Properties

Label 1950.2.bc.a.751.2
Level $1950$
Weight $2$
Character 1950.751
Analytic conductor $15.571$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 751.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1950.751
Dual form 1950.2.bc.a.901.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.866025 - 0.500000i) q^{6} +(2.59808 + 1.50000i) q^{7} -1.00000i q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.866025 - 0.500000i) q^{6} +(2.59808 + 1.50000i) q^{7} -1.00000i q^{8} +(-0.500000 + 0.866025i) q^{9} +(-3.23205 + 1.86603i) q^{11} -1.00000 q^{12} +(0.866025 - 3.50000i) q^{13} +3.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(2.00000 - 3.46410i) q^{17} +1.00000i q^{18} +(-1.96410 - 1.13397i) q^{19} -3.00000i q^{21} +(-1.86603 + 3.23205i) q^{22} +(-1.73205 - 3.00000i) q^{23} +(-0.866025 + 0.500000i) q^{24} +(-1.00000 - 3.46410i) q^{26} +1.00000 q^{27} +(2.59808 - 1.50000i) q^{28} +(2.73205 + 4.73205i) q^{29} -8.92820i q^{31} +(-0.866025 - 0.500000i) q^{32} +(3.23205 + 1.86603i) q^{33} -4.00000i q^{34} +(0.500000 + 0.866025i) q^{36} +(6.86603 - 3.96410i) q^{37} -2.26795 q^{38} +(-3.46410 + 1.00000i) q^{39} +(3.46410 - 2.00000i) q^{41} +(-1.50000 - 2.59808i) q^{42} +(3.00000 - 5.19615i) q^{43} +3.73205i q^{44} +(-3.00000 - 1.73205i) q^{46} -0.464102i q^{47} +(-0.500000 + 0.866025i) q^{48} +(1.00000 + 1.73205i) q^{49} -4.00000 q^{51} +(-2.59808 - 2.50000i) q^{52} +3.73205 q^{53} +(0.866025 - 0.500000i) q^{54} +(1.50000 - 2.59808i) q^{56} +2.26795i q^{57} +(4.73205 + 2.73205i) q^{58} +(3.92820 + 2.26795i) q^{59} +(3.73205 - 6.46410i) q^{61} +(-4.46410 - 7.73205i) q^{62} +(-2.59808 + 1.50000i) q^{63} -1.00000 q^{64} +3.73205 q^{66} +(-4.73205 + 2.73205i) q^{67} +(-2.00000 - 3.46410i) q^{68} +(-1.73205 + 3.00000i) q^{69} +(-0.803848 - 0.464102i) q^{71} +(0.866025 + 0.500000i) q^{72} -6.92820i q^{73} +(3.96410 - 6.86603i) q^{74} +(-1.96410 + 1.13397i) q^{76} -11.1962 q^{77} +(-2.50000 + 2.59808i) q^{78} +16.9282 q^{79} +(-0.500000 - 0.866025i) q^{81} +(2.00000 - 3.46410i) q^{82} -2.53590i q^{83} +(-2.59808 - 1.50000i) q^{84} -6.00000i q^{86} +(2.73205 - 4.73205i) q^{87} +(1.86603 + 3.23205i) q^{88} +(-8.76795 + 5.06218i) q^{89} +(7.50000 - 7.79423i) q^{91} -3.46410 q^{92} +(-7.73205 + 4.46410i) q^{93} +(-0.232051 - 0.401924i) q^{94} +1.00000i q^{96} +(-10.7321 - 6.19615i) q^{97} +(1.73205 + 1.00000i) q^{98} -3.73205i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{3} + 2q^{4} - 2q^{9} + O(q^{10}) \) \( 4q - 2q^{3} + 2q^{4} - 2q^{9} - 6q^{11} - 4q^{12} + 12q^{14} - 2q^{16} + 8q^{17} + 6q^{19} - 4q^{22} - 4q^{26} + 4q^{27} + 4q^{29} + 6q^{33} + 2q^{36} + 24q^{37} - 16q^{38} - 6q^{42} + 12q^{43} - 12q^{46} - 2q^{48} + 4q^{49} - 16q^{51} + 8q^{53} + 6q^{56} + 12q^{58} - 12q^{59} + 8q^{61} - 4q^{62} - 4q^{64} + 8q^{66} - 12q^{67} - 8q^{68} - 24q^{71} + 2q^{74} + 6q^{76} - 24q^{77} - 10q^{78} + 40q^{79} - 2q^{81} + 8q^{82} + 4q^{87} + 4q^{88} - 42q^{89} + 30q^{91} - 24q^{93} + 6q^{94} - 36q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) −0.866025 0.500000i −0.353553 0.204124i
\(7\) 2.59808 + 1.50000i 0.981981 + 0.566947i 0.902867 0.429919i \(-0.141458\pi\)
0.0791130 + 0.996866i \(0.474791\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −3.23205 + 1.86603i −0.974500 + 0.562628i −0.900605 0.434638i \(-0.856876\pi\)
−0.0738948 + 0.997266i \(0.523543\pi\)
\(12\) −1.00000 −0.288675
\(13\) 0.866025 3.50000i 0.240192 0.970725i
\(14\) 3.00000 0.801784
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.00000 3.46410i 0.485071 0.840168i −0.514782 0.857321i \(-0.672127\pi\)
0.999853 + 0.0171533i \(0.00546033\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −1.96410 1.13397i −0.450596 0.260152i 0.257486 0.966282i \(-0.417106\pi\)
−0.708082 + 0.706130i \(0.750439\pi\)
\(20\) 0 0
\(21\) 3.00000i 0.654654i
\(22\) −1.86603 + 3.23205i −0.397838 + 0.689076i
\(23\) −1.73205 3.00000i −0.361158 0.625543i 0.626994 0.779024i \(-0.284285\pi\)
−0.988152 + 0.153481i \(0.950952\pi\)
\(24\) −0.866025 + 0.500000i −0.176777 + 0.102062i
\(25\) 0 0
\(26\) −1.00000 3.46410i −0.196116 0.679366i
\(27\) 1.00000 0.192450
\(28\) 2.59808 1.50000i 0.490990 0.283473i
\(29\) 2.73205 + 4.73205i 0.507329 + 0.878720i 0.999964 + 0.00848369i \(0.00270048\pi\)
−0.492635 + 0.870236i \(0.663966\pi\)
\(30\) 0 0
\(31\) 8.92820i 1.60355i −0.597624 0.801776i \(-0.703889\pi\)
0.597624 0.801776i \(-0.296111\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 3.23205 + 1.86603i 0.562628 + 0.324833i
\(34\) 4.00000i 0.685994i
\(35\) 0 0
\(36\) 0.500000 + 0.866025i 0.0833333 + 0.144338i
\(37\) 6.86603 3.96410i 1.12877 0.651694i 0.185143 0.982712i \(-0.440725\pi\)
0.943625 + 0.331017i \(0.107392\pi\)
\(38\) −2.26795 −0.367910
\(39\) −3.46410 + 1.00000i −0.554700 + 0.160128i
\(40\) 0 0
\(41\) 3.46410 2.00000i 0.541002 0.312348i −0.204483 0.978870i \(-0.565551\pi\)
0.745485 + 0.666523i \(0.232218\pi\)
\(42\) −1.50000 2.59808i −0.231455 0.400892i
\(43\) 3.00000 5.19615i 0.457496 0.792406i −0.541332 0.840809i \(-0.682080\pi\)
