# Properties

 Label 1950.2.bc.d Level $1950$ Weight $2$ Character orbit 1950.bc Analytic conductor $15.571$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1950.bc (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$15.5708283941$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 78) Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{12}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{2} + \zeta_{12}^{2} q^{3} + ( 1 - \zeta_{12}^{2} ) q^{4} -\zeta_{12} q^{6} + ( -1 + \zeta_{12} - \zeta_{12}^{2} ) q^{7} + \zeta_{12}^{3} q^{8} + ( -1 + \zeta_{12}^{2} ) q^{9} +O(q^{10})$$ $$q + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{2} + \zeta_{12}^{2} q^{3} + ( 1 - \zeta_{12}^{2} ) q^{4} -\zeta_{12} q^{6} + ( -1 + \zeta_{12} - \zeta_{12}^{2} ) q^{7} + \zeta_{12}^{3} q^{8} + ( -1 + \zeta_{12}^{2} ) q^{9} + ( -2 - 3 \zeta_{12} + \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{11} + q^{12} + ( -3 \zeta_{12} - \zeta_{12}^{3} ) q^{13} + ( -1 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{14} -\zeta_{12}^{2} q^{16} + ( 4 - \zeta_{12} - 4 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{17} -\zeta_{12}^{3} q^{18} + ( 1 - 3 \zeta_{12} + \zeta_{12}^{2} ) q^{19} + ( 1 - 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{21} + ( 3 + \zeta_{12} - 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{22} + ( 3 \zeta_{12} + \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{23} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{24} + ( 3 + \zeta_{12}^{2} ) q^{26} - q^{27} + ( -2 + \zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{28} + ( -2 \zeta_{12} + \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{29} + ( 2 - 4 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{31} + \zeta_{12} q^{32} + ( -1 - 3 \zeta_{12} - \zeta_{12}^{2} ) q^{33} + ( 1 - 2 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{34} + \zeta_{12}^{2} q^{36} + ( 4 + 7 \zeta_{12} - 2 \zeta_{12}^{2} - 7 \zeta_{12}^{3} ) q^{37} + ( 3 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{38} + ( \zeta_{12} - 4 \zeta_{12}^{3} ) q^{39} + ( 12 + \zeta_{12} - 6 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{41} + ( \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{42} + ( 1 - 5 \zeta_{12} - \zeta_{12}^{2} + 10 \zeta_{12}^{3} ) q^{43} + ( -1 + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{44} + ( -3 - \zeta_{12} - 3 \zeta_{12}^{2} ) q^{46} + ( 3 - 6 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{47} + ( 1 - \zeta_{12}^{2} ) q^{48} + ( -2 \zeta_{12} - 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{49} + ( 4 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{51} + ( -4 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{52} + ( 3 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{53} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{54} + ( -1 + \zeta_{12} + \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{56} + ( -1 + 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{57} + ( 2 - \zeta_{12} + 2 \zeta_{12}^{2} ) q^{58} + 8 \zeta_{12} q^{59} + ( 4 - 3 \zeta_{12} - 4 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{61} + ( 2 \zeta_{12} + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{62} + ( 2 - \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{63} - q^{64} + ( 3 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{66} + ( 14 - \zeta_{12} - 7 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{67} + ( \zeta_{12} - 4 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{68} + ( -1 - 3 \zeta_{12} + \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{69} + ( 1 - 3 \zeta_{12} + \zeta_{12}^{2} ) q^{71} -\zeta_{12} q^{72} + ( 1 - 2 \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{73} + ( -7 - 2 \zeta_{12} + 7 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{74} + ( 2 - 3 \zeta_{12} - \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{76} + ( 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{77} + ( -1 + 4 \zeta_{12}^{2} ) q^{78} + ( -6 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{79} -\zeta_{12}^{2} q^{81} + ( -1 - 6 \zeta_{12} + \zeta_{12}^{2} + 12 \zeta_{12}^{3} ) q^{82} + ( 3 - 6 \zeta_{12}^{2} - 5 \zeta_{12}^{3} ) q^{83} + ( -1 + \zeta_{12} - \zeta_{12}^{2} ) q^{84} + ( 5 - 10 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{86} + ( -1 + 2 \zeta_{12} + \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{87} + ( -\zeta_{12} - 3 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{88} + ( -4 + 6 \zeta_{12} + 2 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{89} + ( 1 + 2 \zeta_{12} - 4 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{91} + ( 1 + 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{92} + ( 4 + 2 \zeta_{12} - 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{93} + ( 3 \zeta_{12} + 3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{94} + \zeta_{12}^{3} q^{96} -6 \zeta_{12} q^{97} + ( 2 + 3 \zeta_{12} + 2 \zeta_{12}^{2} ) q^{98} + ( 1 - 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 2 q^{3} + 2 q^{4} - 6 q^{7} - 2 q^{9} + O(q^{10})$$ $$4 q + 2 q^{3} + 2 q^{4} - 6 q^{7} - 2 q^{9} - 6 q^{11} + 4 q^{12} - 4 q^{14} - 2 q^{16} + 8 q^{17} + 6 q^{19} + 6 q^{22} + 2 q^{23} + 14 q^{26} - 4 q^{27} - 6 q^{28} + 2 q^{29} - 6 q^{33} + 2 q^{36} + 12 q^{37} + 12 q^{38} + 36 q^{41} - 2 q^{42} + 2 q^{43} - 18 q^{46} + 2 q^{48} - 6 q^{49} + 16 q^{51} + 12 q^{53} - 2 q^{56} + 12 q^{58} + 8 q^{61} + 4 q^{62} + 6 q^{63} - 4 q^{64} + 12 q^{66} + 42 q^{67} - 8 q^{68} - 2 q^{69} + 6 q^{71} - 14 q^{74} + 6 q^{76} + 4 q^{78} - 24 q^{79} - 2 q^{81} - 2 q^{82} - 6 q^{84} - 2 q^{87} - 6 q^{88} - 12 q^{89} - 4 q^{91} + 4 q^{92} + 12 q^{93} + 6 q^{94} + 12 q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times$$.

 $$n$$ $$301$$ $$1301$$ $$1327$$ $$\chi(n)$$ $$1 - \zeta_{12}^{2}$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
751.1
 0.866025 + 0.500000i −0.866025 − 0.500000i 0.866025 − 0.500000i −0.866025 + 0.500000i
−0.866025 + 0.500000i 0.500000 + 0.866025i 0.500000 0.866025i 0 −0.866025 0.500000i −0.633975 0.366025i 1.00000i −0.500000 + 0.866025i 0
751.2 0.866025 0.500000i 0.500000 + 0.866025i 0.500000 0.866025i 0 0.866025 + 0.500000i −2.36603 1.36603i 1.00000i −0.500000 + 0.866025i 0
