
\(748\) 6.13949 3.54464i 0.224482 0.129605i
\(749\) 72.2100i 2.63850i
\(750\) 0 0
\(751\) 15.1001 26.1541i 0.551010 0.954377i −0.447192 0.894438i \(-0.647576\pi\)
0.998202 0.0599394i \(-0.0190907\pi\)
\(752\) −4.86298 2.80764i −0.177335 0.102384i
\(753\) 7.12807 0.259761
\(754\) 1.22841 + 34.7805i 0.0447361 + 1.26663i
\(755\) 0 0
\(756\) 3.76344 + 2.17283i 0.136875 + 0.0790249i
\(757\) 2.80211 4.85341i 0.101845 0.176400i −0.810600 0.585600i \(-0.800859\pi\)
0.912445 + 0.409200i \(0.134192\pi\)
\(758\) −13.0569 22.6152i −0.474247 0.821421i
\(759\) 15.1927i 0.551462i
\(760\) 0 0
\(761\) −5.77640 + 3.33501i −0.209394 + 0.120894i −0.601030 0.799227i \(-0.705243\pi\)
0.391635 + 0.920120i \(0.371909\pi\)
\(762\) 13.6047i 0.492847i
\(763\) 24.1435 + 41.8178i 0.874053 + 1.51391i
\(764\) 0.293441 0.508255i 0.0106163 0.0183880i
\(765\) 0 0
\(766\) −13.6930 −0.494750
\(767\) 0.670640 + 18.9881i 0.0242154 + 0.685621i
\(768\) 1.00000 0.0360844
\(769\) −6.03234 3.48277i −0.217532 0.125592i 0.387275 0.921964i \(-0.373416\pi\)
−0.604807 + 0.796372i \(0.706750\pi\)
\(770\) 0 0
\(771\) −7.12178 12.3353i −0.256485 0.444244i
\(772\) 22.6270i 0.814363i
\(773\) −18.4893 + 10.6748i −0.665013 + 0.383945i −0.794184 0.607677i \(-0.792102\pi\)
0.129172 + 0.991622i \(0.458768\pi\)
\(774\) −5.91710 + 3.41624i −0.212686 + 0.122794i
\(775\) 0 0
\(776\) −8.17066 14.1520i −0.293310 0.508027i
\(777\) −16.2599 + 28.1630i −0.583321 + 1.01034i
\(778\) 21.5989 + 12.4701i 0.774359 + 0.447076i
\(779\) 2.03543 0.0729270
\(780\) 0 0
\(781\) −6.87041 −0.245843
\(782\) 16.8010 + 9.70004i 0.600801 + 0.346873i
\(783\) −4.82620 + 8.35922i −0.172474 + 0.298734i
\(784\) 5.94234 + 10.2924i 0.212226 + 0.367587i
\(785\) 0 0
\(786\) 8.84404 5.10611i 0.315457 0.182129i
\(787\) −16.6562 + 9.61648i −0.593731 + 0.342791i −0.766571 0.642159i \(-0.778039\pi\)
0.172841 + 0.984950i \(0.444705\pi\)
\(788\) 1.64754i 0.0586912i
\(789\) 7.70101 + 13.3385i 0.274163 + 0.474865i
\(790\) 0 0
\(791\) 58.9357 + 34.0265i 2.09551 + 1.20984i
\(792\) 2.35623 0.0837249
\(793\) −15.5407 + 0.548883i −0.551868 + 0.0194914i
\(794\) 29.1034 1.03284
\(795\) 0 0
\(796\) −5.13665 + 8.89694i −0.182064 + 0.315344i
\(797\) −11.3784 19.7080i −0.403044 0.698094i 0.591047 0.806637i \(-0.298715\pi\)
−0.994092 + 0.108543i \(0.965381\pi\)
\(798\) 2.93986i 0.104070i
\(799\) −14.6314 + 8.44747i −0.517623 + 0.298850i
\(800\) 0 0
\(801\) 4.79440i 0.169402i
\(802\) 8.34823 + 14.4596i 0.294786 + 0.510585i
\(803\) 9.04561 15.6675i 0.319213 0.552892i