0.998828 + 0.0484030i \(0.0154132\pi\)
\(44\) 3.73205i 0.562628i
\(45\) 0 0
\(46\) −3.00000 1.73205i −0.442326 0.255377i
\(47\) 0.464102i 0.0676962i −0.999427 0.0338481i \(-0.989224\pi\)
0.999427 0.0338481i \(-0.0107762\pi\)
\(48\) −0.500000 + 0.866025i −0.0721688 + 0.125000i
\(49\) 1.00000 + 1.73205i 0.142857 + 0.247436i
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) −2.59808 2.50000i −0.360288 0.346688i
\(53\) 3.73205 0.512637 0.256318 0.966592i \(-0.417490\pi\)
0.256318 + 0.966592i \(0.417490\pi\)
\(54\) 0.866025 0.500000i 0.117851 0.0680414i
\(55\) 0 0
\(56\) 1.50000 2.59808i 0.200446 0.347183i
\(57\) 2.26795i 0.300397i
\(58\) 4.73205 + 2.73205i 0.621349 + 0.358736i
\(59\) 3.92820 + 2.26795i 0.511409 + 0.295262i 0.733412 0.679784i \(-0.237926\pi\)
−0.222004 + 0.975046i \(0.571260\pi\)
\(60\) 0 0
\(61\) 3.73205 6.46410i 0.477840 0.827643i −0.521837 0.853045i \(-0.674753\pi\)
0.999677 + 0.0254017i \(0.00808648\pi\)
\(62\) −4.46410 7.73205i −0.566941 0.981971i
\(63\) −2.59808 + 1.50000i −0.327327 + 0.188982i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 3.73205 0.459384
\(67\) −4.73205 + 2.73205i −0.578112 + 0.333773i −0.760383 0.649475i \(-0.774989\pi\)
0.182271 + 0.983248i \(0.441655\pi\)
\(68\) −2.00000 3.46410i −0.242536 0.420084i
\(69\) −1.73205 + 3.00000i −0.208514 + 0.361158i
\(70\) 0 0
\(71\) −0.803848 0.464102i −0.0953992 0.0550787i 0.451541 0.892250i \(-0.350874\pi\)
−0.546941 + 0.837171i \(0.684208\pi\)
\(72\) 0.866025 + 0.500000i 0.102062 + 0.0589256i
\(73\) 6.92820i 0.810885i −0.914121 0.405442i \(-0.867117\pi\)
0.914121 0.405442i \(-0.132883\pi\)
\(74\) 3.96410 6.86603i 0.460817 0.798159i
\(75\) 0 0
\(76\) −1.96410 + 1.13397i −0.225298 + 0.130076i
\(77\) −11.1962 −1.27592
\(78\) −2.50000 + 2.59808i −0.283069 + 0.294174i
\(79\) 16.9282 1.90457 0.952286 0.305208i \(-0.0987259\pi\)
0.952286 + 0.305208i \(0.0987259\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.00000 3.46410i 0.220863 0.382546i
\(83\) 2.53590i 0.278351i −0.990268 0.139176i \(-0.955555\pi\)
0.990268 0.139176i \(-0.0444452\pi\)
\(84\) −2.59808 1.50000i −0.283473 0.163663i
\(85\) 0 0
\(86\) 6.00000i 0.646997i
\(87\) 2.73205 4.73205i 0.292907 0.507329i
\(88\) 1.86603 + 3.23205i 0.198919 + 0.344538i
\(89\) −8.76795 + 5.06218i −0.929401 + 0.536590i −0.886622 0.462495i \(-0.846954\pi\)
−0.0427788 + 0.999085i \(0.513621\pi\)
\(90\) 0 0
\(91\) 7.50000 7.79423i 0.786214 0.817057i
\(92\) −3.46410 −0.361158
\(93\) −7.73205 + 4.46410i −0.801776 + 0.462906i
\(94\) −0.232051 0.401924i −0.0239342 0.0414553i
\(95\) 0 0
\(96\) 1.00000i 0.102062i
\(97\) −10.7321 6.19615i −1.08967 0.629124i −0.156185 0.987728i \(-0.549920\pi\)
−0.933490 + 0.358604i \(0.883253\pi\)
\(98\) 1.73205 + 1.00000i 0.174964 + 0.101015i
\(99\) 3.73205i 0.375085i
\(100\) 0 0
\(101\) 4.19615 + 7.26795i 0.417533 + 0.723188i 0.995691 0.0927369i \(-0.0295616\pi\)
−0.578158 + 0.815925i \(0.696228\pi\)
\(102\) −3.46410 + 2.00000i −0.342997 + 0.198030i
\(103\) −19.5885 −1.93011 −0.965054 0.262051i \(-0.915601\pi\)
−0.965054 + 0.262051i \(0.915601\pi\)
\(104\) −3.50000 0.866025i −0.343203 0.0849208i
\(105\) 0 0
\(106\) 3.23205 1.86603i 0.313925 0.181244i
\(107\) 0.464102 + 0.803848i 0.0448664 + 0.0777109i 0.887587 0.460641i \(-0.152380\pi\)
−0.842720 + 0.538352i \(0.819047\pi\)
\(108\) 0.500000 0.866025i 0.0481125 0.0833333i
\(109\) 10.3923i 0.995402i 0.867349 + 0.497701i \(0.165822\pi\)
−0.867349 + 0.497701i \(0.834178\pi\)
\(110\) 0 0
\(111\) −6.86603 3.96410i −0.651694 0.376256i
\(112\) 3.00000i 0.283473i
\(113\) −6.00000 + 10.3923i −0.564433 + 0.977626i 0.432670 + 0.901553i \(0.357572\pi\)
−0.997102 + 0.0760733i \(0.975762\pi\)
\(114\) 1.13397 + 1.96410i 0.106206 + 0.183955i
\(115\) 0 0
\(116\) 5.46410 0.507329
\(117\) 2.59808 + 2.50000i 0.240192 + 0.231125i
\(118\) 4.53590 0.417563
\(119\) 10.3923 6.00000i 0.952661 0.550019i
\(120\) 0 0
\(121\) 1.46410 2.53590i 0.133100 0.230536i
\(122\) 7.46410i 0.675768i
\(123\) −3.46410 2.00000i −0.312348 0.180334i
\(124\) −7.73205 4.46410i −0.694359 0.400888i
\(125\) 0 0
\(126\) −1.50000 + 2.59808i −0.133631 + 0.231455i
\(127\) 2.33013 + 4.03590i 0.206765 + 0.358128i 0.950694 0.310131i \(-0.100373\pi\)
−0.743928 + 0.668259i \(0.767040\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) −20.3205 −1.77541 −0.887706 0.460412i \(-0.847702\pi\)
−0.887706 + 0.460412i \(0.847702\pi\)
\(132\) 3.23205 1.86603i 0.281314 0.162417i
\(133\) −3.40192 5.89230i −0.294984 0.510928i
\(134\) −2.73205 + 4.73205i −0.236013 + 0.408787i
\(135\) 0 0
\(136\) −3.46410 2.00000i −0.297044 0.171499i
\(137\) 5.66025 + 3.26795i 0.483588 + 0.279200i 0.721911 0.691986i \(-0.243264\pi\)
−0.238322 + 0.971186i \(0.576598\pi\)
\(138\) 3.46410i 0.294884i
\(139\) −10.8923 + 18.8660i −0.923873 + 1.60020i −0.130510 + 0.991447i \(0.541661\pi\)
−0.793363 + 0.608748i \(0.791672\pi\)
\(140\) 0 0
\(141\) −0.401924 + 0.232051i −0.0338481 + 0.0195422i
\(142\) −0.928203 −0.0778931
\(143\) 3.73205 + 12.9282i 0.312090 + 1.08111i
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −3.46410 6.00000i −0.286691 0.496564i