901.1 −0.866025 0.500000i 0.500000 0.866025i 0.500000 + 0.866025i 0 −0.866025 + 0.500000i −0.633975 + 0.366025i 1.00000i −0.500000 0.866025i 0
901.2 0.866025 + 0.500000i 0.500000 0.866025i 0.500000 + 0.866025i 0 0.866025 0.500000i −2.36603 + 1.36603i 1.00000i −0.500000 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.2.bc.d 4
5.b even 2 1 78.2.i.a 4
5.c odd 4 1 1950.2.y.b 4
5.c odd 4 1 1950.2.y.g 4
13.e even 6 1 inner 1950.2.bc.d 4
15.d odd 2 1 234.2.l.c 4
20.d odd 2 1 624.2.bv.e 4
60.h even 2 1 1872.2.by.h 4
65.d even 2 1 1014.2.i.a 4
65.g odd 4 1 1014.2.e.g 4
65.g odd 4 1 1014.2.e.i 4
65.l even 6 1 78.2.i.a 4
65.l even 6 1 1014.2.b.e 4
65.n even 6 1 1014.2.b.e 4
65.n even 6 1 1014.2.i.a 4
65.r odd 12 1 1950.2.y.b 4
65.r odd 12 1 1950.2.y.g 4
65.s odd 12 1 1014.2.a.i 2
65.s odd 12 1 1014.2.a.k 2
65.s odd 12 1 1014.2.e.g 4
65.s odd 12 1 1014.2.e.i 4
195.x odd 6 1 3042.2.b.i 4
195.y odd 6 1 234.2.l.c 4
195.y odd 6 1 3042.2.b.i 4
195.bh even 12 1 3042.2.a.p 2
195.bh even 12 1 3042.2.a.y 2
260.w odd 6 1 624.2.bv.e 4
260.bc even 12 1 8112.2.a.bj 2
260.bc even 12 1 8112.2.a.bp 2
780.cb even 6 1 1872.2.by.h 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.i.a 4 5.b even 2 1
78.2.i.a 4 65.l even 6 1
234.2.l.c 4 15.d odd 2 1
234.2.l.c 4 195.y odd 6 1
624.2.bv.e 4 20.d odd 2 1
624.2.bv.e 4 260.w odd 6 1
1014.2.a.i 2 65.s odd 12 1
1014.2.a.k 2 65.s odd 12 1
1014.2.b.e 4 65.l even 6 1
1014.2.b.e 4 65.n even 6 1
1014.2.e.g 4 65.g odd 4 1
1014.2.e.g 4 65.s odd 12 1
1014.2.e.i 4 65.g odd 4 1
1014.2.e.i 4 65.s odd 12 1
1014.2.i.a 4 65.d even 2 1
1014.2.i.a 4 65.n even 6 1
1872.2.by.h 4 60.h even 2 1
1872.2.by.h 4 780.cb even 6 1
1950.2.y.b 4 5.c odd 4 1
1950.2.y.b 4 65.r odd 12 1
1950.2.y.g 4 5.c odd 4 1
1950.2.y.g 4 65.r odd 12 1
1950.2.bc.d 4 1.a even 1 1 trivial
1950.2.bc.d 4 13.e even 6 1 inner
3042.2.a.p 2 195.bh even 12 1
3042.2.a.y 2 195.bh even 12 1
3042.2.b.i 4 195.x odd 6 1
3042.2.b.i 4 195.y odd 6 1
8112.2.a.bj 2 260.bc even 12 1
8112.2.a.bp 2 260.bc even 12 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{7}^{4} + 6 T_{7}^{3} + 14 T_{7}^{2} + 12 T_{7} + 4$$ acting on $$S_{2}^{\mathrm{new}}(1950, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 - T^{2} + T^{4}$$
$3$ $$( 1 - T + T^{2} )^{2}$$
$5$ $$T^{4}$$
$7$ $$4 + 12 T + 14 T^{2} + 6 T^{3} + T^{4}$$
$11$ $$36 - 36 T + 6 T^{2} + 6 T^{3} + T^{4}$$
$13$ $$169 - T^{2} + T^{4}$$
$17$ $$169 - 104 T + 51 T^{2} - 8 T^{3} + T^{4}$$
$19$ $$36 + 36 T + 6 T^{2} - 6 T^{3} + T^{4}$$
$23$ $$676 + 52 T + 30 T^{2} - 2 T^{3} + T^{4}$$
$29$ $$121 + 22 T + 15 T^{2} - 2 T^{3} + T^{4}$$
$31$ $$64 + 32 T^{2} + T^{4}$$
$37$ $$1369 + 444 T + 11 T^{2} - 12 T^{3} + T^{4}$$
$41$ $$11449 - 3852 T + 539 T^{2} - 36 T^{3} + T^{4}$$
$43$ $$5476 + 148 T + 78 T^{2} - 2 T^{3} + T^{4}$$
$47$ $$324 + 72 T^{2} + T^{4}$$
$53$ $$( -3 - 6 T + T^{2} )^{2}$$
$59$ $$4096 - 64 T^{2} + T^{4}$$
$61$ $$121 + 88 T + 75 T^{2} - 8 T^{3} + T^{4}$$
$67$ $$21316 - 6132 T + 734 T^{2} - 42 T^{3} + T^{4}$$
$71$ $$36 + 36 T + 6 T^{2} - 6 T^{3} + T^{4}$$
$73$ $$3721 + 134 T^{2} + T^{4}$$
$79$ $$( 24 + 12 T + T^{2} )^{2}$$
$83$ $$4 + 104 T^{2} + T^{4}$$
$89$ $$576 - 288 T + 24 T^{2} + 12 T^{3} + T^{4}$$
$97$ $$1296 - 36 T^{2} + T^{4}$$