\(804\) 5.04596 + 2.91329i 0.177957 + 0.102744i
\(805\) 0 0
\(806\) −13.6028 21.7498i −0.479138 0.766103i
\(807\) 26.6268 0.937308
\(808\) 10.5986 + 6.11911i 0.372858 + 0.215270i
\(809\) 17.7054 30.6667i 0.622490 1.07818i −0.366530 0.930406i \(-0.619454\pi\)
0.989020 0.147779i \(-0.0472123\pi\)
\(810\) 0 0
\(811\) 1.41268i 0.0496060i −0.999692 0.0248030i \(-0.992104\pi\)
0.999692 0.0248030i \(-0.00789586\pi\)
\(812\) −36.3262 + 20.9730i −1.27480 + 0.736007i
\(813\) 6.66899 3.85034i 0.233892 0.135037i
\(814\) 17.6324i 0.618014i
\(815\) 0 0
\(816\) 1.50437 2.60564i 0.0526635 0.0912158i
\(817\) −4.00296 2.31111i −0.140046 0.0808555i
\(818\) 24.6113 0.860513
\(819\) 13.2843 8.30831i 0.464191 0.290316i
\(820\) 0 0
\(821\) 14.7591 + 8.52118i 0.515097 + 0.297391i 0.734926 0.678147i \(-0.237217\pi\)
−0.219829 + 0.975538i \(0.570550\pi\)
\(822\) 6.20689 10.7506i 0.216490 0.374972i
\(823\) −2.21485 3.83623i −0.0772047 0.133723i 0.824838 0.565369i \(-0.191266\pi\)
−0.902043 + 0.431646i \(0.857933\pi\)
\(824\) 3.75144i 0.130688i
\(825\) 0 0
\(826\) −19.8320 + 11.4500i −0.690043 + 0.398396i
\(827\) 41.2574i 1.43466i 0.696734 + 0.717330i \(0.254636\pi\)
−0.696734 + 0.717330i \(0.745364\pi\)
\(828\) 3.22396 + 5.58405i 0.112040 + 0.194059i
\(829\) −21.3857 + 37.0411i −0.742756 + 1.28649i 0.208479 + 0.978027i \(0.433149\pi\)
−0.951236 + 0.308465i \(0.900185\pi\)
\(830\) 0 0
\(831\) −14.3023 −0.496141
\(832\) 1.69144 3.18419i 0.0586400 0.110392i
\(833\) 35.7579 1.23894
\(834\) 13.5258 + 7.80915i 0.468361 + 0.270409i
\(835\) 0 0
\(836\) 0.797003 + 1.38045i 0.0275649 + 0.0477438i
\(837\) 7.11493i 0.245928i
\(838\) −23.4739 + 13.5527i −0.810893 + 0.468169i
\(839\) 0.249908 0.144284i 0.00862777 0.00498124i −0.495680 0.868505i \(-0.665081\pi\)
0.504308 + 0.863524i \(0.331748\pi\)
\(840\) 0 0
\(841\) −32.0843 55.5717i −1.10636 1.91626i
\(842\) −16.4998 + 28.5785i −0.568621 + 0.984880i
\(843\) −6.90002 3.98373i −0.237649 0.137207i
\(844\) 24.3809 0.839226
\(845\) 0 0
\(846\) −5.61529 −0.193058
\(847\) −20.5040 11.8380i −0.704524 0.406757i
\(848\) −4.71700 + 8.17008i −0.161982 + 0.280562i
\(849\) −7.33785 12.7095i −0.251834 0.436190i
\(850\) 0 0
\(851\) −41.7871 + 24.1258i −1.43244 + 0.827022i
\(852\) −2.52520 + 1.45793i −0.0865120 + 0.0499477i
\(853\) 42.9336i 1.47002i 0.678058 + 0.735009i \(0.262822\pi\)
−0.678058 + 0.735009i \(0.737178\pi\)
\(854\) −9.37121 16.2314i −0.320676 0.555428i
\(855\) 0 0
\(856\) 14.3904 + 8.30831i 0.491854 + 0.283972i
