Properties

Label 1950.2.bc.e
Level $1950$
Weight $2$
Character orbit 1950.bc
Analytic conductor $15.571$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1950,2,Mod(751,1950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1950.751"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1950, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4,4,0,0,0,0,-4,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{24}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{24}^{6} + \zeta_{24}^{2}) q^{2} - \zeta_{24}^{4} q^{3} + ( - \zeta_{24}^{4} + 1) q^{4} - \zeta_{24}^{2} q^{6} + (\zeta_{24}^{3} - \zeta_{24}^{2} + \zeta_{24}) q^{7} - \zeta_{24}^{6} q^{8} + \cdots + (2 \zeta_{24}^{6} + \zeta_{24}^{5} + \cdots + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 4 q^{4} - 4 q^{9} - 12 q^{11} - 8 q^{12} - 8 q^{14} - 4 q^{16} + 4 q^{17} + 12 q^{19} + 8 q^{22} + 4 q^{23} + 8 q^{27} + 4 q^{29} + 12 q^{33} + 4 q^{36} - 24 q^{37} + 4 q^{42} - 4 q^{43}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(1 - \zeta_{24}^{4}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
751.1
0.258819 0.965926i
−0.258819 + 0.965926i
−0.965926 0.258819i
0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
−0.965926 + 0.258819i
0.965926 0.258819i
−0.866025 + 0.500000i −0.500000 0.866025i 0.500000 0.866025i 0 0.866025 + 0.500000i 0.417738 + 0.241181i 1.00000i −0.500000 + 0.866025i 0
751.2 −0.866025 + 0.500000i −0.500000 0.866025i 0.500000 0.866025i 0 0.866025 + 0.500000i 1.31431 + 0.758819i 1.00000i −0.500000 + 0.866025i 0
751.3 0.866025 0.500000i −0.500000 0.866025i 0.500000 0.866025i 0 −0.866025 0.500000i −2.53906 1.46593i 1.00000i −0.500000 + 0.866025i 0
751.4 0.866025 0.500000i −0.500000 0.866025i 0.500000 0.866025i 0 −0.866025 0.500000i 0.807007 + 0.465926i 1.00000i −0.500000 + 0.866025i 0
901.1 −0.866025 0.500000i −0.500000 + 0.866025i 0.500000 + 0.866025i 0 0.866025 0.500000i 0.417738 0.241181i 1.00000i −0.500000 0.866025i 0
901.2 −0.866025 0.500000i −0.500000 + 0.866025i 0.500000 + 0.866025i 0 0.866025 0.500000i 1.31431 0.758819i 1.00000i −0.500000 0.866025i 0
901.3 0.866025 + 0.500000i −0.500000 + 0.866025i 0.500000 + 0.866025i 0 −0.866025 + 0.500000i −2.53906 + 1.46593i 1.00000i −0.500000 0.866025i 0
901.4 0.866025 + 0.500000i −0.500000 + 0.866025i 0.500000 + 0.866025i 0 −0.866025 + 0.500000i 0.807007 0.465926i 1.00000i −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 751.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.2.bc.e 8
5.b even 2 1 1950.2.bc.f yes 8
5.c odd 4 1 1950.2.y.i 8
5.c odd 4 1 1950.2.y.l 8
13.e even 6 1 inner 1950.2.bc.e 8
65.l even 6 1 1950.2.bc.f yes 8
65.r odd 12 1 1950.2.y.i 8
65.r odd 12 1 1950.2.y.l 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1950.2.y.i 8 5.c odd 4 1
1950.2.y.i 8 65.r odd 12 1
1950.2.y.l 8 5.c odd 4 1
1950.2.y.l 8 65.r odd 12 1
1950.2.bc.e 8 1.a even 1 1 trivial
1950.2.bc.e 8 13.e even 6 1 inner
1950.2.bc.f yes 8 5.b even 2 1
1950.2.bc.f yes 8 65.l even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{8} - 6T_{7}^{6} + 38T_{7}^{4} - 72T_{7}^{3} + 60T_{7}^{2} - 24T_{7} + 4 \) acting on \(S_{2}^{\mathrm{new}}(1950, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} - 6 T^{6} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( T^{8} + 12 T^{7} + \cdots + 529 \) Copy content Toggle raw display
$13$ \( T^{8} + 191 T^{4} + 28561 \) Copy content Toggle raw display
$17$ \( T^{8} - 4 T^{7} + \cdots + 2116 \) Copy content Toggle raw display
$19$ \( T^{8} - 12 T^{7} + \cdots + 324 \) Copy content Toggle raw display
$23$ \( T^{8} - 4 T^{7} + \cdots + 58081 \) Copy content Toggle raw display
$29$ \( T^{8} - 4 T^{7} + \cdots + 341056 \) Copy content Toggle raw display
$31$ \( T^{8} + 204 T^{6} + \cdots + 145924 \) Copy content Toggle raw display
$37$ \( T^{8} + 24 T^{7} + \cdots + 16056049 \) Copy content Toggle raw display
$41$ \( T^{8} - 102 T^{6} + \cdots + 21316 \) Copy content Toggle raw display
$43$ \( T^{8} + 4 T^{7} + \cdots + 386884 \) Copy content Toggle raw display
$47$ \( T^{8} + 216 T^{6} + \cdots + 2972176 \) Copy content Toggle raw display
$53$ \( (T^{4} + 4 T^{3} - 30 T^{2} + \cdots - 98)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 12 T^{7} + \cdots + 5740816 \) Copy content Toggle raw display
$61$ \( T^{8} + 16 T^{7} + \cdots + 8567329 \) Copy content Toggle raw display
$67$ \( T^{8} - 24 T^{7} + \cdots + 20647936 \) Copy content Toggle raw display
$71$ \( T^{8} - 60 T^{7} + \cdots + 6115729 \) Copy content Toggle raw display
$73$ \( T^{8} + 212 T^{6} + \cdots + 4977361 \) Copy content Toggle raw display
$79$ \( (T^{4} + 4 T^{3} + \cdots + 622)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 156 T^{6} + \cdots + 69169 \) Copy content Toggle raw display
$89$ \( T^{8} - 24 T^{7} + \cdots + 5080516 \) Copy content Toggle raw display
$97$ \( T^{8} - 12 T^{7} + \cdots + 61606801 \) Copy content Toggle raw display
show more
show less