\(147\) 1.00000 1.73205i 0.0824786 0.142857i
\(148\) 7.92820i 0.651694i
\(149\) 19.7321 + 11.3923i 1.61651 + 0.933294i 0.987813 + 0.155646i \(0.0497458\pi\)
0.628700 + 0.777648i \(0.283587\pi\)
\(150\) 0 0
\(151\) 18.7846i 1.52867i −0.644819 0.764335i \(-0.723067\pi\)
0.644819 0.764335i \(-0.276933\pi\)
\(152\) −1.13397 + 1.96410i −0.0919775 + 0.159310i
\(153\) 2.00000 + 3.46410i 0.161690 + 0.280056i
\(154\) −9.69615 + 5.59808i −0.781338 + 0.451106i
\(155\) 0 0
\(156\) −0.866025 + 3.50000i −0.0693375 + 0.280224i
\(157\) −10.8038 −0.862241 −0.431120 0.902294i \(-0.641882\pi\)
−0.431120 + 0.902294i \(0.641882\pi\)
\(158\) 14.6603 8.46410i 1.16631 0.673368i
\(159\) −1.86603 3.23205i −0.147985 0.256318i
\(160\) 0 0
\(161\) 10.3923i 0.819028i
\(162\) −0.866025 0.500000i −0.0680414 0.0392837i
\(163\) 9.46410 + 5.46410i 0.741286 + 0.427981i 0.822537 0.568712i \(-0.192558\pi\)
−0.0812509 + 0.996694i \(0.525892\pi\)
\(164\) 4.00000i 0.312348i
\(165\) 0 0
\(166\) −1.26795 2.19615i −0.0984119 0.170454i
\(167\) 5.59808 3.23205i 0.433192 0.250104i −0.267513 0.963554i \(-0.586202\pi\)
0.700706 + 0.713451i \(0.252869\pi\)
\(168\) −3.00000 −0.231455
\(169\) −11.5000 6.06218i −0.884615 0.466321i
\(170\) 0 0
\(171\) 1.96410 1.13397i 0.150199 0.0867172i
\(172\) −3.00000 5.19615i −0.228748 0.396203i
\(173\) 11.0622 19.1603i 0.841042 1.45673i −0.0479730 0.998849i \(-0.515276\pi\)
0.889015 0.457879i \(-0.151391\pi\)
\(174\) 5.46410i 0.414232i
\(175\) 0 0
\(176\) 3.23205 + 1.86603i 0.243625 + 0.140657i
\(177\) 4.53590i 0.340939i
\(178\) −5.06218 + 8.76795i −0.379426 + 0.657186i
\(179\) −11.4641 19.8564i −0.856867 1.48414i −0.874902 0.484300i \(-0.839074\pi\)
0.0180347 0.999837i \(-0.494259\pi\)
\(180\) 0 0
\(181\) 3.07180 0.228325 0.114162 0.993462i \(-0.463582\pi\)
0.114162 + 0.993462i \(0.463582\pi\)
\(182\) 2.59808 10.5000i 0.192582 0.778312i
\(183\) −7.46410 −0.551762
\(184\) −3.00000 + 1.73205i −0.221163 + 0.127688i
\(185\) 0 0
\(186\) −4.46410 + 7.73205i −0.327324 + 0.566941i
\(187\) 14.9282i 1.09166i
\(188\) −0.401924 0.232051i −0.0293133 0.0169240i
\(189\) 2.59808 + 1.50000i 0.188982 + 0.109109i
\(190\) 0 0
\(191\) −8.66025 + 15.0000i −0.626634 + 1.08536i 0.361588 + 0.932338i \(0.382235\pi\)
−0.988222 + 0.153024i \(0.951099\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) 15.4641 8.92820i 1.11313 0.642666i 0.173492 0.984835i \(-0.444495\pi\)
0.939638 + 0.342169i \(0.111162\pi\)
\(194\) −12.3923 −0.889716
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) 8.13397 4.69615i 0.579522 0.334587i −0.181422 0.983405i \(-0.558070\pi\)
0.760943 + 0.648818i \(0.224737\pi\)
\(198\) −1.86603 3.23205i −0.132613 0.229692i
\(199\) 5.53590 9.58846i 0.392429 0.679708i −0.600340 0.799745i \(-0.704968\pi\)
0.992769 + 0.120037i \(0.0383014\pi\)
\(200\) 0 0
\(201\) 4.73205 + 2.73205i 0.333773 + 0.192704i
\(202\) 7.26795 + 4.19615i 0.511371 + 0.295240i
\(203\) 16.3923i 1.15051i
\(204\) −2.00000 + 3.46410i −0.140028 + 0.242536i
\(205\) 0 0
\(206\) −16.9641 + 9.79423i −1.18194 + 0.682396i
\(207\) 3.46410 0.240772
\(208\) −3.46410 + 1.00000i −0.240192 + 0.0693375i
\(209\) 8.46410 0.585474
\(210\) 0 0
\(211\) 10.9641 + 18.9904i 0.754800 + 1.30735i 0.945474 + 0.325698i \(0.105599\pi\)
−0.190674 + 0.981653i \(0.561067\pi\)
\(212\) 1.86603 3.23205i 0.128159 0.221978i
\(213\) 0.928203i 0.0635994i
\(214\) 0.803848 + 0.464102i 0.0549499 + 0.0317253i
\(215\) 0 0
\(216\) 1.00000i 0.0680414i
\(217\) 13.3923 23.1962i 0.909129 1.57466i
\(218\) 5.19615 + 9.00000i 0.351928 + 0.609557i
\(219\) −6.00000 + 3.46410i −0.405442 + 0.234082i
\(220\) 0 0
\(221\) −10.3923 10.0000i −0.699062 0.672673i
\(222\) −7.92820 −0.532106
\(223\) 7.66987 4.42820i 0.513613 0.296534i −0.220705 0.975341i \(-0.570836\pi\)
0.734317 + 0.678806i \(0.237502\pi\)
\(224\) −1.50000 2.59808i −0.100223 0.173591i
\(225\) 0 0
\(226\) 12.0000i 0.798228i
\(227\) 11.6603 + 6.73205i 0.773918 + 0.446822i 0.834271 0.551355i \(-0.185889\pi\)
−0.0603523 + 0.998177i \(0.519222\pi\)
\(228\) 1.96410 + 1.13397i 0.130076 + 0.0750993i
\(229\) 11.4641i 0.757569i 0.925485 + 0.378785i \(0.123658\pi\)
−0.925485 + 0.378785i \(0.876342\pi\)
\(230\) 0 0
\(231\) 5.59808 + 9.69615i 0.368326 + 0.637960i
\(232\) 4.73205 2.73205i 0.310674 0.179368i
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 3.50000 + 0.866025i 0.228802 + 0.0566139i
\(235\) 0 0
\(236\) 3.92820 2.26795i 0.255704 0.147631i
\(237\) −8.46410 14.6603i −0.549802 0.952286i
\(238\) 6.00000 10.3923i 0.388922 0.673633i
\(239\) 3.46410i 0.224074i 0.993704 + 0.112037i \(0.0357375\pi\)
−0.993704 + 0.112037i \(0.964262\pi\)
\(240\) 0 0
\(241\) 12.8205 + 7.40192i 0.825842 + 0.476800i 0.852427 0.522847i \(-0.175130\pi\)
−0.0265852 + 0.999647i \(0.508463\pi\)
\(242\) 2.92820i 0.188232i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −3.73205 6.46410i −0.238920 0.413822i
\(245\) 0 0
\(246\) −4.00000 −0.255031
\(247\) −5.66987 + 5.89230i −0.360765 + 0.374918i
\(248\) −8.92820 −0.566941
\(249\) −2.19615 + 1.26795i −0.139176 + 0.0803530i
