Properties

Label 1950.2.a.z
Level $1950$
Weight $2$
Character orbit 1950.a
Self dual yes
Analytic conductor $15.571$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + q^{6} + 2q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} + q^{4} + q^{6} + 2q^{7} + q^{8} + q^{9} + 2q^{11} + q^{12} - q^{13} + 2q^{14} + q^{16} + 2q^{17} + q^{18} - 4q^{19} + 2q^{21} + 2q^{22} + q^{24} - q^{26} + q^{27} + 2q^{28} + 4q^{29} + 8q^{31} + q^{32} + 2q^{33} + 2q^{34} + q^{36} + 6q^{37} - 4q^{38} - q^{39} - 6q^{41} + 2q^{42} + 4q^{43} + 2q^{44} - 8q^{47} + q^{48} - 3q^{49} + 2q^{51} - q^{52} + 2q^{53} + q^{54} + 2q^{56} - 4q^{57} + 4q^{58} + 10q^{59} - 14q^{61} + 8q^{62} + 2q^{63} + q^{64} + 2q^{66} - 16q^{67} + 2q^{68} - 4q^{71} + q^{72} + 8q^{73} + 6q^{74} - 4q^{76} + 4q^{77} - q^{78} - 8q^{79} + q^{81} - 6q^{82} + 12q^{83} + 2q^{84} + 4q^{86} + 4q^{87} + 2q^{88} + 6q^{89} - 2q^{91} + 8q^{93} - 8q^{94} + q^{96} + 12q^{97} - 3q^{98} + 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 0 1.00000 2.00000 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.2.a.z 1
3.b odd 2 1 5850.2.a.t 1
5.b even 2 1 1950.2.a.c 1
5.c odd 4 2 390.2.e.c 2
15.d odd 2 1 5850.2.a.bj 1
15.e even 4 2 1170.2.e.a 2
20.e even 4 2 3120.2.l.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.e.c 2 5.c odd 4 2
1170.2.e.a 2 15.e even 4 2
1950.2.a.c 1 5.b even 2 1
1950.2.a.z 1 1.a even 1 1 trivial
3120.2.l.g 2 20.e even 4 2
5850.2.a.t 1 3.b odd 2 1
5850.2.a.bj 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1950))\):

\( T_{7} - 2 \)
\( T_{11} - 2 \)
\( T_{17} - 2 \)
\( T_{23} \)
\( T_{31} - 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( -1 + T \)
$5$ \( T \)
$7$ \( -2 + T \)
$11$ \( -2 + T \)
$13$ \( 1 + T \)
$17$ \( -2 + T \)
$19$ \( 4 + T \)
$23$ \( T \)
$29$ \( -4 + T \)
$31$ \( -8 + T \)
$37$ \( -6 + T \)
$41$ \( 6 + T \)
$43$ \( -4 + T \)
$47$ \( 8 + T \)
$53$ \( -2 + T \)
$59$ \( -10 + T \)
$61$ \( 14 + T \)
$67$ \( 16 + T \)
$71$ \( 4 + T \)
$73$ \( -8 + T \)
$79$ \( 8 + T \)
$83$ \( -12 + T \)
$89$ \( -6 + T \)
$97$ \( -12 + T \)
show more
show less