\(857\) 43.6929 1.49252 0.746261 0.665654i \(-0.231847\pi\)
0.746261 + 0.665654i \(0.231847\pi\)
\(858\) 3.98541 7.50267i 0.136060 0.256137i
\(859\) 50.5362 1.72427 0.862137 0.506676i \(-0.169126\pi\)
0.862137 + 0.506676i \(0.169126\pi\)
\(860\) 0 0
\(861\) 6.53747 11.3232i 0.222796 0.385894i
\(862\) −4.30517 7.45678i −0.146635 0.253979i
\(863\) 9.24937i 0.314852i 0.987531 + 0.157426i \(0.0503196\pi\)
−0.987531 + 0.157426i \(0.949680\pi\)
\(864\) 0.866025 0.500000i 0.0294628 0.0170103i
\(865\) 0 0
\(866\) 3.45488i 0.117402i
\(867\) 3.97374 + 6.88273i 0.134955 + 0.233750i
\(868\) 15.4595 26.7766i 0.524729 0.908858i
\(869\) −7.64226 4.41226i −0.259246 0.149676i
\(870\) 0 0
\(871\) 17.8114 11.1396i 0.603516 0.377452i
\(872\) 11.1116 0.376285
\(873\) −14.1520 8.17066i −0.478973 0.276535i
\(874\) −2.18103 + 3.77765i −0.0737744 + 0.127781i
\(875\) 0 0
\(876\) 7.67804i 0.259417i
\(877\) −49.3035 + 28.4654i −1.66486 + 0.961208i −0.694517 + 0.719476i \(0.744382\pi\)
−0.970343 + 0.241731i \(0.922285\pi\)
\(878\) −20.9974 + 12.1229i −0.708628 + 0.409127i
\(879\) 6.86396i 0.231515i
\(880\) 0 0
\(881\) 7.98900 13.8374i 0.269156 0.466192i −0.699488 0.714644i \(-0.746588\pi\)
0.968644 + 0.248452i \(0.0799218\pi\)
\(882\) 10.2924 + 5.94234i 0.346564 + 0.200089i
\(883\) −0.189481 −0.00637654 −0.00318827 0.999995i \(-0.501015\pi\)
−0.00318827 + 0.999995i \(0.501015\pi\)
\(884\) −5.75231 9.19748i −0.193471 0.309345i
\(885\) 0 0
\(886\) 11.3994 + 6.58147i 0.382972 + 0.221109i
\(887\) 8.96852 15.5339i 0.301133 0.521578i −0.675260 0.737580i \(-0.735968\pi\)
0.976393 + 0.216002i \(0.0693017\pi\)
\(888\) 3.74165 + 6.48073i 0.125562 + 0.217479i
\(889\) 59.1213i 1.98287i
\(890\) 0 0
\(891\) 2.04055 1.17811i 0.0683611 0.0394683i
\(892\) 4.63585i 0.155220i
\(893\) −1.89939 3.28984i −0.0635607 0.110090i
\(894\) −9.76324 + 16.9104i −0.326532 + 0.565570i
\(895\) 0 0
\(896\) 4.34565 0.145178
\(897\) 23.2338 0.820594i 0.775754 0.0273988i
\(898\) 2.51464 0.0839145
\(899\) 59.4752 + 34.3380i 1.98361 + 1.14524i
\(900\) 0 0
\(901\) 14.1922 + 24.5817i 0.472812 + 0.818934i
\(902\) 7.08928i 0.236047i
\(903\) −25.7136 + 14.8458i −0.855696 + 0.494036i
\(904\) 13.5620 7.83002i 0.451065 0.260423i
\(905\) 0 0
\(906\) 5.75137 + 9.96166i 0.191076 + 0.330954i
\(907\) −16.5050 + 28.5874i −0.548038 + 0.949230i 0.450371 + 0.892842i \(0.351292\pi\)
−0.998409 + 0.0563882i \(0.982042\pi\)
\(908\) 15.4016 + 8.89213i 0.511121 + 0.295096i
\(909\) 12.2382 0.405916
\(910\) 0 0
\(911\) 13.9676 0.462768 0.231384 0.972863i \(-0.425675\pi\)