\(250\) 0 0
\(251\) −13.2321 + 22.9186i −0.835200 + 1.44661i 0.0586681 + 0.998278i \(0.481315\pi\)
−0.893868 + 0.448331i \(0.852019\pi\)
\(252\) 3.00000i 0.188982i
\(253\) 11.1962 + 6.46410i 0.703896 + 0.406395i
\(254\) 4.03590 + 2.33013i 0.253235 + 0.146205i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 10.7321 + 18.5885i 0.669447 + 1.15952i 0.978059 + 0.208328i \(0.0668022\pi\)
−0.308612 + 0.951188i \(0.599864\pi\)
\(258\) −5.19615 + 3.00000i −0.323498 + 0.186772i
\(259\) 23.7846 1.47790
\(260\) 0 0
\(261\) −5.46410 −0.338219
\(262\) −17.5981 + 10.1603i −1.08721 + 0.627703i
\(263\) 10.2583 + 17.7679i 0.632556 + 1.09562i 0.987027 + 0.160552i \(0.0513274\pi\)
−0.354472 + 0.935067i \(0.615339\pi\)
\(264\) 1.86603 3.23205i 0.114846 0.198919i
\(265\) 0 0
\(266\) −5.89230 3.40192i −0.361280 0.208585i
\(267\) 8.76795 + 5.06218i 0.536590 + 0.309800i
\(268\) 5.46410i 0.333773i
\(269\) 15.4641 26.7846i 0.942863 1.63309i 0.182888 0.983134i \(-0.441455\pi\)
0.759975 0.649953i \(-0.225211\pi\)
\(270\) 0 0
\(271\) −3.12436 + 1.80385i −0.189791 + 0.109576i −0.591885 0.806023i \(-0.701616\pi\)
0.402094 + 0.915599i \(0.368283\pi\)
\(272\) −4.00000 −0.242536
\(273\) −10.5000 2.59808i −0.635489 0.157243i
\(274\) 6.53590 0.394848
\(275\) 0 0
\(276\) 1.73205 + 3.00000i 0.104257 + 0.180579i
\(277\) −9.79423 + 16.9641i −0.588478 + 1.01927i 0.405954 + 0.913894i \(0.366939\pi\)
−0.994432 + 0.105380i \(0.966394\pi\)
\(278\) 21.7846i 1.30655i
\(279\) 7.73205 + 4.46410i 0.462906 + 0.267259i
\(280\) 0 0
\(281\) 6.92820i 0.413302i 0.978415 + 0.206651i \(0.0662565\pi\)
−0.978415 + 0.206651i \(0.933744\pi\)
\(282\) −0.232051 + 0.401924i −0.0138184 + 0.0239342i
\(283\) 7.19615 + 12.4641i 0.427767 + 0.740914i 0.996674 0.0814876i \(-0.0259671\pi\)
−0.568907 + 0.822402i \(0.692634\pi\)
\(284\) −0.803848 + 0.464102i −0.0476996 + 0.0275394i
\(285\) 0 0
\(286\) 9.69615 + 9.33013i 0.573346 + 0.551702i
\(287\) 12.0000 0.708338
\(288\) 0.866025 0.500000i 0.0510310 0.0294628i
\(289\) 0.500000 + 0.866025i 0.0294118 + 0.0509427i
\(290\) 0 0
\(291\) 12.3923i 0.726450i
\(292\) −6.00000 3.46410i −0.351123 0.202721i
\(293\) −16.6699 9.62436i −0.973864 0.562261i −0.0734522 0.997299i \(-0.523402\pi\)
−0.900412 + 0.435038i \(0.856735\pi\)
\(294\) 2.00000i 0.116642i
\(295\) 0 0
\(296\) −3.96410 6.86603i −0.230409 0.399080i
\(297\) −3.23205 + 1.86603i −0.187543 + 0.108278i
\(298\) 22.7846 1.31988
\(299\) −12.0000 + 3.46410i −0.693978 + 0.200334i
\(300\) 0 0
\(301\) 15.5885 9.00000i 0.898504 0.518751i
\(302\) −9.39230 16.2679i −0.540466 0.936115i
\(303\) 4.19615 7.26795i 0.241063 0.417533i
\(304\) 2.26795i 0.130076i
\(305\) 0 0
\(306\) 3.46410 + 2.00000i 0.198030 + 0.114332i
\(307\) 20.2487i 1.15565i 0.816159 + 0.577827i \(0.196099\pi\)
−0.816159 + 0.577827i \(0.803901\pi\)
\(308\) −5.59808 + 9.69615i −0.318980 + 0.552490i
\(309\) 9.79423 + 16.9641i 0.557174 + 0.965054i
\(310\) 0 0
\(311\) 5.07180 0.287595 0.143798 0.989607i \(-0.454069\pi\)
0.143798 + 0.989607i \(0.454069\pi\)
\(312\) 1.00000 + 3.46410i 0.0566139 + 0.196116i
\(313\) −1.32051 −0.0746395 −0.0373198 0.999303i \(-0.511882\pi\)
−0.0373198 + 0.999303i \(0.511882\pi\)
\(314\) −9.35641 + 5.40192i −0.528013 + 0.304848i
\(315\) 0 0
\(316\) 8.46410 14.6603i 0.476143 0.824704i
\(317\) 23.5359i 1.32191i 0.750427 + 0.660954i \(0.229848\pi\)
−0.750427 + 0.660954i \(0.770152\pi\)
\(318\) −3.23205 1.86603i −0.181244 0.104642i
\(319\) −17.6603 10.1962i −0.988784 0.570875i
\(320\) 0 0
\(321\) 0.464102 0.803848i 0.0259036 0.0448664i
\(322\) −5.19615 9.00000i −0.289570 0.501550i
\(323\) −7.85641 + 4.53590i −0.437142 + 0.252384i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 10.9282 0.605257
\(327\) 9.00000 5.19615i 0.497701 0.287348i
\(328\) −2.00000 3.46410i −0.110432 0.191273i
\(329\) 0.696152 1.20577i 0.0383801 0.0664763i
\(330\) 0 0
\(331\) 5.53590 + 3.19615i 0.304280 + 0.175676i 0.644364 0.764719i \(-0.277122\pi\)
−0.340084 + 0.940395i \(0.610455\pi\)
\(332\) −2.19615 1.26795i −0.120530 0.0695878i
\(333\) 7.92820i 0.434463i
\(334\) 3.23205 5.59808i 0.176850 0.306313i
\(335\) 0 0
\(336\) −2.59808 + 1.50000i −0.141737 + 0.0818317i
\(337\) 5.60770 0.305471 0.152735 0.988267i \(-0.451192\pi\)
0.152735 + 0.988267i \(0.451192\pi\)
\(338\) −12.9904 + 0.500000i −0.706584 + 0.0271964i
\(339\) 12.0000 0.651751
\(340\) 0 0
\(341\) 16.6603 + 28.8564i 0.902203 + 1.56266i
\(342\) 1.13397 1.96410i 0.0613183 0.106206i
\(343\) 15.0000i 0.809924i
\(344\) −5.19615 3.00000i −0.280158 0.161749i
\(345\) 0 0
\(346\) 22.1244i 1.18941i
\(347\) −8.19615 + 14.1962i −0.439993 + 0.762089i −0.997688 0.0679560i \(-0.978352\pi\)
0.557696 + 0.830045i \(0.311686\pi\)
\(348\) −2.73205 4.73205i −0.146453 0.253665i
\(349\) 15.1244 8.73205i 0.809588 0.467416i −0.0372247 0.999307i \(-0.511852\pi\)
0.846813 + 0.531891i \(0.178518\pi\)
\(350\) 0 0
\(351\) 0.866025 3.50000i 0.0462250 0.186816i
\(352\) 3.73205 0.198919
\(353\) 24.5885 14.1962i 1.30871 0.755585i 0.326830 0.945083i \(-0.394019\pi\)
0.981881 + 0.189498i \(0.0606861\pi\)
\(354\) −2.26795 3.92820i −0.120540 0.208782i
\(355\) 0 0
\(356\) 10.1244i 0.536590i
\(357\) −10.3923 6.00000i −0.550019 0.317554i
\(358\) −19.8564 11.4641i −1.04944 0.605897i
\(359\) 12.9282i 0.682324i 0.940004 + 0.341162i \(0.110821\pi\)
−0.940004 + 0.341162i \(0.889179\pi\)
\(360\) 0 0
\(361\) −6.92820 12.0000i −0.364642 0.631579i
\(362\) 2.66025 1.53590i 0.139820 0.0807250i
\(363\) −2.92820 −0.153691
\(364\) −3.00000 10.3923i −0.157243 0.544705i
\(365\) 0 0
\(366\) −6.46410 + 3.73205i −0.337884 + 0.195077i
\(367\) −6.66025 11.5359i −0.347662 0.602169i 0.638171 0.769894i \(-0.279691\pi\)
−0.985834 + 0.167725i \(0.946358\pi\)
\(368\) −1.73205 + 3.00000i −0.0902894 + 0.156386i
\(369\) 4.00000i 0.208232i
\(370\) 0 0
\(371\) 9.69615 + 5.59808i 0.503399 + 0.290638i
\(372\) 8.92820i 0.462906i
\(373\) 11.4641 19.8564i 0.593589 1.02813i −0.400156 0.916447i \(-0.631044\pi\)
0.993744 0.111679i \(-0.0356227\pi\)
\(374\) 7.46410 + 12.9282i 0.385960 + 0.668501i
\(375\) 0 0
\(376\) −0.464102 −0.0239342
\(377\) 18.9282 5.46410i 0.974852 0.281416i
\(378\) 3.00000 0.154303
\(379\) 5.42820 3.13397i 0.278828 0.160981i −0.354065 0.935221i \(-0.615201\pi\)
0.632893 + 0.774239i \(0.281867\pi\)
\(380\) 0 0
\(381\) 2.33013 4.03590i 0.119376 0.206765i
\(382\) 17.3205i 0.886194i
\(383\) −31.8564 18.3923i −1.62779 0.939803i −0.984752 0.173966i \(-0.944342\pi\)
−0.643035 0.765837i \(-0.722325\pi\)
\(384\) 0.866025 + 0.500000i 0.0441942 + 0.0255155i
\(385\) 0 0
\(386\) 8.92820 15.4641i 0.454434 0.787102i
\(387\) 3.00000 + 5.19615i 0.152499 + 0.264135i
\(388\) −10.7321 + 6.19615i −0.544837 + 0.314562i
\(389\) −9.85641 −0.499740 −0.249870 0.968279i \(-0.580388\pi\)
−0.249870 + 0.968279i \(0.580388\pi\)
\(390\) 0 0
\(391\) −13.8564 −0.700749
\(392\) 1.73205 1.00000i 0.0874818 0.0505076i
\(393\) 10.1603 + 17.5981i 0.512517 + 0.887706i
\(394\) 4.69615 8.13397i 0.236589 0.409784i
\(395\) 0 0
\(396\) −3.23205 1.86603i −0.162417 0.0937713i
\(397\) 6.86603 + 3.96410i 0.344596 + 0.198953i 0.662303 0.749237i \(-0.269579\pi\)
−0.317707 + 0.948189i \(0.602913\pi\)
\(398\) 11.0718i 0.554979i
\(399\) −3.40192 + 5.89230i −0.170309 + 0.294984i
\(400\) 0 0
\(401\) −1.83975 + 1.06218i −0.0918725 + 0.0530426i −0.545232 0.838285i \(-0.683559\pi\)
0.453360 + 0.891328i \(0.350225\pi\)
\(402\) 5.46410 0.272525
\(403\) −31.2487 7.73205i −1.55661 0.385161i
\(404\) 8.39230 0.417533
\(405\) 0 0
\(406\) 8.19615 + 14.1962i 0.406768 + 0.704543i
\(407\) −14.7942 + 25.6244i −0.733323 + 1.27015i
\(408\) 4.00000i 0.198030i
\(409\) 0.820508 + 0.473721i 0.0405715 + 0.0234240i 0.520149 0.854076i \(-0.325877\pi\)
−0.479577 + 0.877500i \(0.659210\pi\)
\(410\) 0 0
\(411\) 6.53590i 0.322392i
\(412\) −9.79423 + 16.9641i −0.482527 + 0.835761i
\(413\) 6.80385 + 11.7846i 0.334795 + 0.579883i
\(414\) 3.00000 1.73205i 0.147442 0.0851257i
\(415\) 0 0
\(416\) −2.50000 + 2.59808i −0.122573 + 0.127381i
\(417\) 21.7846 1.06680
\(418\) 7.33013 4.23205i 0.358528 0.206996i
\(419\) 8.92820 + 15.4641i 0.436171 + 0.755471i 0.997390 0.0721964i \(-0.0230008\pi\)
−0.561219 + 0.827667i \(0.689668\pi\)
\(420\) 0 0
\(421\) 5.85641i 0.285424i 0.989764 + 0.142712i \(0.0455822\pi\)
−0.989764 + 0.142712i \(0.954418\pi\)
\(422\) 18.9904 + 10.9641i 0.924437 + 0.533724i
\(423\) 0.401924 + 0.232051i 0.0195422 + 0.0112827i
\(424\) 3.73205i 0.181244i
\(425\) 0 0
\(426\) 0.464102 + 0.803848i 0.0224858 + 0.0389465i
\(427\) 19.3923 11.1962i 0.938459 0.541820i
\(428\) 0.928203 0.0448664
\(429\) 9.33013 9.69615i 0.450463 0.468135i
\(430\) 0 0
\(431\) −12.0000 + 6.92820i −0.578020 + 0.333720i −0.760346 0.649518i \(-0.774971\pi\)
0.182326 + 0.983238i \(0.441637\pi\)
\(432\) −0.500000 0.866025i −0.0240563 0.0416667i
\(433\) 16.3923 28.3923i 0.787764 1.36445i −0.139570 0.990212i \(-0.544572\pi\)
0.927334 0.374235i \(-0.122095\pi\)
\(434\) 26.7846i 1.28570i
\(435\) 0 0
\(436\) 9.00000 + 5.19615i 0.431022 + 0.248851i
\(437\) 7.85641i 0.375823i
\(438\) −3.46410 + 6.00000i −0.165521 + 0.286691i
\(439\) −10.6603 18.4641i −0.508786 0.881243i −0.999948 0.0101753i \(-0.996761\pi\)
0.491162 0.871068i \(-0.336572\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) −14.0000 3.46410i −0.665912 0.164771i
\(443\) −7.85641 −0.373269 −0.186635 0.982429i \(-0.559758\pi\)
−0.186635 + 0.982429i \(0.559758\pi\)
\(444\) −6.86603 + 3.96410i −0.325847 + 0.188128i
\(445\) 0 0
\(446\) 4.42820 7.66987i 0.209682 0.363179i
\(447\) 22.7846i 1.07768i
\(448\) −2.59808 1.50000i −0.122748 0.0708683i
\(449\) −15.6962 9.06218i −0.740747 0.427671i 0.0815937 0.996666i \(-0.473999\pi\)
−0.822341 + 0.568995i \(0.807332\pi\)
\(450\) 0 0
\(451\) −7.46410 + 12.9282i −0.351471 + 0.608765i
\(452\) 6.00000 + 10.3923i 0.282216 + 0.488813i
\(453\) −16.2679 + 9.39230i −0.764335 + 0.441289i
\(454\) 13.4641 0.631902
\(455\) 0 0
\(456\) 2.26795 0.106206
\(457\) −0.464102 + 0.267949i −0.0217098 + 0.0125341i −0.510816 0.859690i \(-0.670657\pi\)
0.489106 + 0.872224i \(0.337323\pi\)
\(458\) 5.73205 + 9.92820i 0.267841 + 0.463914i
\(459\) 2.00000 3.46410i 0.0933520 0.161690i
\(460\) 0 0