0.231384 + 0.972863i \(0.425675\pi\)
\(912\) 0.585872 + 0.338254i 0.0194002 + 0.0112007i
\(913\) −12.2002 + 21.1313i −0.403766 + 0.699344i
\(914\) −5.38493 9.32698i −0.178118 0.308509i
\(915\) 0 0
\(916\) −13.2815 + 7.66806i −0.438832 + 0.253360i
\(917\) 38.4331 22.1894i 1.26917 0.732758i
\(918\) 3.00874i 0.0993032i
\(919\) −9.50273 16.4592i −0.313466 0.542939i 0.665644 0.746269i \(-0.268157\pi\)
−0.979110 + 0.203330i \(0.934824\pi\)
\(920\) 0 0
\(921\) −9.51907 5.49584i −0.313664 0.181094i
\(922\) −11.8915 −0.391626
\(923\) 0.371086 + 10.5067i 0.0122144 + 0.345832i
\(924\) 10.2393 0.336850
\(925\) 0 0
\(926\) −14.9731 + 25.9342i −0.492047 + 0.852250i
\(927\) −1.87572 3.24884i −0.0616067 0.106706i
\(928\) 9.65239i 0.316855i
\(929\) 50.0606 28.9025i 1.64243 0.948259i 0.662468 0.749090i \(-0.269509\pi\)
0.979965 0.199169i \(-0.0638244\pi\)
\(930\) 0 0
\(931\) 8.04007i 0.263503i
\(932\) −3.87774 6.71645i −0.127020 0.220005i
\(933\) 6.95220 12.0416i 0.227605 0.394223i
\(934\) −18.9607 10.9470i −0.620414 0.358196i
\(935\) 0 0
\(936\) −0.127265 3.60330i −0.00415979 0.117778i
\(937\) 39.7996 1.30020 0.650099 0.759850i \(-0.274727\pi\)
0.650099 + 0.759850i \(0.274727\pi\)
\(938\) 21.9280 + 12.6601i 0.715974 + 0.413368i
\(939\) 7.08672 12.2746i 0.231266 0.400565i
\(940\) 0 0
\(941\) 1.26326i 0.0411810i 0.999788 + 0.0205905i \(0.00655462\pi\)
−0.999788 + 0.0205905i \(0.993445\pi\)
\(942\) −3.87629 + 2.23798i −0.126296 + 0.0729172i
\(943\) 16.8010 9.70004i 0.547115 0.315877i
\(944\) 5.26964i 0.171512i
\(945\) 0 0
\(946\) −8.04943 + 13.9420i −0.261710 + 0.453294i
\(947\) −7.75545 4.47761i −0.252018 0.145503i 0.368670 0.929560i \(-0.379813\pi\)
−0.620688 + 0.784058i \(0.713147\pi\)
\(948\) −3.74519 −0.121638
\(949\) −24.4483 12.9869i −0.793626 0.421574i
\(950\) 0 0
\(951\) 2.77828 + 1.60404i 0.0900920 + 0.0520146i
\(952\) 6.53747 11.3232i 0.211880 0.366988i
\(953\) 6.18504 + 10.7128i 0.200353 + 0.347022i 0.948642 0.316351i \(-0.102458\pi\)
−0.748289 + 0.663373i \(0.769124\pi\)
\(954\) 9.43400i 0.305437i
\(955\) 0 0
\(956\) 16.1435 9.32045i 0.522118 0.301445i
\(957\) 22.7432i 0.735184i
\(958\) −4.56168 7.90106i −0.147381 0.255272i
\(959\) 26.9730 46.7185i 0.871002 1.50862i
\(960\) 0 0
\(961\) −19.6222 −0.632973
\(962\) 26.9646 0.952362i 0.869374 0.0307054i
\(963\) 16.6166 0.535463
\(964\) −2.65884 1.53508i −0.0856354 0.0494416i
\(965\) 0 0
\(966\) 14.0102 + 24.2664i 0.450770 + 0.780757i
\(967\) 6.35606i 0.204397i 0.994764 + 0.102198i \(0.0325877\pi\)