\(461\) 28.0526 + 16.1962i 1.30654 + 0.754330i 0.981517 0.191377i \(-0.0612952\pi\)
0.325021 + 0.945707i \(0.394629\pi\)
\(462\) 9.69615 + 5.59808i 0.451106 + 0.260446i
\(463\) 0.784610i 0.0364639i 0.999834 + 0.0182320i \(0.00580373\pi\)
−0.999834 + 0.0182320i \(0.994196\pi\)
\(464\) 2.73205 4.73205i 0.126832 0.219680i
\(465\) 0 0
\(466\) −15.5885 + 9.00000i −0.722121 + 0.416917i
\(467\) −3.60770 −0.166944 −0.0834721 0.996510i \(-0.526601\pi\)
−0.0834721 + 0.996510i \(0.526601\pi\)
\(468\) 3.46410 1.00000i 0.160128 0.0462250i
\(469\) −16.3923 −0.756926
\(470\) 0 0
\(471\) 5.40192 + 9.35641i 0.248908 + 0.431120i
\(472\) 2.26795 3.92820i 0.104391 0.180810i
\(473\) 22.3923i 1.02960i
\(474\) −14.6603 8.46410i −0.673368 0.388769i
\(475\) 0 0
\(476\) 12.0000i 0.550019i
\(477\) −1.86603 + 3.23205i −0.0854394 + 0.147985i
\(478\) 1.73205 + 3.00000i 0.0792222 + 0.137217i
\(479\) −22.7321 + 13.1244i −1.03865 + 0.599667i −0.919452 0.393203i \(-0.871367\pi\)
−0.119202 + 0.992870i \(0.538034\pi\)
\(480\) 0 0
\(481\) −7.92820 27.4641i −0.361495 1.25226i
\(482\) 14.8038 0.674297
\(483\) −9.00000 + 5.19615i −0.409514 + 0.236433i
\(484\) −1.46410 2.53590i −0.0665501 0.115268i
\(485\) 0 0
\(486\) 1.00000i 0.0453609i
\(487\) 18.1865 + 10.5000i 0.824110 + 0.475800i 0.851832 0.523815i \(-0.175492\pi\)
−0.0277214 + 0.999616i \(0.508825\pi\)
\(488\) −6.46410 3.73205i −0.292616 0.168942i
\(489\) 10.9282i 0.494190i
\(490\) 0 0
\(491\) 7.69615 + 13.3301i 0.347322 + 0.601580i 0.985773 0.168083i \(-0.0537576\pi\)
−0.638450 + 0.769663i \(0.720424\pi\)
\(492\) −3.46410 + 2.00000i −0.156174 + 0.0901670i
\(493\) 21.8564 0.984363
\(494\) −1.96410 + 7.93782i −0.0883691 + 0.357140i
\(495\) 0 0
\(496\) −7.73205 + 4.46410i −0.347179 + 0.200444i
\(497\) −1.39230 2.41154i −0.0624534 0.108172i
\(498\) −1.26795 + 2.19615i −0.0568182 + 0.0984119i
\(499\) 1.32051i 0.0591141i 0.999563 + 0.0295570i \(0.00940967\pi\)
−0.999563 + 0.0295570i \(0.990590\pi\)
\(500\) 0 0
\(501\) −5.59808 3.23205i −0.250104 0.144397i
\(502\) 26.4641i 1.18115i
\(503\) 0.133975 0.232051i 0.00597363 0.0103466i −0.863023 0.505164i \(-0.831432\pi\)
0.868997 + 0.494818i \(0.164765\pi\)
\(504\) 1.50000 + 2.59808i 0.0668153 + 0.115728i
\(505\) 0 0
\(506\) 12.9282 0.574729
\(507\) 0.500000 + 12.9904i 0.0222058 + 0.576923i
\(508\) 4.66025 0.206765
\(509\) 4.60770 2.66025i 0.204232 0.117914i −0.394396 0.918941i \(-0.629046\pi\)
0.598628 + 0.801027i \(0.295713\pi\)
\(510\) 0 0
\(511\) 10.3923 18.0000i 0.459728 0.796273i
\(512\) 1.00000i 0.0441942i
\(513\) −1.96410 1.13397i −0.0867172 0.0500662i
\(514\) 18.5885 + 10.7321i 0.819902 + 0.473370i
\(515\) 0 0
\(516\) −3.00000 + 5.19615i −0.132068 + 0.228748i
\(517\) 0.866025 + 1.50000i 0.0380878 + 0.0659699i
\(518\) 20.5981 11.8923i 0.905028 0.522518i
\(519\) −22.1244 −0.971151
\(520\) 0 0
\(521\) −27.3923 −1.20008 −0.600039 0.799970i \(-0.704848\pi\)
−0.600039 + 0.799970i \(0.704848\pi\)
\(522\) −4.73205 + 2.73205i −0.207116 + 0.119579i
\(523\) 6.85641 + 11.8756i 0.299810 + 0.519286i 0.976092 0.217357i \(-0.0697435\pi\)
−0.676283 + 0.736642i \(0.736410\pi\)
\(524\) −10.1603 + 17.5981i −0.443853 + 0.768776i
\(525\) 0 0
\(526\) 17.7679 + 10.2583i 0.774719 + 0.447284i
\(527\) −30.9282 17.8564i −1.34725 0.777837i
\(528\) 3.73205i 0.162417i
\(529\) 5.50000 9.52628i 0.239130 0.414186i
\(530\) 0 0
\(531\) −3.92820 + 2.26795i −0.170470 + 0.0984206i
\(532\) −6.80385 −0.294984
\(533\) −4.00000 13.8564i −0.173259 0.600188i
\(534\) 10.1244 0.438124
\(535\) 0 0
\(536\) 2.73205 + 4.73205i 0.118007 + 0.204393i
\(537\) −11.4641 + 19.8564i −0.494713 + 0.856867i
\(538\) 30.9282i 1.33341i
\(539\) −6.46410 3.73205i −0.278429 0.160751i
\(540\) 0 0
\(541\) 26.7846i 1.15156i 0.817605 + 0.575780i \(0.195302\pi\)
−0.817605 + 0.575780i \(0.804698\pi\)
\(542\) −1.80385 + 3.12436i −0.0774819 + 0.134203i
\(543\) −1.53590 2.66025i −0.0659117 0.114162i
\(544\) −3.46410 + 2.00000i −0.148522 + 0.0857493i
\(545\) 0 0
\(546\) −10.3923 + 3.00000i −0.444750 + 0.128388i
\(547\) −29.3205 −1.25365 −0.626827 0.779158i \(-0.715647\pi\)
−0.626827 + 0.779158i \(0.715647\pi\)
\(548\) 5.66025 3.26795i 0.241794 0.139600i
\(549\) 3.73205 + 6.46410i 0.159280 + 0.275881i
\(550\) 0 0
\(551\) 12.3923i 0.527930i
\(552\) 3.00000 + 1.73205i 0.127688 + 0.0737210i
\(553\) 43.9808 + 25.3923i 1.87025 + 1.07979i
\(554\) 19.5885i 0.832234i
\(555\) 0 0
\(556\) 10.8923 + 18.8660i 0.461937 + 0.800098i
\(557\) −37.5788 + 21.6962i −1.59227 + 0.919295i −0.599349 + 0.800488i \(0.704574\pi\)
−0.992917 + 0.118808i \(0.962093\pi\)
\(558\) 8.92820 0.377961
\(559\) −15.5885 15.0000i −0.659321 0.634432i
\(560\) 0 0
\(561\) 12.9282 7.46410i 0.545829 0.315135i
\(562\) 3.46410 + 6.00000i 0.146124 + 0.253095i
\(563\) 9.66025 16.7321i 0.407131 0.705172i −0.587436 0.809271i \(-0.699863\pi\)
0.994567 + 0.104099i \(0.0331959\pi\)
\(564\) 0.464102i 0.0195422i
\(565\) 0 0
\(566\) 12.4641 + 7.19615i 0.523905 + 0.302477i
\(567\) 3.00000i 0.125988i
\(568\) −0.464102 + 0.803848i −0.0194733 + 0.0337287i
\(569\) −9.16025 15.8660i −0.384018 0.665138i 0.607615 0.794232i \(-0.292127\pi\)
−0.991632 + 0.129094i \(0.958793\pi\)
\(570\) 0 0
\(571\) −16.8564 −0.705419 −0.352709 0.935733i \(-0.614740\pi\)
−0.352709 + 0.935733i \(0.614740\pi\)
\(572\) 13.0622 + 3.23205i 0.546157 + 0.135139i
\(573\) 17.3205 0.723575
\(574\) 10.3923 6.00000i 0.433766 0.250435i
\(575\) 0 0
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) 25.3205i 1.05411i 0.849832 + 0.527053i \(0.176703\pi\)
−0.849832 + 0.527053i \(0.823297\pi\)
\(578\) 0.866025 + 0.500000i 0.0360219 + 0.0207973i
\(579\) −15.4641 8.92820i −0.642666 0.371043i
\(580\) 0 0
\(581\) 3.80385 6.58846i 0.157810 0.273335i
\(582\) 6.19615 + 10.7321i 0.256839 + 0.444858i
\(583\) −12.0622 + 6.96410i −0.499564 + 0.288424i
\(584\) −6.92820 −0.286691
\(585\) 0 0
\(586\) −19.2487 −0.795157
\(587\) 4.26795 2.46410i 0.176157 0.101704i −0.409329 0.912387i \(-0.634237\pi\)
0.585486 + 0.810683i \(0.300904\pi\)
\(588\) −1.00000 1.73205i −0.0412393 0.0714286i
\(589\) −10.1244 + 17.5359i −0.417167 + 0.722554i
\(590\) 0 0
\(591\) −8.13397 4.69615i −0.334587 0.193174i
\(592\) −6.86603 3.96410i −0.282192 0.162924i
\(593\) 3.21539i 0.132040i −0.997818 0.0660201i \(-0.978970\pi\)
0.997818 0.0660201i \(-0.0210302\pi\)
\(594\) −1.86603 + 3.23205i −0.0765639 + 0.132613i
\(595\) 0 0
\(596\) 19.7321 11.3923i 0.808256 0.466647i
\(597\) −11.0718 −0.453138
\(598\) −8.66025 + 9.00000i −0.354144 + 0.368037i
\(599\) 15.0718 0.615817 0.307908 0.951416i \(-0.400371\pi\)
0.307908 + 0.951416i \(0.400371\pi\)
\(600\) 0 0
\(601\) 12.3564 + 21.4019i 0.504028 + 0.873003i 0.999989 + 0.00465778i \(0.00148262\pi\)
−0.495961 + 0.868345i \(0.665184\pi\)
\(602\) 9.00000 15.5885i 0.366813 0.635338i
\(603\) 5.46410i 0.222515i
\(604\) −16.2679 9.39230i −0.661933 0.382167i
\(605\) 0 0
\(606\) 8.39230i 0.340914i
\(607\) 18.7224 32.4282i 0.759920 1.31622i −0.182971 0.983118i \(-0.558571\pi\)
0.942891 0.333102i \(-0.108095\pi\)
\(608\) 1.13397 + 1.96410i 0.0459887 + 0.0796548i
\(609\) 14.1962 8.19615i 0.575257 0.332125i
\(610\) 0 0
\(611\) −1.62436 0.401924i −0.0657144 0.0162601i
\(612\) 4.00000 0.161690
\(613\) 38.9711 22.5000i 1.57403 0.908766i 0.578362 0.815780i \(-0.303692\pi\)
0.995667 0.0929864i \(-0.0296413\pi\)
\(614\) 10.1244 + 17.5359i 0.408586 + 0.707691i
\(615\) 0 0
\(616\) 11.1962i 0.451106i
\(617\) −24.7128 14.2679i −0.994900 0.574406i −0.0881649 0.996106i \(-0.528100\pi\)
−0.906735 + 0.421700i \(0.861434\pi\)
\(618\) 16.9641 + 9.79423i 0.682396 + 0.393982i
\(619\) 42.5167i 1.70889i 0.519543 + 0.854444i \(0.326102\pi\)
−0.519543 + 0.854444i \(0.673898\pi\)
\(620\) 0 0
\(621\) −1.73205 3.00000i −0.0695048 0.120386i
\(622\) 4.39230 2.53590i 0.176115 0.101680i
\(623\) −30.3731 −1.21687
\(624\) 2.59808 + 2.50000i 0.104006 + 0.100080i
\(625\) 0 0
\(626\) −1.14359 + 0.660254i −0.0457072 + 0.0263891i
\(627\) −4.23205 7.33013i −0.169012 0.292737i
\(628\) −5.40192 + 9.35641i −0.215560 + 0.373361i
\(629\) 31.7128i 1.26447i
\(630\) 0 0
\(631\) 6.92820 + 4.00000i 0.275807 + 0.159237i 0.631524 0.775356i \(-0.282430\pi\)
−0.355716 + 0.934594i \(0.615763\pi\)
\(632\) 16.9282i 0.673368i
\(633\) 10.9641 18.9904i 0.435784 0.754800i
\(634\) 11.7679 + 20.3827i 0.467365 + 0.809500i
\(635\) 0 0
\(636\) −3.73205 −0.147985
\(637\) 6.92820 2.00000i 0.274505 0.0792429i
\(638\) −20.3923 −0.807339
\(639\) 0.803848 0.464102i 0.0317997 0.0183596i
\(640\) 0 0
\(641\) −3.76795 + 6.52628i −0.148825 + 0.257773i −0.930793 0.365546i \(-0.880882\pi\)
0.781968 + 0.623318i \(0.214216\pi\)
\(642\) 0.928203i 0.0366333i
\(643\) −24.9282 14.3923i −0.983072 0.567577i −0.0798761 0.996805i \(-0.525452\pi\)
−0.903196 + 0.429228i \(0.858786\pi\)
\(644\) −9.00000 5.19615i −0.354650 0.204757i
\(645\) 0 0
\(646\) −4.53590 + 7.85641i −0.178463 + 0.309106i
\(647\) −16.1340 27.9449i −0.634292 1.09863i −0.986665 0.162766i \(-0.947958\pi\)
0.352373 0.935860i \(-0.385375\pi\)
\(648\) −0.866025 + 0.500000i −0.0340207 + 0.0196419i
\(649\) −16.9282 −0.664490
\(650\) 0 0
\(651\) −26.7846 −1.04977
\(652\) 9.46410 5.46410i 0.370643 0.213991i
\(653\) 14.7942 + 25.6244i 0.578943 + 1.00276i 0.995601 + 0.0936952i \(0.0298679\pi\)
−0.416658 + 0.909063i \(0.636799\pi\)
\(654\) 5.19615 9.00000i 0.203186 0.351928i
\(655\) 0 0
\(656\) −3.46410 2.00000i −0.135250 0.0780869i
\(657\) 6.00000 + 3.46410i 0.234082 + 0.135147i
\(658\) 1.39230i 0.0542777i
\(659\) −7.85641 + 13.6077i −0.306042 + 0.530081i −0.977493 0.210969i \(-0.932338\pi\)
0.671451 + 0.741049i \(0.265672\pi\)
\(660\) 0 0
\(661\) 36.7128 21.1962i 1.42796 0.824435i 0.431003 0.902351i \(-0.358160\pi\)
0.996960 + 0.0779157i \(0.0248265\pi\)
\(662\) 6.39230 0.248444
\(663\) −3.46410 + 14.0000i −0.134535 + 0.543715i
\(664\) −2.53590 −0.0984119
\(665\) 0 0
\(666\) 3.96410 + 6.86603i 0.153606 + 0.266053i
\(667\) 9.46410 16.3923i 0.366451 0.634713i
\(668\) 6.46410i 0.250104i
\(669\) −7.66987 4.42820i −0.296534 0.171204i
\(670\) 0 0
\(671\) 27.8564i 1.07538i
\(672\) −1.50000 + 2.59808i −0.0578638 + 0.100223i
\(673\) 12.3923 + 21.4641i 0.477688 + 0.827380i 0.999673 0.0255746i \(-0.00814152\pi\)