−0.994764 + 0.102198i \(0.967412\pi\)
\(968\) −4.71827 + 2.72410i −0.151651 + 0.0875557i
\(969\) 1.76274 1.01772i 0.0566273 0.0326938i
\(970\) 0 0
\(971\) 23.6660 + 40.9907i 0.759477 + 1.31545i 0.943117 + 0.332460i \(0.107879\pi\)
−0.183640 + 0.982994i \(0.558788\pi\)
\(972\) 0.500000 0.866025i 0.0160375 0.0277778i
\(973\) 58.7786 + 33.9358i 1.88435 + 1.08793i
\(974\) −21.7174 −0.695872
\(975\) 0 0
\(976\) −4.31292 −0.138053
\(977\) −42.6002 24.5952i −1.36290 0.786871i −0.372891 0.927875i \(-0.621633\pi\)
−0.990009 + 0.141005i \(0.954967\pi\)
\(978\) 3.87774 6.71645i 0.123997 0.214768i
\(979\) 5.64835 + 9.78324i 0.180522 + 0.312674i
\(980\) 0 0
\(981\) 9.62290 5.55578i 0.307236 0.177383i
\(982\) −28.6548 + 16.5438i −0.914411 + 0.527935i
\(983\) 22.1542i 0.706609i 0.935508 + 0.353304i \(0.114942\pi\)
−0.935508 + 0.353304i \(0.885058\pi\)
\(984\) −1.50437 2.60564i −0.0479576 0.0830649i
\(985\) 0 0
\(986\) 25.1507 + 14.5208i 0.800961 + 0.462435i
\(987\) −24.4021 −0.776727
\(988\) 2.06803 1.29339i 0.0657928 0.0411483i
\(989\) −44.0552 −1.40087
\(990\) 0 0
\(991\) 24.0251 41.6127i 0.763182 1.32187i −0.178020 0.984027i \(-0.556969\pi\)
0.941202 0.337843i \(-0.109697\pi\)
\(992\) −3.55746 6.16171i −0.112950 0.195634i
\(993\) 25.7574i 0.817387i
\(994\) −10.9736 + 6.33564i −0.348063 + 0.200954i
\(995\) 0 0
\(996\) 10.3557i 0.328132i
\(997\) −23.6919 41.0355i −0.750329 1.29961i −0.947663 0.319271i \(-0.896562\pi\)
0.197335 0.980336i \(-0.436771\pi\)
\(998\) −5.24444 + 9.08363i −0.166010 + 0.287537i
\(999\) 6.48073 + 3.74165i 0.205041 + 0.118381i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1950.2.bc.i.901.3 12
5.2 odd 4 390.2.x.b.199.4 yes 12
5.3 odd 4 390.2.x.a.199.3 yes 12
5.4 even 2 1950.2.bc.j.901.4 12
13.10 even 6 inner 1950.2.bc.i.751.3 12
15.2 even 4 1170.2.bj.c.199.5 12
15.8 even 4 1170.2.bj.d.199.2 12
65.23 odd 12 390.2.x.b.49.4 yes 12
65.49 even 6 1950.2.bc.j.751.4 12
65.62 odd 12 390.2.x.a.49.3 12
195.23 even 12 1170.2.bj.c.829.5 12
195.62 even 12 1170.2.bj.d.829.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.x.a.49.3 12 65.62 odd 12
390.2.x.a.199.3 yes 12 5.3 odd 4
390.2.x.b.49.4 yes 12 65.23 odd 12
390.2.x.b.199.4 yes 12 5.2 odd 4
1170.2.bj.c.199.5 12 15.2 even 4
1170.2.bj.c.829.5 12 195.23 even 12
1170.2.bj.d.199.2 12 15.8 even 4
1170.2.bj.d.829.2 12 195.62 even 12
1950.2.bc.i.751.3 12 13.10 even 6 inner
1950.2.bc.i.901.3 12 1.1 even 1 trivial
1950.2.bc.j.751.4 12 65.49 even 6
1950.2.bc.j.901.4 12 5.4 even 2