−0.521985 + 0.852955i \(0.674808\pi\)
\(674\) 4.85641 2.80385i 0.187062 0.108000i
\(675\) 0 0
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) 2.92820 0.112540 0.0562700 0.998416i \(-0.482079\pi\)
0.0562700 + 0.998416i \(0.482079\pi\)
\(678\) 10.3923 6.00000i 0.399114 0.230429i
\(679\) −18.5885 32.1962i −0.713360 1.23557i
\(680\) 0 0
\(681\) 13.4641i 0.515945i
\(682\) 28.8564 + 16.6603i 1.10497 + 0.637954i
\(683\) 5.78461 + 3.33975i 0.221342 + 0.127792i 0.606571 0.795029i \(-0.292544\pi\)
−0.385230 + 0.922821i \(0.625878\pi\)
\(684\) 2.26795i 0.0867172i
\(685\) 0 0
\(686\) −7.50000 12.9904i −0.286351 0.495975i
\(687\) 9.92820 5.73205i 0.378785 0.218691i
\(688\) −6.00000 −0.228748
\(689\) 3.23205 13.0622i 0.123131 0.497629i
\(690\) 0 0
\(691\) 19.9641 11.5263i 0.759470 0.438480i −0.0696353 0.997573i \(-0.522184\pi\)
0.829106 + 0.559092i \(0.188850\pi\)
\(692\) −11.0622 19.1603i −0.420521 0.728364i
\(693\) 5.59808 9.69615i 0.212653 0.368326i
\(694\) 16.3923i 0.622243i
\(695\) 0 0
\(696\) −4.73205 2.73205i −0.179368 0.103558i
\(697\) 16.0000i 0.606043i
\(698\) 8.73205 15.1244i 0.330513 0.572465i
\(699\) 9.00000 + 15.5885i 0.340411 + 0.589610i
\(700\) 0 0
\(701\) 16.3923 0.619129 0.309564 0.950878i \(-0.399817\pi\)
0.309564 + 0.950878i \(0.399817\pi\)
\(702\) −1.00000 3.46410i −0.0377426 0.130744i
\(703\) −17.9808 −0.678157
\(704\) 3.23205 1.86603i 0.121812 0.0703285i
\(705\) 0 0
\(706\) 14.1962 24.5885i 0.534279 0.925399i
\(707\) 25.1769i 0.946875i
\(708\) −3.92820 2.26795i −0.147631 0.0852348i
\(709\) −6.33975 3.66025i −0.238094 0.137464i 0.376206 0.926536i \(-0.377228\pi\)
−0.614300 + 0.789072i \(0.710562\pi\)
\(710\) 0 0
\(711\) −8.46410 + 14.6603i −0.317429 + 0.549802i
\(712\) 5.06218 + 8.76795i 0.189713 + 0.328593i
\(713\) −26.7846 + 15.4641i −1.00309 + 0.579135i
\(714\) −12.0000 −0.449089
\(715\) 0 0
\(716\) −22.9282 −0.856867
\(717\) 3.00000 1.73205i 0.112037 0.0646846i
\(718\) 6.46410 + 11.1962i 0.241238 + 0.417837i
\(719\) −8.00000 + 13.8564i −0.298350 + 0.516757i −0.975759 0.218850i \(-0.929769\pi\)
0.677409 + 0.735607i \(0.263103\pi\)
\(720\) 0 0
\(721\) −50.8923 29.3827i −1.89533 1.09427i
\(722\) −12.0000 6.92820i −0.446594 0.257841i
\(723\) 14.8038i 0.550561i
\(724\) 1.53590 2.66025i 0.0570812 0.0988676i
\(725\) 0 0
\(726\) −2.53590 + 1.46410i −0.0941160 + 0.0543379i
\(727\) −12.6603 −0.469543 −0.234771 0.972051i \(-0.575434\pi\)
−0.234771 + 0.972051i \(0.575434\pi\)
\(728\) −7.79423 7.50000i −0.288873 0.277968i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.0000 20.7846i −0.443836 0.768747i
\(732\) −3.73205 + 6.46410i −0.137941 + 0.238920i
\(733\) 6.85641i 0.253247i −0.991951 0.126624i \(-0.959586\pi\)
0.991951 0.126624i \(-0.0404140\pi\)
\(734\) −11.5359 6.66025i −0.425798 0.245834i
\(735\) 0 0
\(736\) 3.46410i 0.127688i
\(737\) 10.1962 17.6603i 0.375580 0.650524i
\(738\) 2.00000 + 3.46410i 0.0736210 + 0.127515i
\(739\) 37.9641 21.9186i 1.39653 0.806288i 0.402505 0.915418i \(-0.368140\pi\)
0.994028 + 0.109130i \(0.0348064\pi\)
\(740\) 0 0
\(741\) 7.93782 + 1.96410i 0.291603 + 0.0721531i
\(742\) 11.1962 0.411024
\(743\) 2.53590 1.46410i 0.0930331 0.0537127i −0.452762 0.891632i \(-0.649561\pi\)
0.545795 + 0.837919i \(0.316228\pi\)
\(744\) 4.46410 + 7.73205i 0.163662 + 0.283471i
\(745\) 0 0
\(746\) 22.9282i 0.839461i
\(747\) 2.19615 + 1.26795i 0.0803530 + 0.0463918i
\(748\) 12.9282 + 7.46410i 0.472702 + 0.272915i
\(749\) 2.78461i 0.101747i
\(750\) 0 0
\(751\) −20.5885 35.6603i −0.751283 1.30126i −0.947201 0.320641i \(-0.896102\pi\)
0.195917 0.980620i \(-0.437232\pi\)
\(752\) −0.401924 + 0.232051i −0.0146567 + 0.00846202i
\(753\) 26.4641 0.964405
\(754\) 13.6603 14.1962i 0.497477 0.516993i
\(755\) 0 0
\(756\) 2.59808 1.50000i 0.0944911 0.0545545i
\(757\) 9.13397 + 15.8205i 0.331980 + 0.575006i 0.982900 0.184140i \(-0.0589500\pi\)
−0.650920 + 0.759146i \(0.725617\pi\)
\(758\) 3.13397 5.42820i 0.113831 0.197161i
\(759\) 12.9282i 0.469264i
\(760\) 0 0
\(761\) 38.0885 + 21.9904i 1.38071 + 0.797151i 0.992243 0.124314i \(-0.0396730\pi\)
0.388463 + 0.921465i \(0.373006\pi\)
\(762\) 4.66025i 0.168823i
\(763\) −15.5885 + 27.0000i −0.564340 + 0.977466i
\(764\) 8.66025 + 15.0000i 0.313317 + 0.542681i
\(765\) 0 0
\(766\) −36.7846 −1.32908
\(767\) 11.3397 11.7846i 0.409454 0.425518i
\(768\) 1.00000 0.0360844
\(769\) 34.3923 19.8564i 1.24022 0.716040i 0.271080 0.962557i \(-0.412619\pi\)
0.969139 + 0.246517i \(0.0792860\pi\)
\(770\) 0 0
\(771\) 10.7321 18.5885i 0.386505 0.669447i
\(772\) 17.8564i 0.642666i
\(773\) −46.2391 26.6962i −1.66310 0.960194i −0.971220 0.238186i \(-0.923447\pi\)
−0.691885 0.722008i \(-0.743220\pi\)
\(774\) 5.19615 + 3.00000i 0.186772 + 0.107833i
\(775\) 0 0
\(776\) −6.19615 + 10.7321i −0.222429 + 0.385258i
\(777\) −11.8923 20.5981i −0.426634 0.738952i
\(778\) −8.53590 + 4.92820i −0.306027 + 0.176685i
\(779\) −9.07180 −0.325031
\(780\) 0 0
\(781\) 3.46410 0.123955
\(782\) −12.0000 + 6.92820i −0.429119 + 0.247752i
\(783\) 2.73205 + 4.73205i 0.0976355 + 0.169110i